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Figure 1. Image 70 from the NTIRE 2023 RTSR Challenge [7] Track 2 ×3 test set [36], where the data is JPEG Q=90 degraded. Our
practical method runs much faster (< 3ms) and yields nearly identical results to the other comparable (∼10-30ms) models on RTX3070.

Abstract

We propose a real-time and lightweight single-image
super-resolution (SR) network named Bicubic++. De-
spite using spatial dimensions of the input image across
the whole network, Bicubic++ first learns quick reversible
downgraded and lower resolution features of the image in
order to decrease the number of computations. We also con-
struct a training pipeline, where we apply an end-to-end
global structured pruning of convolutional layers without
using metrics like magnitude and gradient norms, and fo-
cus on optimizing the pruned network’s PSNR on the val-
idation set. Furthermore, we have experimentally shown
that the bias terms take considerable amount of the runtime
while increasing PSNR marginally, hence we have also ap-
plied bias removal to the convolutional layers. Our method
adds ∼1dB on Bicubic upscaling PSNR for all tested SR
datasets and runs with ∼1.17ms on RTX3090 and ∼2.9ms
on RTX3070, for 720p inputs and 4K outputs, both in FP16
precision. Bicubic++ won NTIRE 2023 RTSR Track 2 ×3
SR competition and is the fastest among all competitive
methods. Being almost as fast as the standard Bicubic up-
sampling method, we believe that Bicubic++ can set a new
industry standard.
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Figure 2. Runtime versus ∆PSNR wrt. Bicubic, and the effect of
the proposed training pipeline. Due to Eq. (1), Bicubic score is 0.
Bic++ scores the highest with <3ms runtime, achieving ∼+1dB
on top of Bicubic on our test set. A..I denote the models experi-
mented. We follow B→B*→C→Bic++. B* is not in plot’s range.
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Figure 3. General network structure of Bicubic++. DS denotes the downscaling sub-network (Fig. 5), and D2S is the depth-to-space
layer [29]. Residual addition blocks are shown by R, and the number of convolutional layers inside R is m. s and p denote the stride and
padding of the convolutional layers, respectively. ch is the global channel number parameter. In the final proposed model, R=1, m=2,
ch=32, and DS is a 3×3 convolutional layer with s=2, p=1.

1. Introduction

Single-image super-resolution (SR) is the task of up-
scaling a low-resolution (LR) image to a high-resolution
(HR) one. SR in an highly ill-posed inverse problem, and
researchers are still coming up with different approaches
which would yield reasonable and high-quality HR im-
ages under varying LR conditions (noise, blur, camera mo-
tion, compression, etc.). Besides providing high-quality
HR’s, many SR networks also focus on runtime perfor-
mance [15, 16] since SR is also extensively utilized in real-
life scenarios such as on the cameras of unmanned vehicles
and surveillance systems. Nonetheless, a lot of industry-
grade applications still consider Bicubic as the tried-and-
true upscaling method because of its speed and ease-of-
use. Despite all, we believe that a carefully constructed and
trained neural network can be just as useful as the tradi-
tional Bicubic upsampling, run in real-time, and even re-
place Bicubic upsampling with visually more pleasing out-
puts.

Hence, to contribute to the ongoing development of real-
time single-image super-resolution, we present our work
in the NTIRE 2023 Real-Time Super-Resolution Challenge
Track 2 (×3 upscaling) [7, 36] and propose a lightweight
Bicubic upscaling alternative, Bicubic++. Bicubic++ first
downscales the image features by ×2 to reduce the number
of operations significantly, and applies ×6 upscaling at the
end. We also train the networks with our proposed three-
stage training pipeline, where we first train a network with
convolutional layer channels greater than the ”hardware’s
sweet spot”. Then, we apply global structured layer prun-
ing without conditioning on weight or gradient norms while
focusing on optimizing the PSNR, convolutional layer bias
removal, and fine-tuning operations to further decrease its
runtime speed without sacrificing much from its visual out-
put quality. Bicubic++ ranked 1st on the NTIRE 2023 Real-
Time Super-Resolution Challenge Track 2 and is the fastest
method among all competitive methods.

