This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

High-efficiency Device-Cloud Collaborative Transformer Model

Penghao Jiang, Ke Xin, Chunxi Li, Yinsi Zhou
University of Technology Sydney
Australia

Abstract

Natural Language Processing (NLP) experts have had
significant success with unsupervised language pre-training
techniques. However, compared to typical NLP models,
modern self-attention models require far more computa-
tional and memory resources than conventional NLP mod-
els, making pre-training or even fine-tuning them quite
costly. It drastically restricts their success and uses in a va-
riety of fields. To improve the efficiency, we propose Device-
Cloud Collaborative Transformer for an efficient language
model, which is a framework across cloud and device, and is
designed to encourage learning of representations that gen-
eralize better to many different tasks. Specifically, we de-
sign Device-Cloud Collaborative Transformer architecture
of large language models that benefits both cloud modeling
and device modeling. Experimental results demonstrate the
effectiveness of our proposed method.

1. Introduction

Unsupervised pre-training approaches [1-16] with self-
attention models (a.k.a. Transformer) [17] have achieved
great success in the field of Natural Language Processing
(NLP). Recent works [6, 15, 18-20] point out that with more
computational and memory resources invested in longer
pretraining and/or larger models, the performance of pre-
trained Transformer models consistently improves. For
each downstream task, the parameters of pre-trained model
are fine-tuned on each task-specific data independently. If
there are N downstream tasks, a standard solution would
produce N BERT models, each of which corresponds to
a specific task. Even the smallest BERT model still has
hundreds of millions of parameters, training one multi-task
model to serve numerous downstream tasks is an efficient
method to avoid deploying multiple copies of large mod-
els in practice. The typical multi-task method [14] ap-
pends different task-specific layers on top of some shared
Transformer layers. All layers are optimized jointly with
all tasks in the training stage. Intuitively, the Transformer
layer learns the generic feature representations, whereas

each task-specific layer learns to accomplish a particular
task. However the Transformer layers still cost a lot of
money to pre-train or even merely fine-tune since they need
a lot more computational and memory resources than more
conventional NLP models. Their potential for use and suc-
cess in new domains is mostly limited by this.

Recent research [21-24] studied a split deployment be-
tween cloud and device, which might lower the inference
cost and memory resources, in order to reduce the compu-
tational and memory resources for cloud centralized mod-
els. Such publications on mobile computing and the Inter-
net of Things (IoTs) are accelerating the spread of comput-
ing [25]. The increasing capacity of mobile devices makes
it possible to consider the intelligence services, such as
online machine translation and online dialogue modeling,
from cloud to device modeling. Recent research has exam-
ined the advantages of ubiquitous computing from a vari-
ety of perspectives, including privacy [22, 23,26, 27], ef-
ficiency [28,29], and applications [2 1,]. There have
been several initiatives to condense BERT onto mobile de-
vices with constrained resources. Unsupervised language
pre-training models still have a challenge in figuring out
how to combine the advantages of device modeling with
cloud modeling to benefit both parties.

To overcome the challenges mentioned above, we pro-
pose Device-Cloud Collaborative Transformer framework,
which is one general framework across cloud and device.
Previous unsupervised language pre-training methods learn
a centralized cloud model, models designed for resource-
limited mobile devices learn a task specific device model.
Different from these method, our Device-Cloud Collabo-
rative Transformer method share parameters in cloud and
learn task specific parameters in device.

In summary, the contributions of this paper are:

* We develop a Device-Cloud Collaborative Trans-
former architecture that benefits both cloud modeling
and device modeling, in contrast to prior efforts that
either solely take into account cloud modeling or on-
device modeling.

* We propose Device-Cloud Collaborative Transformer

2204

method to learn a better representation between device
and cloud.

* Experiments demonstrate that language models in
many tasks can be significantly improved by our pro-
posed Device-Cloud Collaborative Transformer frame-
work.

2. Related Works

Transformer [2,3,5-8, 10, 12—15,17,33] have achieved
state-of-the-art performance in natural language process-
ing domain, such as sequence-to-sequence modeling [17],
BERT [2], GPT [33], XLNet [3], RoBERTa [5], AL-
BERT [7], T5 [10] and other recent works show that trans-
formers pre-trained on large corpora learn language rep-
resentations that can be transferred to a number of down-
stream tasks through fine-tuning.

