
   

 

 

 

 

Abstract 

 

Image Dehazing aims to remove atmospheric fog or 

haze from an image. Although the Dehazing models have 

evolved a lot in recent years, few have precisely tackled the 

problem of High-Resolution hazy images. For this kind of 

image, the model needs to work on a downscaled version 

of the image or on cropped patches from it. In both cases, 

the accuracy will drop. This is primarily due to the inherent 

failure to combine global and local features when the 

image size increases.  The Dehazing model requires global 

features to understand the general scene peculiarities and 

the local features to work better with fine and pixel details. 

In this study, we propose the Streamlined Global and Local 

Features Combinator (SGLC) to solve these issues and to 

optimize the application of any Dehazing model to High-

Resolution images. The SGLC contains two successive 

blocks. The first is the Global Features Generator (GFG) 

which generates the first version of the Dehazed image 

containing strong global features. The second block is the 

Local Features Enhancer (LFE) which improves the local 

feature details inside the previously generated image. 

When tested on the Uformer architecture for Dehazing, 

SGLC increased the PSNR metric by a significant margin. 

Any other model can be incorporated inside the SGLC 

process to improve its efficiency on High-Resolution input 

data.  

 

1. Introduction 

The Image Dehazing problem is attracting an increasing 

research interest due to the necessity to understand images 

captured in hazy scenes. Many computer vision tasks such 

as classification, object detection, tracking, and semantic 

segmentation will fail in such scenarios. The complexity of 

the haze particles and their non-homogeneity represent the 

main challenges faced. When light scatters through the 

haze, both blur and degradation are applied non-uniformly 

to many parts of the scene. This pushes to design new 

specific models that can recover the authentic visual form 

of the image and make it useful for other tasks. Non-

uniform haze is the case in real scenarios, but for 

simplicity, many research papers began by working on 

simple homogeneous haze [1]–[4]. In reality, the physical 

model representing the effect of haze particles on the 

absorption, scattering, and attenuation of the light is 

represented by this traditional physical model[5]–[7]:  

 

                  ����� = �����	��� + �1 − ���������            �1� 

 

Where �� is the hazy image captured by the sensor, �	 is 

the original image with the haze application, ���� is the 

medium transmission map incorporating the visual effect 

of the haze particles, � is the pixel coordinates, and ���� 

is the global atmospheric light. The transmission map is 

expressed as follows:  

                                     ���� = �������                                   �2� 

 

Where �  is the atmospheric scattering parameter and ����  is the scene depth which variate following the �  
coordinates. The preliminary works in Image Dehazing 

tried to approximate the atmospheric scattering by the 

intermediate of prior-based methods [8]–[10]. Hand-

crafted priors are used to estimate ���� and ���� , such as 

non-local prior or dark-channel prior. However, the 

atmospheric haze distribution is more complicated and not 

only correlated to the image depth. It depends on other 

factors that are more difficult to formulate. Hence, the 

emergence of deep learning [11] has opened the door to 

new possibilities that seemed previously impossible. 

Building Image Dehazing models based on deep learning 

approaches has significantly improved accuracy [12]–[18]. 

Although these methods achieve state-of-the-art results on 

the Dehazing task, the computational cost is still huge. 

Most of them are well-trained for small to medium image 

sizes and fail to be applied to High-Resolution images[19]. 

Although some models can be run on low computational 

resources, most well-performing models are 

computationally expensive and cannot manage large image 

sizes[20]. Increasing the accuracy using a lightweight 

model is becoming more and more challenging[21]–[23] 

due to the increasing complexity of modern architectures 

as well as the incorporation of Vision Transformers[24], 

[25] on them. The primary inherent source of failure is the 
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challenging mission to combine information obtained from 

global features with the information obtained from local 

features[19]. This problem is easier to solve in small-sized 

images as the model works with the whole image as a fixed 

input. However, when the size increases, the model needs 

to work on a downscaled version of the image or on 

cropped patches from it. In these two methods, the 

accuracy will drop as the global and local features are 

unbalanced. This study aims to keep the same efficiency of 

End-To-End models when handling High-Resolution 

images. We propose the SGLC (Streamlined Global and 

Local Features Combinator) to make any Dehazing model 

works efficiently on any input image size.  