Throughout the paper, we emphasise on optimizing the

score function of the challenge given in Eq. (1):

S(P, t) =

{
0 if P ≤ Pbic

2P−Pbic×2
0.1×

√
t

else
(1)

where P and Pbic are the PSNR values of the network and
the Bicubic upsampling on the test set, respectively. t is the
runtime of the network when a 720p LR image is given as an
input and a 4K HR is obtained. In addition, due to the real-
time requirements, t must to be smaller than 30ms. This
score formulation is provided by the competition holders
and is calculated with their given code1.

2. Related Works
Deep learning-based single-image super-resolution.

Dong et al. proposed SRCNN [8] as the first deep learn-
ing based SR algorithm. Later on, FSRCNN [9] was pro-
posed, as a faster version for SRCNN. It replaced ReLU
with a PReLU activation layer, reformed SRCNN with
smaller filter sizes with more mapping layers, and pro-
posed postponing the upscaling layer at the end of the net-
work which resulted in a great speed-up. ESPCN [29] in-
troduced a sub-pixel convolutional layer, often known as
depth to space, which is currently used in several efficient
SR networks [3, 4, 10]. The development of deep learning-
based SR was carried on by VDSR [18], EDSR [23], and
WDSR [35] by expanding the number of parameters in
exchange for accuracy and sacrificing speed. Concepts
like generative adversarial networks [20, 30, 34], recur-
sive & residual networks [2, 5, 14], and attention mecha-
nism [22, 28] also rapidly took place in SR network topolo-
gies with the recent advancements [27].

Efficient super-resolution. Just like the regular SR,
efficient SR did not only emerge with deep learning ei-
ther, as there are notable methods using sparse represen-
tations like Zeyde et al.’s [37], ANR [32], and A+ [33].
However, thanks to the challenges and workshops held re-
cently [7, 15, 16, 21, 36], there is an abundance of deep

1https://github.com/eduardzamfir/NTIRE23-RTSR
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learning-based SR methods now, each more efficient than
the previous ones most of the time. XLSR [3] utilized
clipped ReLU at the end of the network to minimize the
PSNR decrease in post-training INT8 quantization for the
first time. ABPN [10] proposed an anchor-based resid-
ual network and applied quantization-aware training. SC-
SRN [11] applied a similar idea of residual adding to ABPN
but in the feature level, and performed reparametrization of
the convolutional layers to train with larger number of pa-
rameters and reduce them in the inference time. RLFN [19]
used three convolutional layers for residual learning to sim-
plify feature aggregation, and stated to have achieved a bal-
ance between visual quality and runtime. A CPU-inference
based method named SR-LUT [17] proposed to train a deep
SR network to construct a lookup table, and matched the
input LR image patches to the output HR image patches
utilizing the said table.

3. Methodology
Our proposed network structure is given in Fig. 3 in its

most general form. The architecture and the design choices
are inspired from the efficient SR methods [15, 16, 21], and
the experiments conducted. Based on this architecture, we
tune its parameters and try different training strategies to
maximize the scoring function given in Eq. (1).

3.1. Design Procedure and Network Architecture

One initial observation of ours during the design proce-
dure was that the speed of the network does not directly
depend on the number of parameters, but on the amount
of activations as stated in [21], which is a value propor-
tional to the volume of data passing through the network.
Hence, processing the feature tensors with lower width &
height than those of the input image dimensions can de-
crease the number of activations significantly. Furthermore,
it has been shown in [31] that the downscaling operation
has positive effects when learned together with the upscal-
ing. Therefore, although it seems to complicate the problem
at first, we chose to ”downscale” the features (×0.5) by a
strided convolution and then apply super-resolution opera-
tion (×6) in order to speed up the network. We also exper-
iment with other downscaling approaches (Fig. 5), but go
for a strided convolution at the end. In a sense, this lower
dimensional feature extraction approach can be thought as
a way of compressing the data spatially; however, this com-
pression is reversible since it is trained all together with the
upscaling.

In our network, we wanted to use the ”optimum” num-
ber of channels for the convolutional layers. We observed
that decreasing the number of channels of consecutive lay-
ers does not always reflect to a decrease in the runtime.
Hence, we decided to keep the same number of channels
across the network (unless necessary), even though some