Most of these previous works of transformers train or
fine-tune a specific model for each of the tasks. For exam-
ple, a pretrained transformer model BERT is fine-tuned sep-
arately on multiple downstream language tasks [2], which
is extremely expensive on large computational and mem-
ory resources. Multi-task learning, which shares some pa-
rameters and learns task-specific parameters, is a good way
to reduce the computational and memory resources. For
example, a text-to-text transformer is jointly pretrained on
different language tasks in TS [10]. By combining the bot-
tom layers of a transformer to create a multi-task language
understanding model (MT-DNN) [14], it is suggested that
the top layer be task-specific. In VILBERT-MT [34], 12
vision-and-language tasks were jointly learned with a multi-
task transformer model based on VILBERT [35]. However,
these methods are designed for cloud centralized model,
which could not split deployment across cloud and device
to reduce the computational resources.

Device Modeling is a key component of Edge Al [36],
which reduces the onerous latency and incorporates rich
features in a variety fileds. These works critically depend on
the device capacity [37], efficient neural network architec-
tures [38], the model compression technique [28], the dis-
tributed learning framework [22] and some split deployment
strategies. Many hardware-efficient topologies, such Mo-
bileNets [39], have been suggested to minimize the compu-
tational budget and model size in device modeling. Model
compression based on the network pruning or quantiza-
tion [28, 40] is also useful to reduce the units, the channels
or the value accuracy of the parameters. Federated Learn-
ing [22], is a distributed learning system that keeps the data
in the local and only shares communicate gradients or pa-
rameters. Device modeling is used to compute the temporal
training components and send to the cloud for averaging in
Federated Learning [41]. Moreover, Lee ef al. [42] describe
how to use the mobile GPU to conduct deep neural net-

work tasks, which considers the special limited of comput-
ing power, thermal constraints, and energy consumption in
mobile. Some other works [2 1] also explore the divide-and-
conquer deployment to reduce the device running time by
moving computational prohibitive components to the cloud.
Niu et al. [43] use a similar split in gradient computation
and designed a tunable privacy to the local submodel. Dif-
ferent from these works, we focus on exploring the collabo-
ration between the cloud modeling and the device modeling
for mutual benefit of two sides in language models.

3. Device-Cloud Collaborative Transformer

Transformer Transformer layers [17], a highly modu-
larized neural network, have attained cutting-edge perfor-
mance across several tasks. The position-wise feed-forward
network (P-FFN) and multi-head self-attention (S-Attn)
sub-modules make up each Trans- former layer. Both
sub-modules are encapsulated by residual connections and
layer normalization. The computation of a single Trans-
former layer with a length 7" sequence of hidden states

h = [hy, ..., hr| can be expressed as
h + LayerNorm(h + S-Attn(Q,K,V = h)), (1)
h; < LayerNorm(h; + P-FFN(h;)), Vi=1,---,T.
2

Masked Language Modeling The most often utilized
pretraining target is the masked language modeling (MLM)
suggested by BERT [2]. The masked language modeling
objective constructs a corrupted sequence X by randomly
replacing 15% of the tokens of x with a special token
[mask] , nd then trains a Transformer model [2] to re-
construct the original x based on X, where x is a length-T
natural language sequence sampled from a large unlabeled
setD.

max Jvim(0) = Ex~pEz > log Py(x; | k1)
i€z

_ exp (e(xi)Thi(’A‘I))
~ el zezz o8 > o exp (e(@') Thi(R7))’

where 7 is the positions of masked tokens, the subscript in
x7 emphasizes its dependence on Z, e(x) denotes the em-
bedding of the token z, and h;(xz) the last-layer hidden
state at position ¢ produced by the Transformer model. The
entire model is finetuned in downstream activities after pre-
training.

Given a language task, we aim to learn an encoder on
the device side, and a decoder on the cloud side. Here,
the output of device side is the input of cloud side. There
aren’t many works that take into account how to make de-
vice modeling and cloud modeling function for both sides
simultaneously, as was indicated in earlier parts. However,

3)

2205

this is critical and meaningful, since the conventional cen-
tralized cloud model is fine-tuned on each downstream tasks
separately, which is extremely expensive.

