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Abstract

In order to solve the problem of deploying super-
resolution technology on resource-limited devices, this pa-
per explores the differences in performance and efficiency
between information distillation mechanism and residual
learning mechanism used in lightweight super-resolution,
and proposes a lightweight super-resolution network struc-
ture based on reparameterization, named RepRFN, which
can effectively reduce GPU memory consumption and im-
prove inference speed. A multi-scale feature fusion struc-
ture is designed so that the network can learn and integrate
features of various scales and high-frequency edges. We
rethought the redundancy existing in the overall network
framework, and removed some redundant modules with-
out affecting the overall performance as much as possible
to further reduce the complexity of the model. In addi-
tion, we introduced a loss function based on Fourier trans-
form to transform the spatial domain of the image into the
frequency domain, so that the network can supervise and
learn the frequency part of the image. The experimen-
tal results show that the RepRFN designed in this paper
achieves relatively low complexity while ensuring certain
performance, which is conducive to the deployment of Edge
devices. Code is available at https://github.com/
laonafahaodange/RepRFN .

1. Introduction

Super-resolution (SR) is an important branch of image
reconstruction in computer vision and a hot research topic in
recent years. It is widely used in the fields of medical treat-
ment, security, image and video reconstruction, and even
game image enhancement. In recent years, many SR net-
works based on convolutional neural network (CNN) have
been proposed, indicating that CNN plays a role in promot-
ing the development of image SR.

In 2014, Dong et al. applied convolutional neural net-

Figure 1. Comparison of PSNR and Parameters of different net-
works on Set14 [25] (scale=4, Y-channel in Ycbcr color space).

work to image SR problem for the first time and proposed
SRCNN [5]. Compared with traditional methods, SRCNN
achieved good results with only three convolution layers,
proving the effectiveness of deep learning in this problem.
Kim et al. proposed a deeper SR network VDSR [10]
by cascading multiple small size convolution to ensure the
same receptive field while reducing parameters. The EDSR
[17] proposed by Lim et al. further improves the depth by
the residual structure and multi-scale technology, achiev-
ing better results than SRCNN. This shows that the depth
of the network is an important factor affecting the quality
of SR image reconstruction, and constructing a deeper net-
work can improve the performance of SR.

However, most SR networks sacrifice the efficiency in
order to improve the details of image restoration. In some
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scenarios, real-time performance will also affect user expe-
rience. Therefore, how to efficiently extract image edge,
texture, structure and other information, and balance the re-
lationship between the performance and complexity of SR
network is a key research, which determines whether the
network can be deployed on devices with limited resources
such as computing and storage units. To this end, we pro-
pose a novel Reparameterized Residual Feature Network,
referred to as RepRFN. A multi-branch structure is designed
to extract features of different receptive fields by using mul-
tiple parallel convolution kernels of different sizes, and fea-
ture fusion is realized by local residual connection. In order
to extract the edge information effectively, the Sobel branch
and Laplace branch in the Edge-oriented Convolution Block
(ECB) [29] are introduced into the multi-branch structure.
In the training stage, we regards the SR task as a multi-task
learning problem of spatial domain learning and frequency
domain learning. Fourier transform is introduced into the
loss function to calculate the loss in the frequency domain to
guide the model to recover frequency information. Experi-
ments show that the proposed RepRFN achieves a balance
in performance and efficiency.

Our contributions can be summarized as follows:

1. A multi-scale feature fusion structure based on repa-
rameterization is proposed. Features are convolved
by multiple parallel convolution of different receptive
field and edge-oriented convolution modules to extract
features of different modes. Residual connection is
used to aggregate features, which improves the expres-
sion ability of features.

2. The structure of RFDN [18] model was reconsidered,
we analyzed the redundancy of RFDN, and the 1 × 1
convolution used for channel transformation was re-
moved in our network.

3. Fourier transform is introduced into the loss function,
so that the model can learn the frequency information
of the image in the process of supervised training, and
enhance the recovery ability of frequency details.