SR methods do the quite opposite by squeeze and expand
blocks [12] to extract features better. However, the increase
in runtime caused by the blocks with varying channels out-
weigh its benefits considerably. To get a feeling of the opti-
mum channel numbers, we conducted a simple experiment
and observed that runtime versus the number of channels is
not positively correlated all the time, and there exists some
”sweet spots” (Fig. 4). For our setup and under the real-
time constraints, 56 channels used by RFDN [24] and 28
channels used by ABPN [10] in the literature came out to
be not the optimal points. Thus, among the options shown
in Fig. 4, we opted for a channel number of 32 in our final
model. However, as detailed in Sec. 4.1, to get the most out
of the model, we will start from a non-optimal channel (34)
and globally prune the model to achieve 32 channels.
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Figure 4. The effect of the channel number on the runtime and
normalized runtime (runtime of ch=6 is mapped to the origin, and
ch=65 to 1) of our model, RTSRN [15], and RFDN [24]. Note
the ”sweet spots” are on ch ∈ {16, 20, 24, 28, 32, ...}, and are
observed in common among different models.
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Figure 5. Different DS structures in Fig. 3. S2D (a) denotes the
space-to-depth layer [29], and DWT (b) is the discrete wavelet
transform. We use a strided convolution (c) for DS in the end.

In addition to all these, we also noticed that the innocent-
looking bias terms of the convolutional layers are usually
overlooked, and actually take a considerable portion of the
overall runtime. However, the drastic decrease in the run-
time caused by removing the bias terms actually overpower
the marginal decrease in PSNR, which is also clearly visible
from the obtained score values (Fig. 2). Hence, we wanted
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to eliminate the bias terms from the layers in our final net-
work structure as well.

To sum up those aforementioned observations and ideas:

• Data volume processed is correlated with runtime
rather than number of parameters

• Varying the number of channels among blocks de-
creases runtime performance

• There exists some ”sweet spots” for the channel size
for the hardware, and reaching those ”sweet spots” can
be done by training a larger network and pruning after-
wards

• The bias terms may take a considerable amount of time

In the end, to apply these points to our proposed network,
we constructed a training pipeline. For each choice, we
empirically proved its benefits. We also detail the pipeline
and empirical justifications in Sec. 3.2 and Sec. 4.1, respec-
tively.

3.2. Three-Stage Training Pipeline

We construct a three-stage training pipeline: training
with a larger number of channels, global structured prun-
ing of channels, and bias removal of convolutional layers.
For the last two stages, we fine-tune the network after the
modifications.

Training hyperparameters & computational issues:
For each stage, we use Adam optimizer with parame-
ters β1,2 0.99 and 0.999, respectively. Models in all
stages are trained for 1000 epochs, each epoch consuming
800 randomly cropped and rotated patches of dimension
(108,108,3) (for LR) from JPEG Q=90 degraded DIV2K
training [1] dataset. For the learning rate (LR), we initialize
with 5e-4 and use a decaying learning rate scheduler for all
stages, where for the first 500 epochs the LR stays constant
and for the last 500 epochs the LR decays linearly until 1e-
8.

To be able to train such a tiny model by utilizing the
training hardware to its fullest, all the elements of the train-
ing pipeline need to be adjusted properly. This is due to
the model forward and backward passes being done in al-
most no time, and memory accesses along with the vali-
dation steps becoming the actual bottleneck. To speed-up
the validation, we use 48 images with same dimensions
(680,452,3) (for LR) from JPEG Q=90 degraded DIV2K
validation dataset, and hence be able to pick a batch size of 8
instead of 1. To take care of the memory access bottleneck,
we pre-loaded both the training and the validation images to
RAM and avoided fetching the data from disk continuously
for each training and validation step. This way, we were
able to complete a training cycle of 1000 epochs in only 1
hour using a single Tesla V100. Note that since the model’s

capacity is small, opting for a comparably smaller training
dataset (like DIV2K) instead of favoring for a larger dataset
is usually viable, and does not hurt the validation score in
the end generally.

Stage 1 - Slim: Training with a larger number of
channels. We train the network in Fig. 3, where ch is 34,
m is 2, R is 1, and DS is the strided convolutional layer
in Fig. 5. All convolutional layer biases are enabled in this
stage. Respective network parameter choices are justified
and explained thoroughly in Sec. 4.1.

Stage 2 - Slimmer: Global structured pruning. We
take the resulting checkpoint from Stage 1 and perform the
proposed pruning procedure given in Fig. 6. The proposed
method is a structured pruning (prune channel-wise instead
of kernel element-wise), in a global sense, since we prune
the entire network considering the entire network’s structure
through sharing and transferring pruning masks and using a
global fitness measure (i.e. using validadion PSNR of the
pruned model), instead of focusing on individual elements
of the network and heuristic measures for fitness.