The contributions of this study are summarized as 

follows:  

• Proposing SGLC for Dehazing High-

Resolution images without compromising 

global or local features.  SGLC has two 

successive blocks: the Global Features 

Generator (GFG) block and the Local Features 

Enhancer (LFE) block.  

• Proposing the Grid Patching process to capture 

the global features from High-Resolution 

images.  

• Customizing a loss function to enable both the 

Dehazing and the Enhancer models to learn 

better the High Frequencies components.   

• Proving that putting GFG before LFE works 

better than the reverse process. This follows the 

intuitive rule: generate the global content, then 

enhance the small fine details.  

2. Related works 

Handling the Dehazing operation for High-Resolution 

Images was the aim of many works in literature. Among 

the first works on this scope, Sim et al.[27] designed the 

Dehazing Generative Adversarial Network (DHGAN). 

They trained the generator on hazy patches of input images 

scaled to reduced sizes. This helped the model to capture 

more global features.  They also modified the cross-

entropy loss to include multiple outputs. In another work, 

Ki et al. [28] proposed BEGAN (Boundary Equilibrium 

Generative Adversarial Network). They enlarged the 

receptive field and trained the discriminator on High-

Resolution images. The images were conditioned on 

downscaled hazy images. Moreover, Bianco et al. [29] 

designed HR-Dehazer (High-Resolution Dehazer). The 

HR-Dehazer is based on an Encoder-Decoder architecture 

and a specifically designed loss. This enables the network 

to learn the semantics of the clean image and to improve 

the consistency in local structures. They made the 

architectures scale invariant and able to work on large 

sizes. Besides, Zheng et al. [19] treated the same problem 

differently. They conceived a new model, the 4k-Dehazer, 

incorporating three networks working jointly on a bilateral 

space. Every one of them feeds it and gets features from it 

simultaneously. The global architecture is efficient despite 

the High-Resolution of the image. They constructed a 

large-scale 4K image dataset to assess the model and found 

that it performs favorably compared to the state-of-the-art 

Dehazing models. In another tentative, Chen et al. [30] 

designed the H2RL-Net network composed of two 

branches. The first focuses on the High-Resolution details, 

with the second collects the semantic features using a 

complementary set of multiresolution CNN streams. They 

exploited the PCF (parallel cross-scale fusion) module. 

Which incrementally aggregates features from many scales 

at the specific resolution level and exchanges information 

from top to bottom and from bottom to top. Also, they used 

the CFR (Channel Feature Refinement) block, which 

recalibrates the channel-wise features.  

From the above, we note that all the works that targeted 

High-Resolution Image Dehazing focused on designing 

new architectures that meet the peculiarities of the large 

images. Although efficient, these works push towards 

using specific architectures for High-Resolution cases 

instead of the well-developed and tested architectures 

designed for typical Dehazing cases. Therefore, we need a 

generic framework that allows using them by extending 

their efficiency to large images. This study targets this 

problem in the Dehazing state of the art and aims to bridge 

the gap between the Dehazing architectures and the High-

Resolution images. Moreover, when trying to combine 

global and local features, all the methods stated above 

conceived a parallel way for it, either by designing a 

bilateral latent space or by working on multiple networks 

run in parallel on the input image. Our work solved the 

problem differently by conceiving a streamlined process 

working sequentially on the global features (using the GFG 

block) and then working on the local features (using the 

LFE block). The blocks are discernable, which helps to 

estimate better the performance of every block apart. Also, 

it helps to work on them in a modular way and to improve 

them in the following research better works.  