The key goal is to address the issue of computing effi-
ciency and lower communication latencies in order to de-
velop a comprehensive and effective framework between
cloud and device for various tasks. Our model, which in-
herits the high capacity and optimization benefits of the
Transformer architecture, uses a device encoder to reduce
the sequence length of the hidden states while maintaining
the overall skeleton of interleaved multi-head self-attention
and position-wise feed-forward network.

The Device-Cloud Collaborative Transformer employs a
powerful device Transformer encoder and a cloud Trans-
former decoder. It compresses a more meaningful rep-
resentation to improve the performance and reduce com-
munication latencies between devices and the cloud. The
Device-Cloud Collaborative Transformer combines the de-
vice Transformer encoder with the cloud Transformer de-
coder. This combination provides a powerful and accurate
learning system that can learn and make decisions based on
the data it receives. The device transformer encoder first
processes the raw data from the device and transforms it
into a more meaningful representation.

The cloud Transformer decoder takes this representation
and decodes it to make predictions on the data. The repre-
sentation is compressed to reduce communication latencies
between devices and cloud. The key to this compression
lies in compressing the representation using a quantization
technique called vector quantization. The vector quantiza-
tion method involves dividing the data into groups called
centroids, and each data point is then assigned to the nearest
centroid. This process reduces the communication latency
between devices and cloud, as instead of sending the raw
data from the device to the cloud, we only send the com-
pressed data. The compression process is:

Z; = argmin,||z; — c;||? 4)

where Z; is the index of the nearest group or centroid, x;
is the i-th data point, and c; is the j-th centroid. To decom-
press the data, we use the inverse of the vector quantiza-
tion method, which is known as codebook mapping. Code-
book mapping involves mapping the nearest centroid using
a codebook table. This mapping is:

T = Cgz, (5)

The Device-Cloud Collaborative Transformer benefits
from integrating the device Transformer encoder and the
cloud Transformer decoder, in contrast to prior works that
either exclusively consider the cloud modeling or on-device
modeling. By employing vector quantization compression,
the system is able to reduce communication latencies and

learn meaningful representation between devices and the
cloud.

4. Experiments

The proposed Device-Cloud Collaborative Transformer
approach is empirically evaluated in this section by pretrain-
ing it and then finetuning it for downstream tasks. In keep-
ing with earlier research, we analyze two typical pretraining
settings:

* Base scale: The original BERT [2] utilized this op-
tion with 256-step batch sizes for pretraining models
on Wikipedia and the Book Corpus. The Device-Cloud
Collaborative Transformer and the traditional Trans-
former will be fairly compared in this environment,
along with some ablation studies.

» Large scale: On the five datasets (Wikipedia + Book
Corpus + ClueWeb + Gigaword + Common Crawl)
utilized by XLNet [3] and ELECTRA [6], pretrain-
ing models for 500K steps with batch size 8K. We
will compare Device-Cloud Collaborative Transformer
trained at this scale with previous methods.

Datasets. We consider tasks include the GLUE bench-
mark for language understanding [44], 7 widely used text
(sentiment / topic) classification tasks (IMDB, AD, DBpe-
dia, Yelp-2, Yelp-5, Amazon-2, Amazon-5), SQuAD ques-
tion answering task, and the RACE reading comprehension
dataset [45]. We evaluate our method with these tasks:

e CoLA: [46] is the Corpus of Linguistic Acceptability.
Identifying a sentence’s grammar or lack thereof is the
task at hand. The dataset includes 8.5k train instances
taken from linguistic theory books and journal papers.

e SST: Stanford Sentiment Treebank [47]. Identifying
if a statement has a favorable or negative attitude is
the task. 67k train samples from movie reviews are
included in the dataset.

* MRPC: Microsoft Research Paraphrase Corpus [48].
Predicting whether or not two statements are seman-
tically comparable is the job at hand. 3.75 thousand
instances from internet news sources make up the col-
lection.

e STS: Semantic Textual Similarity [49]. On a scale
from 1 to 5, predict how semantically similar two sen-
tences are. The dataset includes 5.8 thousand train
instances taken from recent headlines, captions for
videos and images, and data from natural language in-
ference.

