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Abstract

Multi-stage strategies are frequently employed in image
restoration tasks. While transformer-based methods have
exhibited high efficiency in single-image super-resolution
tasks, they have not yet shown significant advantages over
CNN-based methods in stereo super-resolution tasks. This
can be attributed to two key factors: first, current single-
image super-resolution transformers are unable to leverage
the complementary stereo information during the process;
second, the performance of transformers is typically reliant
on sufficient data, which is absent in common stereo-image
super-resolution algorithms. To address these issues, we
propose a Hybrid Transformer and CNN Attention Network
(HTCAN), which utilizes a transformer-based network for
single-image enhancement and a CNN-based network for
stereo information fusion. Furthermore, we employ a multi-
patch training strategy and larger window sizes to activate
more input pixels for super-resolution. We also revisit other
advanced techniques, such as data augmentation, data en-
semble, and model ensemble to reduce overfitting and data
bias. Finally, our approach achieved a score of 23.90dB
and emerged as the winner in Track 1 of the NTIRE 2023
Stereo Image Super-Resolution Challenge.

1. Introduction
Stereo image super-resolution aims to reconstruct high-

resolution images from the given low-resolution left and
right view images. It has attracted more attention in recent
years as it has shown promising potential in downstream
tasks such as stereo depth estimation and VR applications.
Although stereo image super-resolution shares many simi-
larities with single image super-resolution, there is a very
important difference: single image super-resolution can
only utilize the information from one view, while stereo
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image super-resolution can use the information from both
views with a large overlapping area. This is not trivial
because the information lost in one view might still exist
in the other view, and utilizing the extra information from
the other view can largely benefit the reconstruction pro-
cess. Therefore, the final performance of the stereo image
super-resolution algorithm largely relies on the feature ex-
traction capability of each view, and the stereo information
exchange capability.

The transformer architecture has proven to be very effec-
tive as a super-resolution algorithm in previous works [4,
19]. This is because a traditional convolutional neural net-
work works on the locality prior and may suffer from long-
range dependency. But transformers have a much larger re-
ceptive field compared to a convolutional neural network,
and their self-attention mechanism can effectively model
long-range dependencies. The effective feature extraction
capability of a vision transformer can largely benefit stereo
image super-resolution because the information from both
views should be carefully utilized so that useful informa-
tion is not lost during the super-resolution process.

On the other hand, the memory and computational cost
for a vision transformer is usually much larger compared
to a convolutional neural network. This problem will get
much more severe when the resolution is high and a lot
of query tokens exist. The long-range modeling capability
also relies on a huge amount of training data. This makes
the convolutional neural network performs well when the
training data is limited. The previous state-of-the-art stereo
super-resolution method NAFSSR [5] is completely devel-
oped from a convolutional neural network, demonstrating
the effectiveness of the convolutional neural network on the
relatively small dataset. Because of its efficiency in compu-
tational cost, CNN-based models can usually afford more
parallel exchange modules compared to transformer-based
models and allows a more thorough information exchange.

Although there are many attempts to explore the pos-
sibility to combine both the convolutional neural network
with a visual transformer [13] in the stereo image super-
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resolution, the optimal hybrid architecture still remains an
open question. Based on the previous analysis, we propose
a hybrid architecture that utilizes the strong long-range de-
pendency modeling capability of a transformer and the ef-
fectiveness of information exchange between the two views
of a convolutional neural network. In our proposed method,
we utilize a transformer as our first stage to make sure most
of the important features of the single view low-resolution
images are kept for the further process, and a CNN-based
method in the second stage to conduct effective stereo in-
formation exchange. The final performance illustrates the
effectiveness of our design. In summary, this paper has the
following three contributions.

• A hybrid stereo image super-resolution network.
We propose a unified stereo image super-resolution al-
gorithm, which integrates the transformer and CNN
architectures, where the transformer is used to extract
features of the single-view image while the CNN mod-
ule is used to exchange the information from both
views and generate the final super-resolution images.

• Comprehensive data augmentation. We conduct a
comprehensive study on the multi-patch training strat-
egy and other techniques and apply them to stereo im-
age super-resolution.