3. Proposed Methodology 

This section introduces the different parts of the SGLC 

framework: Streamlined Global and Local Features 

combinator. A global diagram representing the framework 

is displayed in Fig.1. The diagram depicts the two blocks 

constructing SGLC, the Global Features Generator (GFG) 

and the Local Features Enhancer (LFE). In the following 

subsections, the entire process is explained.  

3.1. Global Features Generator (GFG) 

First, the image entered into SGLC passes to the first 

block: The Global Features Generator (GFG). This block 

aims to generate the global content accurately by 
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considering the whole image content. However, because of 

the High-Resolution, we need a new method to collect 

them in a systematic way to feed the network without extra 

computational cost. Thus, we introduce in this study the 

Grid patching method. 

 

3.1.1 Grid patching for global features learning 

 

Let us consider first � × � the size of the patches we 

want to generate. We are considering square sizes because 

this is the case in most networks, but the method can also 

be adapted to rectangular sizes.  

If we consider an input image � with height � and width �, the Grid patching begins by adding extra padding so 

that the � and � will be dividable by �. Let us consider �′ and �′ the size of the padded image �′. If  � is already 

dividable by �, then �� = � . Also, if � is dividable by � , then �� = � .  Otherwise, �  and �  are calculated 

using the following equations: 

                             �� = ��� ��� �� + 1� ∗ �                      �3� 

                             �� = ��� ��� �� + 1� ∗ �                    �4� 
 

Let us consider #� = �� /�  the height number of 

divisions, and #% = ��/� the width number of divisions. 

The total number of patches generated at the end will be:  

                                       & = #� ∗ #%                                    �5� 

 The Grid patching method works on the padded �′ so 

that for every selected pixel, we jump #�  vertically to 

select the next vertical pixel. If we want to select the next 

horizontal pixel, we also jump horizontally #% pixels. In 

the end, every patch takes equally distanced pixels from the 

whole image. Equal distances are considered from both the 

width and the height. The complete process can be 

explained in Algorithm 1, where from the padded input 

image �′ we generate & Grid patches. For every patch ()  , 
we first initialize it into a zeros-valued three-channel 

matrix. Then, we select the pixels from �′ by keeping the 

equal vertical and horizontal distances described above.  

 

Algorithm 1: Grid Patching 

1: Input 

1. �′: The padded image 

2. #�: The height number of divisions 

3. #%: The width number of divisions 

4. &: The number of generated patches 

1: Grid patching 

i. For *+, + in (0... - − .): // P: a generated patch 

a. *+ ← zeros (G, G,3) // initialization to zeros 

b. For 0  in (0 ... 1 − .): 

i. For 2  in (0 ... 1 − .): 

1. *+30, 24 ← 5�30 + 67, 2 + 684 
2. End 

ii. End 

c. End 

 

Figure 1: SGLC diagram 
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The Grid patching algorithm is applied for every image 

fed to the Dehazer Model (DM) either in the training or the 

inference. More details will be explained in the next 

paragraph.  

 

3.1.2 Dehazing Model (DM) 

 

The Dehazing Model works to understand global 

features. Therefore, it is only trained on Grid Patches. 

Every dataset used is preprocessed using the Grid Patching 

method so that it will learn how to grasp the global features, 

whatever the input size.  

In SGLC, we used Uformer [26] in both the Dehazing 

and Enhancer Models.  Uformer is a U-shaped hierarchical 

network that employs skip connections between the 

encoder and decoder, like the U-Net model. Given a hazy 

input image �� ∈  ℝ;×�×%, the network initially employs a 3 × 3 convolutional layer with a LeakyReLU activation 

function to extract low-level features �< . The resulting 

feature maps �< are then passed through the encoder stages, 

where each stage comprises a stack of LeWin Transformer 

blocks that leverage a locally enhanced window 

mechanism to capture long-range dependencies while 

minimizing computational cost. This mechanism is 

achieved by utilizing non-overlapping windows during 

self-attention computations on the feature maps. Moreover, 

the encoder incorporates a down-sampling layer that 

reduces the spatial dimensions of the feature maps while 

simultaneously increasing their number of channels. The 

down-sampling layer reshapes the flattened features into 

2D spatial feature maps and subsequently performs down-

sampling by doubling the number of channels through a 4 × 4 convolutional layer with stride 2. 