In detail; for the convolutional layers to be pruned, we
first construct all possible Mask #1’s in Fig. 6 (M1), each
only masking a single channel. After obtaining different
M1’s, we calculate the PSNR scores on the validation set
for each mask applied individually, and unify two M1’s (to
reach the closest ”sweet spot”, ch=32) which cause the most
marginal PSNR drop as our best & final M1.

After constructing M1, we move onto the Mask #2
(M2). We follow the same procedure as in the creation of
M1; however, now we do not start from the beginning and
keep the M1’s modifications (though starting from scratch
resulted the same set of masks). We do not perform any ad-
ditional training while M1 and M2 are being selected, but
only after M1 and M2 are all applied. We do not prune the
bias terms here, either. One observation we made here was
the network’s overall performance was a lot more sensitive
to the channels in M1 than those in M2.

Stage 3 - Slimmest: Bias removal of the convolutional
layers. After applying M1 & M2 and reducing ch down
from 34 to 32, we take the checkpoint from Stage 2, dis-
able all bias from the convolutional layers, and fine-tune
the overall network again.

4. Experiments
We have performed extensive experiments trying to find

the optimal parameters for our general network structure
in Fig. 3, with the given scoring function in Eq. (1). In addi-
tion to network structure and the proposed training pipeline
in Sec. 3, we experiment with partial loading of model com-
ponents to gradually decrease the size and runtime of the
network. All PSNR scores in the ablation study are evalu-
ated on our 48-image JPEG Q=90 degraded DIV2K valida-
tion set, unless stated otherwise.
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Exp Models DS Act ch m R b PSNR (Y)
(dB)

Runtime
(ms) Score Load Operation

#1
:D

S,
b,

an
d

ac
tiv

at
io

n

Q SC ReLU 24 2 1 ✓ 30.157 3.19 19.86 ✗ ✗
X DWT ReLU 24 2 1 ✓ 30.219 3.59 19.55 ✗ ✗
Y S2D ReLU 24 2 1 ✓ 30.172 3.33 19.64 ✗ ✗
Z S2D ReLU 32 2 1 ✓ 30.269 3.72 19.88 ✗ ✗
W DWT ReLU 32 2 1 ✓ 30.326 4.14 19.60 ✗ ✗
T SC ReLU 32 2 1 ✓ 30.271 3.57 20.32 ✗ ✗
A SC LReLU 32 2 1 ✓ 30.282 3.58 20.43 ✗ ✗
E SC LReLU 32 2 1 ✗ 30.254 2.89 22.32 ✗ ✗

#2
:m

an
d

R

E SC LReLU 32 2 1 ✗ 30.254 2.89 22.32 ✗ ✗
1 SC LReLU 32 2 2 ✓ 30.410 4.95 19.00 ✗ ✗
2 SC LReLU 32 4 1 ✓ 30.433 4.84 19.53 ✗ ✗
3 SC LReLU 32 4 1 ✗ 30.424 4.15 20.96 ✗ ✗
4 SC LReLU 32 2 2 ✗ 30.390 4.30 20.11 ✗ ✗

#3
:c

h
se

le
ct

io
n

fo
rp

ru
ni

ng

P SC LReLU 35 2 1 ✓ 30.293 6.50 15.29 ✗ ✗
P* SC LReLU 32 2 1 ✓ 29.712 3.58 13.77 P Global structured pruning
R SC LReLU 33 2 1 ✓ 30.286 6.16 15.63 ✗ ✗

R* SC LReLU 32 2 1 ✓ 30.113 3.58 18.44 R Global structured pruning
B SC LReLU 34 2 1 ✓ 30.324 6.60 15.50 ✗ ✗

B* SC LReLU 32 2 1 ✓ 30.155 3.58 18.72 B Global structured pruning

#4
:F

in
e

tu
ni

ng
an

d
bi

as
re

m
ov

al

C SC LReLU 32 2 1 ✓ 30.320 3.58 20.99 B* Fine tuning (FT)
(Bic++) SC LReLU 32 2 1 ✗ 30.295 2.89 22.96 C Bias removal + FT