2. Related work
The SR network SRCNN [5] has achieved impressive

results, but there are some problems such as large com-
putation. Dong et al. achieved a learning upsampling by
removing interpolation upsampling, introducing transposed
convolution at the end of the network, and using smaller
but more convolution kernels for feature extraction. Based
on these improvements, they proposed the lightweight SR
network FSRCNN [6], which achieved about 17 times of
acceleration compared with SRCNN. Kim et al. proposed
a deep recursive convolutional network DRCN [11] by re-
cursively invoking the feature extraction layer. DRRN [22]

improves DRCN by combining recursion and residual net-
work to achieve better performance with fewer parameters.
NamhyukAhn et al. adjusted model efficiency using group
convolution, they adopted a mechanism similar to recursive
network to share parameters among cascade modules, and
proposed a lightweight cascade residual network CARN
[1]. Lai et al. proposed LapSRN [13], they removed the pre-
processing step of bicubic interpolation of input, transposed
convolution is used for upsampling, with low resolution
(LR) image as input, feature maps are extracted through the
cascade convolutional layer, then a convolution layer is used
to learn the residual difference between high-resolution im-
age and up-sampled feature image to complete first-level
reconstruction, and multi-scale reconstruction is finally re-
alized through stepwise upsampling. Hui et al. proposed an
Information Distillation Network IDN [9]. The key to IDN
lies in the information distillation module. Each informa-
tion distillation module contains an enhancement unit and
a compression unit, which can effectively extract local long
and short-path features, in addition, IDN uses relatively few
convolution kernels and group convolution, so the inference
speed is relatively fast. On the basis of IDN, Information
Multi-Distillation Network IMDN [8] constructs a cascable
Information Multi-Distillation Block IMDB, which consists
of distillation and selective fusion, specifically, the distil-
lation module gradually extracted features, and the fusion
module determined the importance of candidate features ac-
cording to the attention mechanism and fused them. IMDN
won the first prize in AIM2019 Challenge on Constrained
Super-Resolution [27]. Subsequently, Liu et al. reconsid-
ered IMDN and proposed Residual Feature Distillation Net-
work RFDN [18], they think that the key component of both
IDN and IMDN is the information distillation mechanism
IDM, which explicitly divides extracted features into two
parts, one retained and the other further extracted. How-
ever, the efficiency of this mechanism is still not enough to
integrate the residual connection with IDM, therefore, they
designed a Shallow Residual Block SRB as the main mod-
ule of RFDN, so that the network can achieve lightweight
and maximize the use of residual learning. Its E-RFDN
won first place in AIM2020 Challenge on Efficient Super-
Resolution [26].

3. Method
In view of the excellent performance and efficiency

of information distillation mechanism in efficient super-
resolution challenge in recent years [26, 27], we focuses
on the comparison of information distillation mechanism.
The residual network is widely used by researchers because
of its simple structure, easy implementation and good op-
timization effect. Since there is no need to concatenate
channels, the inference speed is faster and the operation is
more efficient, and there is greater potential for deploying
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Figure 2. The Structure of Residual Feature Network.
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Figure 3. Structure of several information distillation mechanisms
and residual learning mechanism.

Table 1. Comparison of model performance and efficiency of dif-
ferent structures (DIV2K [24] validation set, scale=4, RGB color
space).

Model PSNR (dB) Val Time (ms) Params (M) FLOPs (G) Acts (M) Mem (M) Conv

RFDN* 28.93 272.67 0.402 25.06 107.97 758.80 64
RFB1 28.91 179.65 0.429 25.87 94.68 345.04 51
RFB2 28.90 179.76 0.429 25.87 94.68 345.04 51
RFB3 28.91 184.60 0.429 25.87 94.68 345.04 51

Baseline 28.84 177.46 0.429 25.87 94.68 345.04 51

on Edge device with limited resources.
In Section 3.1, we propose a Residual Feature Network

(RFN) for lightweight image SR. Compared with the in-
formation distillation mechanism, we observe the differ-
ences in performance and efficiency between the residual
feature learning mechanism and the information distillation
mechanism through experiments. In Section 3.2, we re-
view the shortcomings of RFN, make a series of improve-
ments to the model, and propose a multi-scale feature fusion
lightweight SR network RepRFN based on Reparameteri-
zation [3, 4, 29]. In Section 3.3, we describe a loss function
based on Fourier transform, which converts images from
spatial domain to frequency domain, so that the model can
learn frequency information in the process of training, and
improve the performance of lightweight SR model.