The LeWin block utilizes the self-attention mechanism 

to capture long-range dependencies in the feature maps. 

Additionally, it employs the convolution operator in the 

Transformer to capture the necessary local context. This 

approach enables the block to capture both global and local 

information effectively, making it a suitable choice for 

various image restoration tasks. The LeWin Transformer 

block is composed of several key components, including 

Non-overlapping Window-based Multi-head Self 

Attention (NW-MSA), Locally Enhanced Feed-Forward 

Network (LFF), and Layer Normalization (LN). LeWin 

can be represented mathematically as: 

 

                   =>� = &�– @A��B&�=>�C�� + =>�C            �6� 

 

                            => = BEE�B&�=>��� + =>�                        �7� 

 

where =>� is the output of the &�– @A� module and => 
is the output of BEE module. The self-attention mechanism 

used in NW-MSA differs from the global self-attention 

used of the vanilla transformer in that self-attention is 

implemented within non-overlapping local windows, 

which reduces the computational cost. Given features map �<  with height and width �ℎ × H�, then the �<  is divided 

into non-overlapping windows of I × I  size, and the 

number of windows is calculated by 
�∗%
JK . The computation 

of multi-head self-attention in non-overlapping windows 

can be expressed as follows: 

 

               � = L�C,  �M,  �N, … ,  �PQ,   # = ℎ ∗ H
IM                  �8� 

 

  S)< = ����#��T#��<H)U ,  �<H)V ,  �<H)W�, � = 1,2, … , #  �9� 

 

where  �C,  �M,  �N, … ,  �P are non-overlapping windows, 

H)U , H)V , H)W  are the projection matrices of the queries, 

keys, and values, Y is the number of heads, S)<  is the output 

of the attention process. Relative position coding bias Z 

was applied in the attention module inspired by[31], [32]. 

The process of attention can be expressed as follows: 

 

           ��� �[, \, ]� = ^T_�I`� a[\b
c�)

+ Zd ]          �10� 

 

In the LFF, a linear projection layer is applied to each 

token to increase its feature dimension. The tokens are then 

resampled into 2D feature maps, and a 3×3 depth-wise 

convolution is employed to capture local information. 

Subsequently, the features are flattened back into tokens, 

and the channel dimension is reduced using another linear 

layer to match the input channel dimension. This process 

enhances the local context information by applying a 

convolution operator in the transformer model. 

The decoder of Uformer is composed of multiple stages, 

each of which incorporates an up-sampling layer and 

several LeWin Transformer blocks, similar to the encoder. 

Specifically, the output of each encoder stage is connected 

sequentially with the highest sample features from the 

previous decoder stage via a skip connection. This enables 

the decoder to access and combine features from different 

scales, thereby facilitating the generation of high-quality 

restored images. 

The Uformer represents one state-of-the-art architecture 

in the Image Restoration domain. We note the particular 

concern given to the combination of local and global 

features in the design. Although compromising the Multi-

Head Self Attention (MSA) by only restricting it to Non-

Overlapping Windows, the effect was minimal on the 

efficiency, and it reduced the computational cost. 

However, scaling this architecture to High-Resolution 

makes it lose its inherent features in handling global and 

local features. SGLC helps to scale any successful Image 

Restoration model to work better for High-Resolution 

images.  
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3.1.3 Self-Supervised Learning  

 

To enhance the learning capability of both the Dehazing 

Model (DM) and the Enhancer Model (EM), we used self-

supervised learning as a first step before beginning the 

training process. Similar to what has been done in [33], 

[34], we constructed from the clean images a new dataset. 