* QQP: Quora Question Pairs [50]. Identifying seman-
tic equivalentity between two queries is the problem

2206

Hyperparameter

GLUE Value

Learning
Adam €

Adam (3
Adam (5

Rate

Learning rate decay
Warmup fraction
Attention Dropout

Dropout

Weight Decay

le-4 for Base, 2e-4 for Large

le-6
0.9
0.999
Linear
0.1

0.1

0.1
0.01

Table 1. Hyper-parameters for pretraining

Model size IMDB AG DBpedia Yelp2 YelpS5 Amazon2 Amazon5
BERT-Base 6.257 5.428 0.695 2208 30.35 2.809 33.71
ELECTRA-Base 5.149 5340 0.646 1.898 29.09 2.576 33.05
Ours 4354 5254 0.603 1.784 28.43 2.543 32.35

Table 2. Comparison of base models on the text classification dev set with MLM pretraining, performances (the lower the better).

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE GLUE-AVG
BERT-Base 55.2 91.5 91.1/87.8 88.1 87.2/90.6 82.7 90.0 64.6 81.3
ELECTRA-Base 60.5 93.6 92.4/89.2 89.4 88.2/91.3 86.4 925 750 84.7
Ours 62.0 94.2 92.6/89.8 89.4 88.4/91.6 87.0 92.7 76.2 85.0

Table 3. Comparison of base models on the GLUE dev set with MLM pretraining, performances (the higher the better).

Model size CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE GLUE-AVG
BERT-Base 62.1 91.1 90.8/86.8 88.9 88.2/91.3 83.9 89.7 66.7 82.6
ELECTRA-Base 63.9 942 93.0/90.2 89.5 88.4/91.4 87.0 922 776 85.7
Ours 64.0 94.3 93.3/90.4 90.0 88.7/91.6 87.2 92.3 781 86.0

Table 4. Comparison of base models on the GLUE dev set with ELECTRA pretraining, performances (the higher the better).

Model size IMDB AG DBpedia Yelp2 Yelp5 Amazon2 Amazon5
BERT-Base 6.220 5.395 0.674 2.287 30.16 2.759 33.57
ELECTRA-Base 4.924 5.342 0.671 1.913 29.00 2.523 32.85
Ours 4.734 5.297 0.665 1.865 28.87 2.513 32.78

Table 5. Comparison of base models on the text classification dev set with ELECTRA pretraining, performances (the lower the better).

Model CoLA SST MRPC STS QQP MNLI QNLI RTE Avg.
BERT 60.6 932 88.0 90.0 91.3 86.6 923 704 840
RoBERTa-100K 66.1 95.6 914 922 920 893 94.0 827 879
RoBERTa-500K 68.0 96.4 909 92.1 922 902 94.7 86.6 889
XLNet 69.0 97.0 90.8 922 923 90.8 94.9 859 89.1
ELECTRA-400K 69.3 96.0 90.6 921 924 905 94.5 86.8 89.0
ELECTRA-1.75M 69.1 96.9 90.8 926 924 909 95.0 88.0 895
Ours 69.4 9.9 915 926 926 91.0 95.0 88.1 89.6

Table 6. Comparison of large models on the GLUE dev set with ELECTRA pretraining, performances (the higher the better).

2207

SQuAD2.0 SQuADI1.1
Model EM FI EM Fl
ROBERTA e [5] 865 894 889 94.6
ELECTRALug [0] 880 90.6 89.7 949
Ours 882 90.8 90.1 95.0
ROBERTAg. [5] 805 837 846 915
MPNetgae 805 833 868 925
Ours 832 857 871 93.0

Table 7. SQuAD dev performance comparison.

at hand. The dataset includes 364k train instances
from the Quora community website for question-and-
answer exchange.

e MINLI: Multi-genre Natural Language Inference [51].
Predict if a premise implies a hypothesis, contradicts
a hypothesis, or does neither, given a premise and
a hypothesis statement. Three hundred ninety three
thousand train samples from 10 sources make up the
dataset.

e QNLI: Question Natural Language Inference is cre-
ated from SQuAD [52]. Predicting whether a context
sentence contains the response to a question phrase is
the task at hand. The dataset includes 108k Wikipedia
train samples.

* RTE: Recognizing Textual Entailment [53]. The aim
is to determine if a premise implies a hypothesis given
a premise statement and a hypothesis sentence. From
a series of yearly textual entailment challenges, the
dataset includes 2.5k train samples.