F SC LReLU 32 2 1 ✓ 30.301 3.58 20.72 A Fine tuning
G SC LReLU 32 2 1 ✗ 30.281 2.89 22.74 A Bias removal + FT
H SC LReLU 32 2 1 ✗ 30.277 2.89 22.68 E Fine tuning
I SC LReLU 32 2 1 ✗ 30.283 2.89 22.77 F Bias removal + FT
J SC LReLU 32 2 1 ✗ 30.290 2.89 22.88 H Fine tuning

#5

5 SC LReLU 32 2 1 ✓ 30.210 3.58 19.45 2 Partial load m’s + FT
6 SC LReLU 32 2 1 ✓ 30.281 3.58 20.43 1 Partial load R’s + FT

O
th

er
m

et
ho

ds

Bicubic - - - - - - 29.334 1.0 0 - -
ESPCN [29] - - - - - - 30.419 9.68 13.67 - -

XCAT [4] - - - - - - 30.435 11.68 12.58 - -
ABPN [10] - - - - - - 30.703 15.76 13.05 - -
XLSR [3] - - - - - - 30.637 25.25 9.84 - -

FSRCNN [9] - - - - - - 30.547 33.75 8.00 - -
RFDN [24] - - - - - - 30.921 159.3 4.77 - -

Table 1. Quantitative ablation study to pick the best scoring model. b denotes the bias of convolutional layers, and LReLU is the leaky
ReLU activation. DS configurations are given in Fig. 5. We follow B → B* → C → Bic++ for the final model. PSNR scores are evaluated
on the 48-image DIV2K validation dataset described in Sec. 3.2. Runtimes are measured on RTX3070.
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4.1. Ablation Studies

We provide an extensive ablation study in Tab. 1. We
also divide the experiments in Tab. 1 into 5 different sec-
tions for easy readibility and comparability:

Downscaling (DS), bias (b), and activation selection.
From Q-T, we observed that using a strided convolution
(SC) is superior compared to discrete wavelet transform
(DWT) and space-to-depth (S2D), even when the number of
channels are smaller (notice that Q&Z nearly got the same
score despite Q having less number of channels). T&A re-
veal that using leaky ReLU instead of ReLU can provide a
significant benefit in PSNR without nearly any increase in
the runtime. We can also see from A&E that disabling bias
terms can be advantageous to get higher scores.

Number of residual blocks (R) and convolutional lay-
ers (m). Results of 1-4 and E suggest that setting m=2 and
R=1 yields the best score among tried model architectures.
Hence, after the experiments done up to this stage and the
observation in Fig. 4, we decided that for our final model,
ch is 32, DS is SC, activations are leaky ReLU, and the bias
terms should be disabled at some point.

Selection of number of channels for pruning. This part
includes the experiments done for searching the ideal num-
ber of channels for reducing to 32. We mainly focus on
ch∈{33,34,35}, and apply our proposed pruning method
(Sec. 3.2) for P, R, B, and obtain P*, R*, and B*, respec-
tively. The results reveal that choosing ch=34 and applying
the pruning obtains the highest score, hence we move on
from B*.

Fine tuning and bias removal. After training B and
pruning to obtain B*, we fine-tune the network by training
it again, and obtain C. The positive effect of pruning can be
observed from the comparison of C&F.

Afterwards, we remove the bias terms from C, fine-
tune it once more, and obtain our proposed model, Bicu-
bic++. I, cannot reach the final network’s score, indicat-
ing the advantages of the proposed training pipeline. We
also show other possible training paths (A → G,E → H,
A → F → I,A → E → H → J) to further point out that
our training pipeline yields the best score. A visual compar-
ison is also provided for this experimental setup in Fig. 2.

Extra experiments regarding partial loading of
R&m. We also experiment with the residual blocks (R),
the number of convolutional layers (m), and partial loading
models with different R&m and provide the results.

It is worthy to note that one can always increase the
number of channels & blocks and construct a model ob-
taining higher PSNR scores with slower runtime; however,
we aimed to stay under <3ms on RTX3070, hence decided
to stick with the choices made in this paper.

4.2. Comparative Results

We provide quantitative and qualitative comparative re-
sults in Tab. 2, Tab. 3, Fig. 7, and Fig. 8. Bicubic++ achieves
better results than the traditional Bicubic upsampling and
runs much faster compared to the other relevant methods,
making it a good candidate for real-time SR appplications.

Although relevant, we did not include the results of
sparse coding methods like A+ [33] and SR-LUT [17] since
they are not compliant with the challenge requirements, ei-
ther due to their slower runtime or lack of implementation
in GPU.