In this dataset, we create from every image a new image 

where we randomly draw small in-painted squares. The 

model will be trained on how to reconstruct the original 

image from these corrupted versions, which helps it to 

improve its learning of the underlying representation of the 

data. This method was previously used in literature in 

Context Encoders [34] and Contextual Attention [33]. The 

idea was to train the model to fill data based on the global 

image context. They found that it enhances the model's 

capability to handle supervised Image Restoration tasks 

later. However, in the Dehazing task, the in-painted 

squares should be white to imitate haze patterns better. 

Geometric forms other than the square form could also be 

added.  

 

3.1.4 Customized Loss function 

 

To train the DM and the EM models, we used the 

following customized loss function:  

 

         ℒ =  gh� −  �ihM +  hj��� − j��i�hM + kM          �11� 

 

Where �  is the ground truth image, �i  represents the 

predicted image, j  represents the Laplacian Pyramid 

operator, k is a constant empirically set to 10�N for all the 

experiments.  

The loss function contains three components. The first is 

the comparison of the original image with the predicted one 

h� − �ihM
. This component helps to learn the spatial content 

of the image. The second component works on another 

image representation: the Laplacian Pyramid, which was 

introduced by[35]. This representation has been used a lot 

for image encoding and compression. It focuses on the 

edge information in the data and emphasizes the structural 

content. The second component compares the Laplacian 

Pyramid of the original images with the predicted one: 

hj��� − j��i�hM
. This term helps to mitigate inherent 

spectral bias [36] in Deep Neural Networks and to better 

learn the High-Frequency components, which are very 

important in the Image Restoration domain.  

The third component is the kM , and it is inspired by the 

Charbonnier penalty function [37]:  

 

                                    l��� = c�M + kM                            �12� 
 

This penalty function helps to improve the robustness of 

the  B1 loss by squaring the value and adding a very small 

constant ε, and at the end, putting all of them under the 

square root. This makes the Image Restoration more 

robust[38] by preventing the loss from vanishing when its 

value approaches 0.  

 

3.1.5 Reverse Grid Patches Reconstruction  

 

During the inference, the input image passes first by the 

Grid Patching preprocessing step. Then, the patches are 

passed separately to the network, either in batches or one 

by one. The predicted set of Patches (>n , o ∈ 0. . �& − 1�  

are used to reconstruct the full predicted image  �qn  by using 

the following Algorithm:  

 

Algorithm 2: Reverse Grid Patches Reconstruction 

1: Input 

1. (> r, o ∈ 0. . �& − 1�: The predicted Grid patches 

2. �qn : The full predicted image to be generated 

3. #�: The height number of divisions 

4. #%: The width number of divisions 

5. &: The number of generated patches 

1: Reconstruction 

i. 5sn ← tuvwx �1 ∗ 67, 1 ∗ 68, y�  

ii. For *z r, z ∈ {. . �- − .�:  

a. 0w ← z |w} 67 //horizontal offset 

b. 2w ← z }0~ 67  // vertical offset 

c. For 0� in (0 ... 1 − .): 

i. For 2� in (0 ... 1 − .): 

1. � ← 0w + 0� ∗ 67  
2. � ← 2w + 2� ∗ 68  
3. 5sn 3�, �4 ← *z r30�, 2�4 
4. End 

ii. End 

d. End 

 

The image generated by Algorithm 2 will be unpadded 

to conform to the original image size and to serve as the 

first dehazed image generated by the first block GFG. 

Then, it will be entered as input to the second block LFE.  

3.2. Local Features Enhancer (LFE) 

The LFE block serves to enhance the image quality 

regarding the local features. The image generated by GFG 

will be divided into Window patches and passed to the 

Enhancer Model (EM).  