* SQuAD: A span of text from the associated reading
passage serves as the response to each question in the
Stanford Question Answering Dataset [52], which is a
reading comprehension dataset made up of questions
put by crowdworkers on a collection of Wikipedia ar-
ticles. The question itself may also be unanswerable.

* Race: An extensive reading comprehension dataset
called Race [45] contains more than 28,000 texts and
around 100,000 questions. The information is com-
piled from middle school and high school students’ re-
sponses to English exams given in China.

4.1. Base-scale Results

First, we compare the performance of the device-cloud
collaborative transformer to that of the traditional Trans-
former when subjected to equivalent amounts of computa-
tion (i.e., FLOPs). For this, we take into account the big and
basic model sizes for the typical Transformer. The results
on the GLUE benchmark and text classification are shown

in Table 2 and 3 respectively, based on the MLM pretraining
goal.

Here, we discover that our Device-Cloud Collaborative
Transformer beats the traditional Transformer in the major-
ity of workloads with equivalent or less FLOPs. We also
take ELECTRA into consideration for pretraining in order
to further evaluate the universality of Device-Cloud Collab-
orative Transformer. Table 4 and 5 provide a summary of
the findings. Overall, we observe a similar pattern, even if
the increase on the GLUE benchmark is a little lower.

4.2. Large-scale Results

Considering the positive outcomes of Device-Cloud Col-
laborative Transformer at base-scale, we now investigate
training Device-Cloud Collaborative Transformer under the
large-scale scenario and compare it to earlier models pre-
trained in comparable situations. We shall employ the
ELECTRA goal for all large-scale trials due to ELECTRA’s
marginally greater performance over MLM.

We examine the finetuning performance on the GLUE
benchmark in Table 6 using the pretrained Device-Cloud
Collaborative Transformer model of various sizes. Our
technique outperforms the equivalent baselines in the ma-
jority of jobs, mirroring the base-scale findings, indicating
the strong scalability of our suggested Device-Cloud Col-
laborative Transformer.

On the SQuUAD datasets, we hone our methodology, and
we contrast it with earlier models in Table 7. Likewise, we
may conclude that our Device-Cloud Collaborative Trans-
former performs better than benchmarks.

5. Conclusion

Natural language processing (NLP) experts have had sig-
nificant success with unsupervised language pre-training
techniques. Modern self-attention models demand far more
FLOPs and memory resources than conventional NLP mod-
els, therefore pretraining or even just fine-tuning them
is very costly. Device-Cloud Collaborative Transformer,
which is intended to promote the learning of representations
that generalize more effectively to a wide range of activi-
ties, is proposed for an efficient language model in order to

2208

increase efficiency. In particular, we create a device archi-
tecture that not only has a reduced resource-to-performance
ratio but also makes use of both combined device and cloud
modeling. Additionally, we take into account a gradient
normalization approach to automatically balance training in
deep multitask models by dynamically adjusting gradient
magnitudes in order to prevent task interference or negative
transfer for language models. Experimental results show
the effectiveness of proposed Device-Cloud Collaborative
Transformer.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word rep-
resentations,” arXiv preprint arXiv:1802.05365, 2018. 1

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018. 1,
2,3

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov,
and Q. V. Le, “Xlnet: Generalized autoregressive pretraining
for language understanding,” in Advances in neural informa-
tion processing systems, 2019, pp. 5754-5764. 1,2, 3

T. Xiao, Z. Chen, Z. Guo, Z. Zhuang, and S. Wang, “De-
coupled self-supervised learning for graphs,” in Advances in
Neural Information Processing Systems. 1

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692,2019. 1,2, 5

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Elec-
tra: Pre-training text encoders as discriminators rather than
generators,” arXiv preprint arXiv:2003.10555, 2020. 1, 2, 3,
5

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and
R. Soricut, “Albert: A lite bert for self-supervised learning of
language representations,” arXiv preprint arXiv:1909.11942,
2019. 1,2

L. Kong, C. d. M. d’Autume, W. Ling, L. Yu, Z. Dai,
and D. Yogatama, “A mutual information maximization per-
spective of language representation learning,” arXiv preprint
arXiv:1910.08350, 2019. 1,2