• A new state-of-the-art performance. Our proposed
method achieves new state-of-the-art performance and
wins 1st place in Track 1 of the Stereo Image Super-
resolution Challenge.

2. Related Work
2.1. Single Image Super-Resolution

The single image super-resolution is one of the most
classic tasks in the field of low-level computer vision: the
algorithm is expected to hallucinate a high-resolution image
given a downsampled low-resolution image. This technique
can benefit the algorithms in many other tasks such as tiny
object detection [1], video super-resolution/enhancement
[11, 18], remote sensing [36], and blind image denoising
[10]. At the very beginning, researchers utilize a database of
external images or exemplars to generate the super-resolved
image [27, 28, 35, 38]. However, the performance of the
hand-crafted features largely relies on the prior knowl-
edge/hypothesis on the local image structure provided by
the researchers. The local structures in images are usu-
ally very complicated, and these over-simplified hypotheses
deteriorate the final performance of the hand-crafted fea-
tures, which undermines the final performance of the super-
resolution algorithm as these features are crucial in the pro-
cess of retrieving the data from the external database.

CNN-based methods. By introducing the optimization
algorithms such as gradient descent, the later introduced

CNN-based methods relax the hand-crafted prior knowl-
edge on the image structure and allow the network to learn
the local structure pattern among a huge amount of data.
It only keeps the locality prior of the image’s local pat-
terns to reduce the computational cost of the model. Many
new devices are implemented to further improve the gen-
eralization capability of the model. SRCNN [8] introduces
skip-connection in the process of super-resolution, which
becomes a fundamental part of the following works. SR-
ResNet [15] and EDSR [20] use deeper and wider residual
blocks and further improve the performance. RCAN [39]
incorporates the attention mechanism in a basic residual
block to different channels and provides different emphasis
on information from different channels. NAFNet [3] ana-
lyzes the previous works and reconstructs a simple baseline
for image super-resolution which achieves state-of-the-art
performance with reduced computational complexity.

Transformer-based methods. Transformers originated
from the study of natural language processing and proves
to be very effective in modeling long-range dependencies.
It removes the prior knowledge about the locality which is
used by a convolutional module and allows a much bigger
receptive field. However, removing the prior knowledge
also indicates more data is needed for the training so that
the model can learn the prior knowledge during the training.
IPT [2] evaluates the performance of a transformer struc-
ture in low-level tasks and illustrates that the simplest trans-
former can surpass the performance of a CNN given enough
data. SwinIR [19] re-introduce the locality prior and use the
windowed self-attention. HAT [4] introduces the channel
attention module which is firstly used in the CNN models
and activates more pixels in its receptive field for the recon-
struction. Both successful attempts in the SwinIR [19] and
HAT [4] prove that techniques in CNN-based methods can
also benefit the transformer-based methods.

2.2. Stereo Image Super-Resolution

The major difference between single-image super-
resolution and stereo-image super-resolution is that the
stereo images may have redundant information in both
views. Previous works are mostly developed from the
single-image super-resolution backbone, and demonstrate
the necessity of commnication modules between left and
right views where super-resolution results from either view
are usually much lower than the constructution results from
both views [30].

Communication branches have been introduced in recent
works to allow information exchange between the left and
right views in stereo-image super-resolution [5, 13, 32, 34].
However, the disparity between the left and right views is
typically along the epipolar line and larger than the recep-
tive field of a traditional convolutional kernel. To address
this, PASSR [32] introduces a cross-attention module that
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(a) Stage 1: Transformer-based SISR

(b) Stage 2: CNN-based Stereo Enhancement
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Figure 1. Illustration of the proposed Hybrid Transformer and CNN Attention Network.