Track 2
Score

PSNR
(RGB) SSIM PSNR

(Y)
Runtime

(ms)

Aselsan Research 31.26 32.06 0.8344 34.56 1.17
Team OV 29.63 32.17 0.8376 34.72 1.51
ALONG 28.57 32.18 0.8367 34.66 1.66
RTVSR 26.89 32.22 0.8372 34.77 1.96

Noah TerminalVision 26.68 32.65 0.8455 35.10 3.64
NJUST-RTSR 23.51 32.25 0.8384 34.90 2.68

Antins cv 23.44 32.63 0.8457 35.21 4.60
DFCDN Team 22.64 32.07 0.8371 34.63 2.25

Multimedia 21.55 32.33 0.8398 34.83 3.56
z6 20.90 32.59 0.8446 35.05 5.47

R.I.P. ShopeeVideo 15.67 32.84 0.8469 35.30 13.79
ECNU SR 15.39 32.64 0.8458 35.17 10.75

Touch Fish 11.55 32.67 0.8468 35.31 19.86
P.AI.R 8.66 32.55 0.8441 35.04 30.03

SEU CNII 6.68 31.85 0.8326 34.52 19.05
diSRupt 6.34 31.64 0.8292 34.25 16.00

Bicubic 0.00 31.30 0.8246 33.82 0.5
Organizer’s baseline [7] 14.01 31.74 0.8299 34.25 3.74

Table 2. All methods scoring above Bicubic in Track 2 [7] and
the suggested baselines. PSNR is evaluated on the competition’s
test set, and runtime is measured on RTX3090/3060 with FP16
precision.

5. Conclusion and Discussion

In this paper, we proposed our real-time SR network,
Bicubic++. Our model learns downscaled features of the
input image to increase efficiency, and is trained with our
proposed three-stage pipeline where we apply global struc-
tured pruning and bias removal. We believe that our ex-
perimental results, observations, proposed architecture, and
the training pipeline may help the development of real-time
SR methods. We believe that Bicubic++ sets a new practi-
cal industry standard for upscaling tasks and it can be the
contemporary alternative of Bicubic upscaling.

For further research, a fusion of deep learning and
lookup table along with sparse representation methods can
be investigated on GPUs. Furthermore, we believe that
the proposed training pipeline would benefit from includ-
ing reparametrization along with INT8 quantization.
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Set5 [6] Set14 [38] BSD100 [25] Urban100 [13] Manga109 [26] DIV2K Val [1] Runtime (ms)PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ESPCN [29] 31.56 0.8737 28.53 0.7833 27.80 0.7454 25.66 0.7680 29.29 0.8768 30.37 0.8351 9.6
XCAT [4] 31.50 0.8728 28.52 0.7843 27.81 0.7464 25.67 0.7697 29.33 0.8781 30.38 0.8360 11.7

ABPN [10] 31.93 0.8812 28.76 0.7910 27.99 0.7523 26.13 0.7862 30.14 0.8928 30.65 0.8421 15.8
XLSR [3] 31.84 0.8800 28.74 0.7900 27.95 0.7509 25.98 0.7812 29.94 0.8899 30.59 0.8406 25.3

FSRCNN [9] 31.65 0.8762 28.61 0.7863 27.86 0.7477 25.81 0.7736 29.52 0.8814 30.48 0.8377 33.8

Bicubic 29.98 0.8434 27.30 0.7529 26.99 0.7180 24.31 0.7196 26.54 0.8300 29.33 0.8127 1.0
Bicubic++ 31.19 0.8656 28.35 0.7799 27.68 0.7431 25.49 0.7626 28.72 0.8653 30.24 0.8324 2.9

Table 3. Quantitative comparative results of our method and other comparable models for ×3 SR. All low-resolution images in the datasets
are JPEG Q90 degraded, and all PSNR values are calculated for the Y channel. Runtime is measured on RTX3070 with FP16 precision.

Portion of LR Bicubic Ours ESPCN [29] XCAT [4] ABPN [10] XLSR [3] FSRCNN [9]

Figure 7. Qualitative comparative results of Bicubic++ and other relevant methods on the datasets [1, 13, 25, 26].
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Portion of LR Bicubic Ours ESPCN [29] XCAT [4] ABPN [10] XLSR [3] FSRCNN [9]

Figure 8. Qualitative comparative results of Bicubic++ and other relevant methods on the challenge test set [36].
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