 

3.2.1 Enhancer Model (EM) 

 

Compared to the DM model, the EM model has two 

main characteristics.  The first is that it works on Window 

patches, not Grid patches. The second characteristic is that 

it is trained on the predicted dehazed images from GFG 
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with their clean counterparts. In more detail, all the images 

in the dataset must be first predicted by the first block. 

Then, they are padded similarly to what has been done in 

the first block so that the new size will be dividable by the 

Window size. Then, these images will be divided into 

Window patches. These patches, alongside the Window 

patches of the clean counterparts, will form a new dataset 

for training EM.  

The same Uformer model described above was used in 

EM. Also, the same self-supervised strategy, as well as the 

same customized loss function, were used in EM. The goal 

of the EM is to learn how to deal with the shortcomings in 

the first dehazed image using local features grasped from 

spatially continuous data patches (the Window patches).  

In the inference stage, we will have some visual artifacts 

if we use a standard Reverse Window Patches 

Reconstruction algorithm to generate the full-sized 

predicted image from the predicted patches. Hence, we 

used a more advanced algorithm described in the next 

section.  

 

3.2.2 Multiple Overlapping Patches Smoother (MOPS) 

 

The Reverse Window Patches Reconstruction algorithm 

generates images that suffer from Vignetting artifacts 

visible as a discontinuity in the spatial domain between 

adjacent patches. Four examples of these vignetting 

artifacts are displayed in Fig.2. Although these artifacts are 

sometimes hard to detect, they are reducing the total 

Dehazing efficiency, as demonstrated in the Experimental 

part. These types of artifacts are due primarily to an 

underlying limitation in the CNN networks themselves 

[39], such as the difficulty in ensuring translational 

equivariance because of using the strides and the zero-

padding operations.  

Thus, to solve this issue, the LFE applies a blending 

algorithm [40]. This algorithm aggregates multiple 

overlapping predictions of the crops by the intermediate of 

a window function[41]. This algorithm was designed first 

to improve the quality of Semantic Segmentation maps 

[40], [41]. In this study, we applied it in the Dehazing 

context and identified it for simplicity as Multiple 

Overlapping Patches Smoother (MOPS).  

Initially, MOPS applies rotations and mirroring on the 

original full-sized input image to better ensure the 

invariance of the prediction over them. Then, for every one 

of these full-sized images, it sums multiple overlapping 

adjacent predictions with an overlap degree of 50% using 

a simple second-order spline window function.  

 The main drawback of MOPS is its computational cost. 

Therefore, we did in the Experimental part an ablation 

study to estimate its utility compared to its cost.  

Finally, the image generated by MOPS and EM is the 

final dehazed image supposed to ensure better local details 

enhancement. To demonstrate this improvement, Fig.3 

shows a predicted image before and after applying the LFE 

block. As shown in the image, LFE enhanced the pixel and 

Figure 2: The Vignetting artifacts when using EM with the 

Reverse Window Patches Reconstruction algorithm 

Figure 3: Predicted image before and after LFE block 
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tiny details. In addition, some minimal artifacts are 

removed, and the quality approaches the quality of the 

ground truth. The improvements are emphasized in the 

metrics described in the Experimental part.  

3.3. SGLC algorithm 

Finally, the inference stage of SGLC is detailed in the 

following Algorithm:  

 

Algorithm 3: SGLC inference stage 

1: Input 

1. �: The hazy input image 

2. &: The number of generated patches 

1: Block 1 (GFG) 

i. �′ ←  �`���#���� // adding padding 

ii. L() , Y in �0. . & − 1�Q  ← ����_(`��ℎ�#���′�  

iii. �(> r, o ∈ 0. . �& − 1�� ←                                    �@�L() , Y in �0. . & − 1�Q� 

iv. �qn ← ��(��L(> r, o ∈ 0. . �& − 1�Q�  // Reverse 

Grid Patching Reconstruction 

v. �′qr ← �#�`���#���qn � 

1: Block 2 (LFE) 