allows for long-range dependency modeling. The atten-
tion mechanism is conducted only in the epipolar direc-
tion to reduce computational cost and memory consump-
tion. The communication block is inserted in the middle
of the network, and several losses are adopted simultane-
ously to achieve the best performance. Building on the
idea of PASSR, iPASSR [34] introduces a biPAM module to
aggregate information from both views after each residual
block. It adopts a compact bi-directional parallax structure
compared to its previous version in PASSR and effectively
handles occlusions. Unlike PASSR and iPASSR, which
use cross-attention mechanisms, SSRDE-FNet [6] explic-
itly models the disparity between the two views. It pro-
poses a unified architecture to simultaneously estimate the
view disparity and super-resolution results. The deep fea-
tures from one view are warped according to the disparity
and utilized to further improve the reconstructed SR result
of the other view. However, a potential issue is the incon-
sistency of the reconstructed texture areas between the two
views, which may lead to 3D fatigue for viewers. To address
this issue, SPAMNet [25] imposes a stereo-consistency con-
straint on the super-resolution results. Specifically, the re-
constructed images from one view should be consistent
when warped with the corresponding disparity map. A com-
bination of self-attention and parallax attention is utilized to
effectively aggregate information.

The rapid development of transformer-based super-
resolution methods has led to increased interest in stereo-
image super-resolution tasks. SwiniPASSR [13] explores
the use of a parallax attention network for a transformer
structure and conducts a progressive training strategy. Ex-
perimental results demonstrate that it can achieve much bet-
ter results on the basis of a single-view transformer back-
bone. However, NAFSSR [5] argues that a transformer net-
work may not be necessary to achieve state-of-the-art per-
formance. Instead, it simplifies the cross-attention module
to allow it to be inserted after every block of the convolu-
tional super-resolution block. This simplification allows for
intensive information exchanges during the super-resolution
process and greatly improves the final performance. This
method achieves the new state-of-the-art performance and
was the winner of the NTIRE 2022 competition [30].

3. Methods

In this section, we present more details about the pro-
posed Hybrid Transformer and CNN Attention Network
(HTCAN). The proposed HTCAN is a multi-stage restora-
tion network, as shown in Figure 1. More specifically,
given the low-resolution stereo images Llr and Rlr, we
first super-resolved them with a transformer-based single-
image super-resolution network to Ls1 and Rs1. In stage 2,
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we adopt a CNN-based network to stereo enhance Ls1 and
Rs1 and get the enhanced images Lsr and Rsr. In the third
stage, we use the same CNN-based network as stage 2 for
further stereo enhancement and model ensembling.

3.1. Stage 1: Transformer-based Single-image
Super-resolution

Network Architecture. In the first stage, we adopt HAT-
L [4] as the backbone for single-image super-resolution
(SISR) to super-resolve the input images Llr and Rlr. To
further increase the receptive field of HAT-L, we employ
a multi-patch [17] training strategy that unshuffle several
neighboring patches into one patch. Then, the inputs of the
SISR network are one low-resolution image patch and its
eight surrounding patches, as shown in Figure 1(a). The
eight surrounding patches are cropped from the top, bot-
tom, left and right of the center patch. As a result, the
eight surrounding patches may extend beyond the edge of
the image. In such cases, we expand the image using re-
flect padding and extract the low-resolution patch and its
eight surrounding patches from the padded image. Given
the nine input low-resolution patches, we first feed them
into a 3 × 3 convolutional layer to extract shallow features
F 1
L, F

1
R ∈ RH×W×C , where C denotes the number of fea-

ture channels. In our experiments, we set C to 180. The
shallow features, which provide a preliminary perception of
the inputs, are then fed into consecutive K1 cascade Resid-
ual Hybrid Attention Group (RHAG) [4] for self-attention
and aggregate information. We set K1 as 12. Further-
more, we increase the window size to 24 × 24 for better
information aggregation within windows. Finally, after the
efficient information aggregation by the cascade RHAGs,
the super-resolved image is generated by convolution lay-
ers and pixel shuffle layers [24]. The network output is the
high-resolution patch corresponding to the center patch.

Ensemble Strategy. We implemented self-ensembling
by rotating and horizontally/vertically flipping the input
low-resolution images. Additionally, we replaced the GeLU
activation function in the HAT-L model with the SiLU ac-
tivation function. Through experimentation, we found that
the Fourier upsampling techniques introduced in [41] did
not significantly improve model performance. However,
we discovered that introducing it as an additional ensemble
model led to further performance improvements.