3.1. Residual Feature Network (RFN)

The overall network structure is shown in Figure 2. The
network consists of three main parts: Shallow Feature-
extraction Block (SFB), Deep Feature-extraction Block
(DFB) and Upsample Block (UB). The SFB is used to ex-
tract the shallow features of the input LR image and DFB
carries out further nonlinear mapping on the extracted shal-
low features to obtain deeper feature expression, then deep
feature and shallow feature are fused through residual con-
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Figure 4. Structure of several residual learning mechanisms.

nection to obtain fusion features. Finally, the UB performs
pixel recombination on the fused features to reconstruct a
SR image.

The SFB consists of a 3 × 3 convolution layer, which is
mainly responsible for extracting shallow feature from the
input LR image. The DFB is composed of stacked Resid-
ual Feature Block (RFB), which gradually extracts shallow
features and uses residual learning to integrate shallow fea-
tures and deep features to improve the expression ability of
features. The UB is the subpixel convolution layer, which
is composed of a 3× 3 convolution layer and a PixelShuffle
layer [21]. The final SR image is obtained by recombining
the fused features and pixel mapping. The above process
can be expressed as:

Xsf = Fsf (Ilr)

Xi
df = F i−1

df , i = 2, 3, 4, 5

X1 = Xsf

Xfusion = conv3×3(X
5
df ) +Xsf

Isf = Up(Xfusion)

(1)

where Ilr represents the input LR image, and shallow fea-
tures Xsf are obtained after SFB Fsf . Then the shallow
features obtained are input into the i-th DFB F i−1

df of the
stacked RFBs, and the i-th deep features Xi

df are extracted
layer by layer. After 3 × 3 convolution, the extracted deep
feature is fused with the shallow feature to obtain the fused
features Xfusion. Finally, the fused features are input into
the UB Up(·) to obtain the reconstructed SR image Isr.

Residual Feature Block The key of the Residual Fea-
ture Block lies in the residual feature learning mechanism.
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Different from the information distillation mechanism, the
information distillation mechanism divides the input fea-
ture into two parts along the channel dimension. One part
is retained and the other part is input to the next informa-
tion distillation module for further feature extraction. After
several distillation steps, the feature fusion is completed by
concatenating along the channel dimension, so as to realize
the fusion of distillation information. However, the residual
feature learning mechanism does not split the features along
the channel dimension, but directly inputs the extracted fea-
tures into the next part, and only adds and merges the ex-
tracted deep features and shallow features in each module,
which alleviates the problems of large GPU memory con-
sumption and increased inference time caused by the chan-
nel split and concatenation operation. Figure 3 shows sev-
eral information distillation module. Figure 3a, Figure 3b
and Figure 3c respectively represent the structure of Infor-
mation Distillation Block (IDB) used in IDN [9], IMDN [8]
and RFDN [18]. The RFB (Figure 3d) used in this section
draws on the structure of RFDN-IDB. Specifically, the dif-
ference lies in that the input features are no longer operated
by channel split, but directly input to the next convolution
layer, and the information fusion mechanism is replaced by
residual fusion.

Assume f i
k=n represents the output feature of the i-th

n × n convolution in the RFB, convin×n represents the op-
eration function of the i-th n × n convolution layer that
has been continuously stacked, ffusion represents the fu-
sion feature generated by residual connection between input
feature xin and intermediate feature f4

k=3, Attention rep-
resents the attention mechanism used by the module, and
xout represents the output feature. The calculation process
of this module can be expressed as:

f4
k=3 = conv43×3(xin)

ffusion = f4
k=3 + xin

f1
k=1 = conv11×1(ffusion)

xout = Attention(f1
k=1)

(2)

We explored the performance and efficiency differences
between the information distillation mechanism and the
residual learning mechanism. RFDN [18] was used as the
representative of information distillation mechanism. It is
noted that global residual connections are used in RFDBs,
and the impact of different residual connections on perfor-
mance differences was also explored. As shown in Fig-
ure 4, RFB1, RFB2 and RFB3 are defined to represent
different residual connection modes: local residual con-
nection, global residual connection, and local combined
global residual connection. The attention mechanism uses
the same Enhanced Spatial Attention (ESA) as RFDN. we
used the plane model without any residual connection as
the baseline model. The number of output channels of each
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Figure 5. The structure of Reparameterized Residual Feature Net-
work.
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Figure 6. The details of Reparameterized Residual Feature Block.

module was unified as 48, and RFDN was retrained with the
above training setting, which is denoted as RFDN*.