i. �@ =  �`���#���′qr� // second padding 

ii. L�< , � �# 0. . �& − 1�Q ←                                         ��#�TH_(`��ℎ�#���@�  

iii. �@r = @�(A��@, L�< , � �# 0. . �& − 1�Q�  

iv. �@′r = �#�`���#���@r � //Final predicted image 
4. Experiments 

In this section, the performance of SGLC is compared 

against the original performance of Uformer applied on a 

resized image without SGLC. Also, we compare it against 

DW-GAN[6], which is the winner of the NTIRE Non-

Homogeneous Dehazing Challenge of 2021[5]. We also 

compared it with 4k-Dehazer [19], a state-of-the-art 

Dehazing algorithm explicitly designed for High 

Resolution. Images for 4K-Dehazer were resized to 

4000*4000. We could not work on original sizes due to 

memory limitations.  The scale of the images used in the 

challenge makes many Dehazing models for High-

Resolution images practically useless due to GPU memory 

limitations. In contrast, the SGLC does not care how large 

the image is. The exact process works for any image size.  

4.1. Experimental configurations 

4.1.1 Dataset description 

The dataset used for assessing the validity of the SGLC 

is released within the HR Non-Homogeneous Dehazing 

Challenge of the NTIRE CVPR 2023 Workshop. They 

named it HD-NH-HAZE. The dataset contains 50 images 

with huge sizes (either 4000*6000 or 6000*4000). Of 

them, 40 are reserved for training, 5 for validation, and 5 

for the test. The challenge organizers keep the clean image 

of the validation and test datasets private. Thus, we divided 

the original 40 images into 36 for training our model and 4 

for testing it.  No extra data were used in our study.  

 

4.1.2 Implementation details 

For running SGLC, we used a Lambda AI server having: 

8 GPUs NVIDIA QUADRO 8000. Every GPU has 48 GB 

of GDDR6 video memory. The server has 512 GB of RAM 

and two processors Intel Xeon Silver 4216, every one of 

them has 16 cores. Another workstation having one GPU, 

NVIDIA QUADRO 8000, is also used.  

4.2. Results and Analysis 

The results of applying different models in our local 

training are displayed in Table 1. All the results consider a 

patch size of 1024*1024 for both the Grid Patching and the 

Window patching processes.  

Table 1: Performance of Uformer, DW-GAN, 4k-Dehazer, 

SGLC, and Inv-SGLC on the HD-NH-HAZE (our test set) 

Model description 
PSNR 

(dB) 
SSIM 

Inference 

time 
(sec/image) 

Uformer applied on the 
resized image of 

1024*1024 

14.90 0.6403 14.9 

4K-Dehazer 17.46 0.7230 9.0 
DW-GAN 17.48 0.7367 45.7 

SGLC-GFG only 24.49 0.8176 46.6 

SGLC without MOPS 25.38 0.8511 86.0 

SGLC (GFG +LFE) 25.43 0.8524 553.5 
Inv-SGLC LFE only 

without MOPS 
23.07 0.8300 40.0 

Inv-SGLC LFE only 23.25 0.8335 556.1 
Inv-SGLC (LFE + GFG) 24.39 0.8392 605.7 

 

As shown in the table, the original Uformer applied on 

the resized version of all the images to 1024*1024 got 

weak performance. Also, DW-GAN and 4k-Dehazer got 

weak results. These results demonstrate that the Dehazing 

model relies on fine and pixel details and works better with 

the original format of images without scaling or resizing.  

Regarding the SGLC pipeline, the big jump in the results 

is made by the GFG block. Then, applying the LFE without 

MOPS increases the PSNR by a margin of 0.89. At the 

same time, the SSIM was increased by a margin of 0.0335. 

Therefore, the margin is significant, especially for the 

SSIM. For the application of MOPS, the improvement was 

0.05 in the PSNR and 0.0013 in the SSIM. Therefore, the 

improvement made by MOPS is not significant. However, 

it can be considered for exceptional cases where we need 

the best accuracy, no matter the computation cost.  