3.2. Stage 2: CNN-based Stereo Enhancement

Network Architecture. The second stage aims to con-
duct stereo information exchange. To do this, we employ
the state-of-the-art stereo super-resolution model NAFSSR-
L [5] as the backbone. The NAFSSR-L is also a 4× super-
resolution model, while the upscaling is not necessary in
this stage. As a result, we pixel unshuffle the input images
from the stage 1 by 4 times to match the input-output di-

mension requirements of the second stage. The input chan-
nel of the first convolutional layer is also changed accord-
ingly. In this way, we can reduce the memory occupancy
and enlarge the receptive field of NAFSSR-L. We call this
model UnshuffleNAFSSR-L. We input the super-resolved
images Ls1, Rs1 from stage 1 into UnshuffleNAFSSR-L, as
shown in Figure 1(b). Given the unshuffled left and right
images, we feed them into a 3× 3 convolutional layer, sep-
arately, to extract shallow features F 2

L, F
2
R ∈ RH×W×C ,

where C denotes the number of feature channels. In our
experiments, we set C as 128. Then, the shallow features
are fed to consecutive K2 cascade Nonlinear Activation
Free (NAF) Blocks [5] and Stereo Cross Attention Modules
(SCAM) for cross-view information aggregation. To ensure
high-efficiency, the NAFBlocks replace traditional nonlin-
ear activation functions with multiplication [29]. We set
K2 to 128 in our experiments. We insert one SCAM mod-
ule between each two NAFblocks to enable cross-view in-
formation aggregation. The SCAM module performs cross-
attention on the left and right features based on Scaled Dot-
Product Attention [29], which computes the dot products of
the query with all keys and applies a softmax function to
obtain the weights on the values. In the stereo image super-
resolution task, the corresponding pixels between the left
and right images are on the same horizontal line. Thus,
the SCAM module dot products all the tokens from the
same horizontal lines in the left and right views, which cap-
tures the cross-view information in an efficient way. After
the high-efficient cross-view information aggragation by the
cascade NAFBlocks and SCAMs, the stereo-enhanced im-
ages Lsr, Rsr are generated by convolution layers and pixel
shuffle layers [24], as shown in Figure 1(b).

Ensemble strategy. We incorporate self-ensembling by
horizontally and vertically flipping the input images and re-
versing the left and right views. To construct the final en-
semble results, we select two models and average their out-
puts. It is important to note that we keep the outputs in float
format to prevent any potential rounding errors.

3.3. Stage 3: CNN-based Stereo Ensemble

We notice that the ensemble output of the second stage
is not satisfactory enough due to the lack of diversity of the
models trained in the second stage. Therefore, we introduce
the stage 3. The stage 3 is identical to the stage 2, except
that the inputs are changed into the self-ensembled outputs
from stage 2 instead of the counterparts from the stage 1.
Although the performance of the model saturated in stage
3 and has no significant improvement comparing to stage
2, it serves as a good ensemble model and further improve
the performance of the model trained in the stage 2. The
overall performance changes across stages are illustrated as
in Table 2. Due to time constraints, we only trained one
stage 3 model.
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4. Experiments

4.1. Implementation Detail

Dataset. The Flickr1024 dataset [33] is a widely used
benchmark dataset for stereo image super-resolution tasks,
consisting of 800 stereo image pairs for training, 112 pairs
for validation, and 112 pairs for testing. The NTIRE 2023
Stereo Image Super-Resolution Challenge [31] adopts the
same training and validation settings as the Flickr1024
dataset, but includes an additional set of 100 stereo image
pairs for testing.

Training Details. Our proposed HTCAN network is a
multi-stage network. Thus, we training our network in a
multi-stage strategy.

Stage 1. In the training phase of stage 1, we train the
network using Adam optimizer with β1 = 0.9 and β2 =
0.99. We first train the network with Charbonnier Loss and
then finetune it with MSE loss. The model is trained for
800K iterations with mini-batches of size 32 and patch size
48× 48. To increase the diversity of training dataset for the
stage 1, we use channel shuffle, horizontally and vertically
flip, rotation and mixup for data augmentation. The learning
rate is initialized with 2e− 4 and reduced by half at [300K,
500K, 650K, 700K, 750K]. We implement our network with
the Pytorch framework and train it using 8 NVIDIA Tesla
A100 GPUs.