As shown in the Table 1, although the network structure
based on residual feature learning has a slight increase in
the number of model parameters and the amount of compu-
tation compared with RFDN, it has a decrease in inference
time, number of activations, number of convolution layers,
and maximum GPU memory consumed during inference.
In particular, Mem decreased by 54.5%. It shows that the
residual feature learning mechanism reduces the GPU mem-
ory consumed and time cost caused by the channel split
and concatenation operation compared with the informa-
tion distillation mechanism. By comparing different resid-
ual connection, it can be seen from the data of RFB1, RFB2
and RFB3 that RFB2 using global residual connection is
slightly lower than RFB1 using local residual connection in
terms of PSNR when the number of parameters and calcu-
lation amount are approximately the same, and RFB1 using
only local residual connection has the same performance as
RFB3 combined with local residual connection and global
residual connection. It can be known that the contribution of
global residual connection is lower than that of local resid-
ual connection.

3.2. Reparameterized Residual Feature Network
(RepRFN)

Despite the low GPU memory usage and fast inference
speed of RFN, there are still many problems. From the fea-
ture scale of the model, 3 × 3 convolution layer is mostly
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used in feature extraction, and the receptive field is rela-
tively simple. Secondly, the structure of the model is still
redundant. In addition, the extraction and recovery of high-
frequency information in the image feature domain are also
deficient. To solve the above problems, this section makes a
series of improvements to the model, and proposes a multi-
scale feature fusion lightweight SR network RepRFN based
on Reparameterization [3, 4, 29]. To solve the problem of
simple receptive field of the model, multiple parallel branch
structure was designed, and the features of different recep-
tive fields and modes are extracted and fused to make the
model benefit from the multi-branch structure as much as
possible. At the same time, the reparameterization, decou-
pling training and inference process are introduced to avoid
the problem that the number of parameters and calculation
amount increase caused by the introduction of multi-branch
structure. To solve the problem of model structure redun-
dancy, we reconsidered and analyzed the structural differ-
ences between RFN and RFDN, removes the 1 × 1 con-
volution layer used for channel transformation in RFN and
makes structural improvements to ESA.

The RepRFN network structure proposed in this paper
is shown in Figure 2. RepRFN has the same structure as
RFN, the difference is that RepRFN replaces RFBs in RFN
with Reparameterized Residual Feature Blocks (RepRFBs).
Reparameterized Block (RepBlock) is the main component
of RepRFB, and multi-branch structure constitutes Rep-
Block as shown in Figure 6. Shallow features are gradually
extracted from different patterns of features by stacked Rep-
Blocks in RepRFBs and fused through residual connections.
Then deep features are obtained through 3 × 3 convolution
layer. Then Shallow features and deep features are fused by
local residual connection to improve the expression ability
of features. The upsampling module uses subpixel convolu-
tion [21] to generate the final SR image. The above process
can be expressed similarly as Equation 1.

Reparameterized Residual Feature Block The design
of RepRFB proposed in this paper refers to the structure
of RFDB in RFDN. In RFDB, the intermediate feature is
split three times by the SRB and 1 × 1 convolution layer
in each information distillation module as shown in Fig-
ure 3c. Therefore, the first three layers of RepRFB adopt
a reparameterized multi-branch structure, which is called
RepBlock in this paper, features propagate through multi-
ple paths that perform different operations and eventually
fuse them to improve the expressiveness of the model. In
RFDB, due to the channel concatenation operation, a chan-
nel transformation using 1× 1 convolution is required after
the concatenation operation to input to the attention layer.
However, in RepRFB, due to the existence of local residual
connections, the size and number of channels of interme-
diate features before and after the RepBlock and convolu-
tional layer are always unchanged, so channel transforma-

tion operation is not required. Therefore, it can be consid-
ered that the 1 × 1 convolution in RepRFB is redundant,
and the 1 × 1 convolution is removed to further compress
the parameters. Kong et al. [12] analyzed the redundancy
of ESA in RFDB based on the pruning sensitivity analysis
tool of the one-shot structured pruning algorithm [15], and
found that the three convolution layers in the convolution
group ranked first, third and fourth respectively in terms of
redundancy. Therefore, the three-layer convolution of the
convolution group in each ESA was reduced to one layer.
The final RepRFB structure is shown in Figure 6.