T. Xiao, Z. Chen, D. Wang, and S. Wang, “Learning how to
propagate messages in graph neural networks,” in Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 1894-1903. 1

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the
limits of transfer learning with a unified text-to-text trans-
former,” arXiv preprint arXiv:1910.10683, 2019. 1,2

Z. Chen and D. Wang, “Multi-initialization meta-learning
with domain adaptation,” in /JCASSP 2021-2021 IEEE Inter-

national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 1EEE, 2021, pp. 1390-1394. 1

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

2209

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart:
Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension,” arXiv
preprint arXiv:1910.13461, 2019. 1,2

K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mass: Masked
sequence to sequence pre-training for language generation,”
arXiv preprint arXiv:1905.02450, 2019. 1, 2

X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural
networks for natural language understanding,” arXiv preprint
arXiv:1901.11504,2019. 1,2

K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mpnet:
Masked and permuted pre-training for language understand-
ing,” arXiv preprint arXiv:2004.09297, 2020. 1, 2

Z. Chen, S. Gai, and D. Wang, “Deep tensor factorization for
multi-criteria recommender systems,” in 2019 IEEFE Interna-
tional Conference on Big Data (Big Data), Los Angeles, CA,
USA, December 9-12, 2019, 2019, pp. 1046-1051. 1

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all
you need,” Advances in neural information processing sys-
tems, vol. 30, 2017. 1,2

Z. Dai, G. Lai, Y. Yang, and Q. Le, “Funnel-transformer:
Filtering out sequential redundancy for efficient language
processing,” Advances in neural information processing sys-
tems, vol. 33, pp. 4271-4282, 2020. 1

T. Xiao, Z. Chen, and S. Wang, “Representation matters
when learning from biased feedback in recommendation,”
in Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, 2022, pp. 2220-
2229. 1

Z. Chen, D. Wang, and S. Yin, “Improving cold-start recom-
mendation via multi-prior meta-learning,” in 43rd European
Conference on Information Retrieval, ECIR 2021, 2021. 1

Y. Gong, Z. Jiang, Y. Feng, B. Hu, K. Zhao, Q. Liu, and
W. Ou, “Edgerec: Recommender system on edge in mobile
taobao,” in Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management, 2020,
pp. 2477-2484. 1,2

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T.
Suresh, and D. Bacon, “Federated learning: Strategies for
improving communication efficiency,” in ICLR, 2016. 1, 2

S. P. Karimireddy, S. Kale, M. Mohri, S.J. Reddi, S. U. Stich,
and A. T. Suresh, “Scaffold: Stochastic controlled averaging
for on-device federated learning,” ICML, 2020. 1

Z. Chen, J. Ge, H. Zhan, S. Huang, and D. Wang, “Pareto
self-supervised training for few-shot learning,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 13 663-13 672. 1

M. Satyanarayanan, “The emergence of edge computing,”
Computer, vol. 50, no. 1, pp. 30-39, 2017. 1

L. Bistritz, A. Mann, and N. Bambos, “Distributed distilla-
tion for on-device learning,” Advances in Neural Information
Processing Systems, vol. 33, 2020. 1

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

Z. Chen, T. Xiao, and K. Kuang, “Ba-gnn: On learning bias-
aware graph neural network,” in 2022 IEEE 38th Interna-
tional Conference on Data Engineering (ICDE). 1EEE,
2022, pp. 3012-3024. 1

S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quanti-
zation and huffman coding,” ICLR, 2016. 1, 2

H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce mem-
ory, not parameters for efficient on-device learning,” Ad-
vances in Neural Information Processing Systems, vol. 33,
2020. 1

P. Sundaramoorthy, G. K. Gudur, M. R. Moorthy, R. N.
Bhandari, and V. Vijayaraghavan, “Harnet: Towards on-
device incremental learning using deep ensembles on con-
strained devices,” in Proceedings of the 2nd International
Workshop on Embedded and Mobile Deep Learning, 2018,
pp- 31-36. 1

X. Dai, I. Spasi¢, B. Meyer, S. Chapman, and F. Andres,
“Machine learning on mobile: An on-device inference app
for skin cancer detection,” in 2019 Fourth International
Conference on Fog and Mobile Edge Computing (FMEC).
IEEE, 2019, pp. 301-305. 1