Stage 2. The training of the second stage model consists
two phases. In the first phase, the NAFSSR model is trained
with original code of NAFSSR-L on the Flickr1024 images.
We use the default settings of the released code, and the
result is about 0.04 dB lower than the result reported in the
paper. This might because of the lack of training data.

In the second phase, the model trained on the image are
loaded as the pretrained model for the UnshuffleNAFSSR.
We use the self-ensembled outputs in stage 1 as the inputs
of stage 2 to train the model in this phase. We train the net-
work using AdamW optimizer with β1 = 0.9 and β2 = 0.9.
We first train the network with Charbonnier Loss and the
finetune it with MSE loss. The model is trained for 300K it-
erations with mini-batches of size 32 and patch size 30×90.
To increase the diversity of training dataset for the stage 2,
we use channel shuffle, horizontally and vertically flip for
data augmentation. We use TrueCosineAnnealingLR strat-
egy to update the learning rate. The learning rate is initial-
ized with 5e − 4 and the minimum learning rate is 1e − 7.
We implement our network with the Pytorch framework and
train it using 8 NVIDIA Tesla A100 GPUs.

Stage 3. In the training phase of stage 3, we initialize the
network with the pre-trained network in stage 2 and fine-
tune the network with the output of stage 2. Other training
setting are the same as the stage 2.

Comparison to State-of-the-arts Methods. We con-
ducted a comprehensive comparison of our method with

state-of-the-art single-image super-resolution methods,
namely VDSR [14], EDSR [20], RDN [40], RCAN [39],
SwinIR [19], HAT-L [4], and stereo-image super-resolution
methods, including StereoSR [12], PASSRnet [32], SR-
Res+SAM [37], IMSSRnet [16], iPASSR [34], SSRDE-
FNet [6], NAFSSR-L [5], Steformer [21]. It is worth men-
tioning that NAFSSR-L [5] is trained on Flickr1024 [32]
and Middlebury [23] datasets, whereas HAT-L is pre-
trained on ImageNet [7] dataset and then fine-tuned on
the DIV2K [20]+Flicker2K [26] datasets. In contrast, our
model is only trained on the Flickr1024 [32] dataset pro-
vided by the NTIRE 2023 Stereo Image Super-Resolution
Challenge [31]. Our method, presented in Table 1, includes
self-ensemble and model ensemble strategies.

To evaluate the performance of our method, we utilized
20 images from KITTI 2012 [9], 20 images from KITTI
2015 [22], 5 images from Middlebury [23], and 112 images
from the test set of Flickr1024 [32] for testing, as shown
in Table 1. Note that, unlike Table 3, the Flickr1024 test
images used in Table 1 are from the test set of the origi-
nal Flickr1024 [32] dataset not the test set from the NTIRE
2023 Stereo Image Super-Resolution Challenge [31]. We
followed the evaluation protocol of iPASSR [34] and report
PSNR/SSIM scores on the left images with their left bound-
aries (64 pixels) cropped, and average scores on stereo im-
age pairs (i.e., (Left + Right) /2) without any boundary crop-
ping. The results are summarized in Table 1.

4.2. Results

As shown in Table 1 and Figure 2, our method outper-
froms other state-of-the-art single-image super-resolution
methods and stereo-image super-resolution methods on
most test datasets. On the in-distribution dataset
Flickr1024 [32], our method achieved a 0.27dB gain over
NAFSSR-L [5] and a 0.23dB gain over HAT-L [4]. On
the out-distribution dataset Middlebury [23], HAT-L [4]
achieved the best results, likely due to its pre-training on
the large-scale ImageNet [7] dataset. From the visual re-
sults in Figure 2, the reconstructed pillars of NAFSSR-L [5]
and HAT-L [4] appear blurred. However, the reconstructed
pillars of our method is much sharper and more textured.
While HAT-L [4] can reconstruct the fine-grained textures
of the window, it misses the number ”5” on the guidepost.
Conversely, NAFSSR-L [5] can restore the number ”5” on
the guidepost, but misses the textures on the window. In
contrast, our method reconstructed both the fine-grained
textures of the window and the number, achieving superior
visual quality.