Assume f i
ms represents the output feature of the i-th

multi-branch structure in the RepRFB, repblocki(·) repre-
sents the operation function of the i-th multi branch struc-
ture that has been continuously stacked, ffusion represents
the fusion feature generated through residual connection
between input feature xin and intermediate feature fc3,
Attention represents the attention layer used by the mod-
ule, and xout represents the output feature, it can be ex-
pressed as:

f3
ms = repblock3(xin)

fc3 = conv3×3(f
3
ms)

ffusion = fc3 + xin

xout = Attention(ffusion)

(3)

3.3. Loss Function Based on Fourier Transform

For the problem of extracting and restoring high-
frequency information, in addition to introducing ECB [29]
into multi-branch structure, Fourier transform is introduced
into loss function to guide the model to learn frequency
domain features and restore high-frequency information as
much as possible.

The commonly used loss function of SR include L1 loss,
L2 loss and Charbonnier loss [13], etc. These loss func-
tion can be considered as a kind of pixel loss by measuring
the difference between the pixel values of SR images and
high resolution (HR) images to guide model learning. How
to effectively restore high-frequency information of images
in SR has always been a focus of industry attention. Dur-
ing the model training process, the learning of frequency
information is achieved by measuring the pixel differences
between spectral maps of SR and HR. As expressed in the
Equation 4:

L(x, y) = Lpix(fft(x), fft(y)) (4)

4. Experiments
4.1. Experimental Setup

In terms of training, DIV2K [24] training set and
Flickr2K [24] dataset are used, the HR patches is set to
192× 192, random horizontal flip, vertical flip and rotation
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Figure 7. Visualization results.

are introduced into the data augmentation during training.
The proposed RepRFN consists of 4 RepRFBs, the number
of channels is set to 48. The model is trained from scratch.
We use the Adam optimizer with β1 = 0.9, β2 = 0.999
and ϵ = 10−8, batchsize is set to 64, and the initial learn-
ing rate is set to 5 × 10−4 and halved at every 100 epochs.
The total number of epochs is 1001. In the process of train-
ing, the loss function used is the combination of pixel loss
and loss function based on Fourier transform. In practical
application, Charbonnier loss [13] can avoid the problem
that the results generated by L1 loss and L2 loss are too
smooth [30], in the experiment, we also found that the Char-
bonnier loss is better than the L1 loss in terms of PSNR, so
we choosed the Charbonnier loss as Lpix. It should be noted
that we only perform Fourier transform on the scale dimen-
sion of the image. Finally, the loss can be formulated as:

L(x, y) = λ1Lpix(x, y) + λ2L1(fft(x), fft(y)) (5)

where λ1 = 0.9, λ2 = 0.1 and the hyperparameter ϵ2 in
Charbonnier loss is set to 10−6.

4.2. Quantitative Results

We compared several SR networks based on CNN [1, 5,
6, 8–11, 14, 18, 22, 23, 28, 29]. The PSNR and SSIM of the
model were tested on five benchmark datasets [2, 7, 19, 20,
25] to measure model performance. PSNR and SSIM were

tested on the Y-channel in the YCbCr color space of the im-
age. In terms of model complexity, assuming that the model
output is a 720P image, the Parameters and FLOPs are used
to measure the model complexity. In order to maximize
the potential performance of the RepRFN proposed in this
paper, Geometric Self-ensemble [17] was used in the exper-
iment, and the RepRFN using the Geometric Self-ensemble
strategy is denoted as RepRFN+. The experimental results
are shown in Table 2. Figure 1 compares the PSNR and Pa-
rameters of different networks on the Set14 [25] under the
condition of a scale factor of 4. It can be seen that RepRFN
achieves performance comparable to other networks with
fewer parameters and computational complexity, achieving
a better balance in performance and efficiency. The network
visualization results are shown in the Figure 7.

In order to further validate the efficiency of model de-
ployment on mobile devices, we also compared the differ-
ences in inference time among three popular model deploy-
ment schemes on the Android devices of Qualcomm Snap-
dragon 865 and 820, and Rockchips RK3588 hardware plat-
forms. The three deployment schemes are ONNX, Pad-
dleLite, and Rockchips RKNN. As shown in Table 6, the
efficiency of the RepRFN has been verified through exper-
iments, indicating that the proposed RepRFN has certain
competitiveness in deployment on hardware platforms.
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Table 2. PSNR/SSIM and complexity results of SR with different scale factors for different networks on different benchmark test sets, The
best and second-best results are marked in red and blue colors, respectively.