Z. Chen, Z. Xu, and D. Wang, “Deep transfer tensor decom-
position with orthogonal constraint for recommender sys-
tems,” in The Thirty-Fifth AAAI Conference on Artificial In-
telligence, AAAI, vol. 2021, 2021, p. 3. 1

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell
et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877—
1901, 2020. 2

J. Lu, V. Goswami, M. Rohrbach, D. Parikh, and S. Lee, “12-
in-1: Multi-task vision and language representation learn-
ing,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020, pp. 10437-
10446. 2

J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining
task-agnostic visiolinguistic representations for vision-and-
language tasks,” Advances in neural information processing
systems, vol. 32, 2019. 2

I. Stoica, D. Song, R. A. Popa, D. Patterson, M. W. Mahoney,
R. Katz, A. D. Joseph, M. Jordan, J. M. Hellerstein, J. E.
Gonzalez et al., “A berkeley view of systems challenges for
ai,” arXiv preprint arXiv:1712.05855, 2017. 2

G. Bedi, G. K. Venayagamoorthy, R. Singh, R. R. Brooks,
and K.-C. Wang, “Review of internet of things (iot) in elec-
tric power and energy systems,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 847-870, 2018. 2

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural network,” Ad-
vances in neural information processing systems, vol. 28, pp.
1135-1143, 2015. 2

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations,” ICLR, 2017. 2

(40]

(41]

(42]

[43]

[44]

[45]

[40]

(47]

(48]

(49]

(50]

[51]

(52]

(53]

2210

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for
all: Train one network and specialize it for efficient deploy-
ment,” in /ICLR, 2020. 2

A. E. Eshratifar, M. S. Abrishami, and M. Pedram,
“Jointdnn: an efficient training and inference engine for in-
telligent mobile cloud computing services,” IEEE Transac-
tions on Mobile Computing, 2019. 2

J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh,
F. Riccardi, R. Sarokin, A. Kulik, and M. Grundmann, “On-
device neural net inference with mobile gpus,” arXiv preprint
arXiv:1907.01989, 2019. 2

C. Niu, F. Wu, S. Tang, L. Hua, R. Jia, C. Lv, Z. Wu, and
G. Chen, “Billion-scale federated learning on mobile clients:
A submodel design with tunable privacy,” in Proceedings of
the 26th Annual International Conference on Mobile Com-
puting and Networking, 2020, pp. 1-14. 2

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman, “Glue: A multi-task benchmark and analysis plat-
form for natural language understanding,” arXiv preprint
arXiv:1804.07461,2018. 3

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “Race: Large-
scale reading comprehension dataset from examinations,”
arXiv preprint arXiv:1704.04683, 2017. 3, 5

A. Warstadt, A. Singh, and S. R. Bowman, “Neural network
acceptability judgments,” arXiv preprint arXiv:1805.12471,
2018. 3

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning,
A. Y. Ng, and C. Potts, “Recursive deep models for seman-
tic compositionality over a sentiment treebank,” in EMNLP,
2013. 3

W. B. Dolan and C. Brockett, “Automatically constructing a
corpus of sentential paraphrases,” in IWP@IJCNLP, 2005. 3

D. M. Cer, M. T. Diab, E. Agirre, 1. Lopez-Gazpio, and
L. Specia, “Semeval-2017 task 1: Semantic textual similar-
ity multilingual and crosslingual focused evaluation,” in Se-
mEval@ACL, 2017. 3

N. Dandekar, and K. Csernai, “First Quora
Question pairs,” 2017. [Online]. Avail-
able: https://data.quora.com/First-Quora-Dataset- Release-
Question-Pairs 3

A. Williams, N. Nangia, and S. R. Bowman, “A broad-

coverage challenge corpus for sentence understanding
through inference,” in NAACL-HLT, 2018. 5

S. Iyer,
dataset release:

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. S. Liang, “Squad:
100, 000+ questions for machine comprehension of text,” in
EMNLP, 2016. 5

D. Giampiccolo, B. Magnini, I. Dagan, and W. B. Dolan,
“The third pascal recognizing textual entailment challenge,”
in ACL-PASCAL@ACL, 2007. 5