4.3. Analyses

We analyze the proposed model with the validation
set provided by the NTIRE 2023 Stereo Image Super-
Resolution Challenge [31], as shown in Table 2. In
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Table 1. Quantitative results achieved by different methods on the KITTI 2012 [9], KITTI 2015 [22], Middlebury [23], and Flickr1024 [32]
datasets. Here, PSNR/SSIM values achieved on both the left images (i.e., Left) and a pair of stereo images (i.e., (Left + Right) /2) are
reported. The best results are in bold faces.

Methods Left (Left+Right)/2

KITTI2012 KITTI2015 Middlebury KITTI2012 KITTI2015 Middlebury Flickr1024

VDSR [14] 25.54/0.7662 24.68/0.7456 27.60/0.7933 25.60/0.7722 25.32/0.7703 27.69/0.7941 22.46/0.6718
EDSR [20] 26.26/0.7954 25.38/0.7811 29.15/0.8383 26.35/0.8015 26.04/0.8039 29.23/0.8397 23.46/0.7285
RDN [40] 26.23/0.7952 25.37/0.7813 29.15/0.8387 26.32/0.8014 26.04/0.8043 29.27/0.8404 23.47/0.7295
RCAN [39] 26.36/0.7968 25.53/0.7836 29.20/0.8381 26.44/0.8029 26.22/0.8068 29.30/0.8397 23.48/0.7286
SwinIR [19] 26.43/0.7996 25.60/0.7868 29.16/0.8379 26.52/0.8058 26.29/0.8098 29.25/0.8385 23.53/0.7322
HAT-L [4] 26.91/0.8115 26.09/0.8014 30.53/0.8655 27.00/0.8177 26.83/0.8238 30.65/0.8672 24.21/0.7590

StereoSR [12] 24.49/0.7502 23.67/0.7273 27.70/0.8036 24.53/0.7555 24.21/0.7511 27.64/0.8022 21.70/0.6460
PASSRnet [32] 26.26/0.7919 25.41/0.7772 28.61/0.8232 26.34/0.7981 26.08/0.8002 28.72/0.8236 23.31/0.7195
SRRes+SAM [37] 26.35/0.7957 25.55/0.7825 28.76/0.8287 26.44/0.8018 26.22/0.8054 28.83/0.8290 23.27/0.7233
IMSSRnet [16] 26.44/- 25.59/- 29.02/- 26.43/- 26.20/- 29.02/- -/-
iPASSR [34] 26.47/0.7993 25.61/0.7850 29.07/0.8363 26.56/0.8053 26.32/0.8084 29.16/0.8367 23.44/0.7287
SSRDE-FNet [6] 26.61/0.8028 25.74/0.7884 29.29/0.8407 26.70/0.8082 26.43/0.8118 29.38/0.8411 23.59/0.7352
Steformer [21] 26.61/0.8037 25.74/0.7906 29.29/0.8424 26.70/0.8098 26.45/0.8134 29.38/0.8425 23.58/0.7376
NAFSSR-L [5] 27.04/0.8135 26.22/0.8034 30.11/0.8601 27.12/0.8194 26.96/0.8257 30.20/0.8605 24.17/0.7589
Ours 27.16/0.8189 26.26/0.8083 30.25/0.8628 27.25/0.8249 26.99/0.8299 30.33/0.8634 24.44/0.7703

Table 2. Performance improvements across stages (all PSNR val-
ues are calculated on the validation set. EM×8 denotes self-
ensemble ×8.)

Model PSNR PSNR(EM×8)

Stage 1: HAT-Charbonier w/o DA 23.83
Stage 1: HAT-Charbonier 23.90
Stage 1: MPHAT-Charbonier 23.94
Stage 1: MPHAT-MSE 23.98 24.04
Stage 1: MPHAT-SiLU 23.97 24.04
Stage 1: MPHAT-FourierUp 23.97 24.04
Stage 1: MPHAT-WindowSize24 23.98 24.05
Stage 1: MPHAT-Ensemble 24.07