For the computational cost, the whole pipeline of SGLC 

needed 553.5 sec for one image of the size of 4000*6000. 
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The time is 46.6 sec for the GFG block, 39.4 sec for the 

LFE block, and 467.5 sec for MOPS. Therefore, in most 

cases, the application of SGLC without MOPS will be 

sufficient as it holds the most performance of the SGLC.  

To assess if changing the order of GFG and LFE matters, 

we tried the inverse process of SGLC (Inv-SGLC in 

Tab.1). This pipeline begins by working on local features 

by training the EM model on window patches of hazy/clean 

images. Then MOPS is applied to smooth the EM 

predictions. After that, the image passes to the Grid 

patching process to be fed to the DM model trained on Grid 

patches of LFE_predicted/clean patches. The result shows 

that the global performance of Inv-SGLC is remarkably 

below SGLC. 

Also, we note that the improvement made by LFE has 

more impact on SSIM than PSNR. In addition, Fig.4 helps 

to assess visually the image quality generated by SGLC 

against the image quality generated by DW-GAN and the 

image generated by the Uformer model displayed on the 

first row of Tab.1. We can see the superiority of the SGLC 

compared to them.  

Table. 2 displays the final leaderboard results in the 

NTIRE 2023 Non-Homogeneous Dehazing Challenge 

report [42]. SGLC was ranked 5th among 17 submitted 

solutions based on four metrics: PSNR, SSIM, LPIPS, and 

MOS.  
Table 2: Final leaderboard results in the NTIRE 2023 Non-

Homogeneous Dehazing Challenge [42] 

 PSNR SSIM LPIPS MOS 

SGLC performance 22.27 0.7 0.439 7.4 
Best performance among No 

Extra data solutions 
22.27 0.7 0.384 7.65 

SGLC Rank among No extra 
data solutions 

1/12 1/12 7/12 2/12 

Best performance among all 

solutions 
22.96 0.71 0.345 8.07 

SGLC Rank among all 

solutions 
3/17 4/17 10/17 5/17 

 

SGLC's maximum performance is among the solutions 

that did not use extra data. It is the best in PSNR and SSIM 

and the second in MOS. Regarding all the solutions, SGLC 

was ranked 3rd in PSNR, with a gap of 0.69 compared to 

the best. Also, it was ranked 4th in SSIM, with a gap of 0.01 

compared to the first. The main limitation of SGLC is 

recorded in the LPIPS metric, which should be considered 

during the following improvements. Also, using extra data 

can improve the results. 

5. Conclusion 

In this study, the SGLC framework is proposed. This 

framework helps any Dehazing model to scale its 

performance to High-Resolution images. It begins by 

generating the first dehazed image with robust global 

features using the GFG block. This block learns global 

feature information by training the Dehazing Model (DM) 

on Grid Patches of the hazy images. Then, the generated 

image will pass through the LFE block to enhance the 

image by the intermediate of the local features. A 

customized loss alongside the Self-Supervised Learning 

and the MOPS were used jointly to improve the global 

performance of SGLC. Also, SGLC is better than Inv-

SGLC. This superiority demonstrates that working on the 

global features at the first stage is better. Regarding the 

limitations, SGLC suffers from high computational costs, 

especially when using MOPS. Also, the streamlined 

process, which has many advantages, currently hinders its 

parallelization and adoption for video processing. Also, we 

need to work on other enhancements, such as hand-crafted 

priors, or investigate the use of Diffusion Models, which 

recently attracted researchers' attention in the Image 

Synthesis domain.  

 

Acknowledgment: The authors thank Prince Sultan 

University for their support and funding in conducting 

this research. 

Figure 4: Dehazing performance of SGLC compared to 

Uformer (1024*1024), DW-GAN, and the Ground Truth.     
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