Stage 2: UnshuffleNAFSSR-L 24.34 24.34
Stage 2 & Stage 3 Ensemble 24.34

this study, we conducted several experiments to improve
the performance of our proposed method for stereo-image
super-resolution, as shown in Table 2. First, we intro-
duced the data augmentation methods channel shuffle and
mixup, denoted by the abbreviation ”DA,” which resulted
in a performance gain of 0.07 dB. These methods have been
shown to be effective in improving the generalization abil-
ity of deep neural networks by introducing random pertur-
bations to the input data. The abbreviation ”MPHAT” de-
notes HAT-L with multi-patch training strategy. The pro-
posed multi-patch training strategy improves performance

by 0.04 dB. The reason is that the multi-patch training strat-
egy expand the receptive field of the network, thus improve
the information aggregation within single image. We fur-
ther improved the performance by finetuning the MPHAT
model with mean squared error (MSE) loss, which resulted
in an additional performance gain of 0.04 dB. Addition-
ally, we found that using a larger window size (24 × 24)
resulted in a 0.01 dB gain. This strategy involves using a
larger receptive field to capture more contextual informa-
tion and improve the network’s ability to reconstruct fine-
grained details. To further improve our method’s perfor-
mance, we adopted a self-ensemble strategy, which im-
proved the performance by 0.07 dB. We rotate and horizon-
tally/vertically flip the input image and averaging the re-
sults to obtain a final prediction, which has been shown to
be effective in reducing the variance of the network’s out-
put. Finally, we presented the results of the model ensem-
ble, denoted by ”MPHAT-Ensemble,” which combined the
results of MPHAT-MSE (EM×8), MPHAT-SiLU (EM×8),
MPHAT-FourierUP (EM×8), and MPHAT-WindowSize24
(EM×8), weighted according to their respective perfor-
mances. Specifically, we weighted the results of these
model with weights of 1/7, 1/7, 1/7, and 4/7, respectively.
We set the largest weight on MPHAT-WindowSize24 be-
cause it outperforms the other three models. The model en-
semble strategy further improves performance by 0.02 dB.
In our proposed method for stereo-image super-resolution,
we introduced a CNN-based stereo enhancement module
to further improve the performance. This module lever-
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(a) Bicubic (b) HAT-L [4] (c) StereoSR [12] (d) iPASSR [34]

(e) SRRes+SAM [37] (f) NAFSSR-L [5] Ours GT

(a) Bicubic (b) HAT-L [4] (c) StereoSR [12] (d) iPASSR [34]

(e) SRRes+SAM [37] (f) NAFSSR-L [5] Ours GT

Figure 2. Visual comparisons on Flickr1024 dataset [32]. GT denotes the ground truth.

ages the cross-view information from both the left and right
stereo images to enhance the details and features of the re-
constructed image. As we reported in Table 2, this module
significantly boosted the performance by 0.27 dB.

As shown in Figure 3, our proposed multi-stage method
combines transformer-based single-image super-resolution
(SISR) and CNN-based stereo enhancement to recover fine-
grained spatial details. The transformer-based SISR method
is used to upscale the low-resolution input images to a

higher resolution, while the CNN-based stereo enhance-
ment module is used to enhance the details by leveraging
the cross-view information. Please look at the clock on the
tower and the text on the building. Our proposed multi-
stage strategy has effectively restored the textures.

4.4. NTIRE 2023 Challenge

The primary objective of the NTIRE 2023 Stereo Im-
age Super-resolution Challenge [31] was to obtain a solu-
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(a) Bicubic (b) Transformer-based SISR (c) CNN-based stereo enhancement

Figure 3. Visual analyses on the proposed multi-stage strategy.

Table 3. Final results of “NTIRE 2023 Challenges on Stereo Image
Super-resolution - Track 1”.)

Rank PSNR

1st (Ours) 23.8961
2nd 23.8911
3rd 23.8830
4th 23.8220
5th 23.8041
6th 23.7719
7th 23.7560
8th 23.7424
9th 23.7252

10th 23.7181

tion that can produce sharp results with high fidelity (PSNR)
from bicubically downsampled input images to their corre-
sponding ground truth images. Our proposed hybrid Trans-
former and CNN Attention Network achieved first place
in Track 1 of the challenge, as shown in Table 3. We

would like to note that our method utilized self-ensemble
and model ensemble strategies to improve its performance.
Ultimately, our method achieved a PSNR of 24.34 dB on
the validation set and 23.90 dB on the test set, as presented
in Tables 2 and 3.

5. Conclusions

In this paper, we introduce the Hybrid Transformer and
CNN Attention Network (HTCAN), which employs a two-
stage approach to super-resolve low-resolution stereo im-
ages using a transformer-based SISR module and a CNN-
based stereo enhancement module. Our proposed multi-
patch training strategy and large window size increase the
number of input pixels activated during the SISR phase, re-
sulting in a 0.05dB gain over the original HAT-L [4] archi-
tecture. Furthermore, our method employs advanced tech-
niques, including data augmentation, data ensemble, and
model ensemble, to achieve a PSNR of 23.90dB on the test
set and win the 1st place in Track 1 of the Stereo Image
Super-resolution Challenge.

1709



References
[1] Yancheng Bai, Yongqiang Zhang, Mingli Ding, and Bernard

Ghanem. Finding tiny faces in the wild with generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 21–30, 2018.
2

[2] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping
Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and
Wen Gao. Pre-trained image processing transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12299–12310, 2021. 2

[3] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part VII, pages 17–33.
Springer, 2022. 2

[4] Xiangyu Chen, Xintao Wang, Jiantao Zhou, and Chao
Dong. Activating more pixels in image super-resolution
transformer. arXiv preprint arXiv:2205.04437, 2022. 1, 2, 4,
5, 6, 7, 8

[5] Xiaojie Chu, Liangyu Chen, and Wenqing Yu. Nafssr:
stereo image super-resolution using nafnet. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1239–1248, 2022. 1, 2, 3, 4, 5, 6,
7

[6] Qinyan Dai, Juncheng Li, Qiaosi Yi, Faming Fang, and
Guixu Zhang. Feedback network for mutually boosted stereo
image super-resolution and disparity estimation. In Proceed-
ings of the 29th ACM International Conference on Multime-
dia, pages 1985–1993, 2021. 3, 5, 6

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[8] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015. 2

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2012. 5, 6

[10] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong.
Blind super-resolution with iterative kernel correction. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1604–1613, 2019. 2

[11] Muhammad Haris, Gregory Shakhnarovich, and Norimichi
Ukita. Recurrent back-projection network for video super-
resolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3897–3906,
2019. 2

[12] Daniel S Jeon, Seung-Hwan Baek, Inchang Choi, and Min H
Kim. Enhancing the spatial resolution of stereo images using
a parallax prior. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1721–1730,
2018. 5, 6, 7

[13] Kai Jin, Zeqiang Wei, Angulia Yang, Sha Guo, Mingzhi
Gao, Xiuzhuang Zhou, and Guodong Guo. Swinipassr: Swin
transformer based parallax attention network for stereo im-
age super-resolution. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
920–929, 2022. 1, 2, 3

[14] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1646–1654, 2016. 5, 6

[15] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 2

[16] Jianjun Lei, Zhe Zhang, Xiaoting Fan, Bolan Yang, Xinxin
Li, Ying Chen, and Qingming Huang. Deep stereoscopic
image super-resolution via interaction module. IEEE Trans-
actions on Circuits and Systems for Video Technology,
31(8):3051–3061, 2020. 5, 6

[17] Lei Li, Jingzhu Tang, Ming Chen, Shijie Zhao, Junlin Li, and
Li Zhang. Multi-patch learning: looking more pixels in the
training phase. In Computer Vision–ECCV 2022 Workshops:
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II,
pages 549–560. Springer, 2023. 4

[18] Sheng Li, Fengxiang He, Bo Du, Lefei Zhang, Yonghao Xu,
and Dacheng Tao. Fast spatio-temporal residual network for
video super-resolution. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
10522–10531, 2019. 2

[19] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1833–1844,
2021. 1, 2, 5, 6

[20] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 2, 5, 6

[21] Jianxin Lin, Lianying Yin, and Yijun Wang. Steformer: Ef-
ficient stereo image super-resolution with transformer. IEEE
Transactions on Multimedia, pages 1–13, 2023. 5, 6

[22] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint
3d estimation of vehicles and scene flow. In ISPRS Workshop
on Image Sequence Analysis (ISA), 2015. 5, 6

[23] Daniel Scharstein, Heiko Hirschmüller, York Kitajima,
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