Model Scale Set5 [2] Set14 [25] BSD100 [19] Urban100 [7] Manga109 [20] Params FLOPs
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM (K) (G)

Bicubic

2

33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339 - -
SRCNN [5] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663 57 52.7

FSRCNN [6] 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710 12 6
VDSR [10] 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750 665 612.6
DRCN [11] 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732 1774 17,974.30

LapSRN [14] 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740 813 29.9
DRRN [22] 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749 297 6,796.90

MemNet [23] 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740 677 2662.4
IDN [9] 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749 590 174.1

SRMDNF [28] 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761 1513 247.7
CARN [1] 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765 1592 222.8
IMDN [8] 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774 694 158.8

RFDN [18] 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773 534 123
ECBSR [29] 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 - 596 137.31

RepRFN (ours) 37.99/0.9609 33.57/0.9179 32.18/0.9004 31.95/0.9261 38.80/0.9774 386 85.12
RepRFN+ (ours) 38.07/0.9612 33.63/0.9184 32.22/0.9009 32.10/0.9274 39.00/0.9779 386 85.12

Bicubic

3

30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556 - -
SRCNN [5] 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117 57 52.7

FSRCNN [6] 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210 12 6
VDSR [10] 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340 665 612.6
DRCN [11] 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343 1774 17,974.00

LapSRN [14] - - - - - - -
DRRN [22] 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9379 297 6,796.90

MemNet [23] 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369 677 2662.4
IDN [9] 34.14/0.9259 30.13/0.8383 28.98/0.8026 27.86/0.8463 33.11/0.9416 590 105.6

SRMDNF [28] 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403 1,530 156.3
CARN [1] 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440 1592 118.8
IMDN [8] 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445 703 71.5

RFDN [18] 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449 541 55.4
ECBSR [29] - - - - - - -

RepRFN (ours) 34.33/0.9272 30.30/0.8415 29.08/0.8058 27.95/0.8473 33.48/0.9434 392 38.4
RepRFN+ (ours) 34.45/0.9280 30.39/0.8430 29.13/0.8068 28.06/0.8494 33.76/0.9451 392 38.4

Bicubic

4

28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866 - -
SRCNN [5] 30.48/0.8626 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555 57 52.7

FSRCNN [6] 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610 12 4.6
VDSR [10] 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870 665 612.6
DRCN [11] 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.93/0.8854 1774 17,974.00

LapSRN [14] 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900 813 149.4
DRRN [22] 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946 297 6,796.90

MemNet [23] 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942 677 2662.4
IDN [9] 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 30.04/0.9026 590 81.8

SRMDNF [28] 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024 1530 89.3
CARN [1] 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084 1592 90.9
IMDN [8] 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075 715 40.9G

RFDN [18] 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089 550 31.6
ECBSR [29] 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 - 603 34.73

RepRFN (ours) 32.15/0.8952 28.63/0.7824 27.60/0.7377 26.09/0.7834 30.52/0.9075 402 22.1
RepRFN+ (ours) 32.28/0.8969 28.68/0.7836 27.65/0.7389 26.18/0.7858 30.79/0.9102 402 22.1

Table 3. Performance differences between RepRFN-P and
RepRFN on different benchmark datasets (Y-channel in Ycbcr
color space).

Model Scale Set5 [2] Set14 [25] BSD100 [19] Urban100 [7] Manga109 [20]
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

RepRFN-P 2 37.96/0.9608 33.51/0.9175 32.18/0.9003 31.92/0.9260 38.73/0.9774
RepRFN 37.99/0.9609 33.57/0.9179 32.18/0.9004 31.95/0.9261 38.80/0.9774

RepRFN-P 3 34.29/0.9267 30.27/0.8412 29.05/0.8052 27.89/0.8460 33.38/0.9426
RepRFN 34.33/0.9272 30.30/0.8415 29.08/0.8058 27.95/0.8473 33.48/0.9434

RepRFN-P 4 32.17/0.8954 28.61/0.7820 27.60/0.7377 26.05/0.7823 30.54/0.9074
RepRFN 32.15/0.8952 28.63/0.7824 27.60/0.7377 26.09/0.7834 30.52/0.9075

Table 4. Comparative experiment on model structure redundancy
(DIV2K [24] validation set, RGB color space).

Channels Remove 1× 1 Conv Modify ESA Params (M) FLOPs (G) PSNR (dB)

48 ! # 0.429 22.68 28.94
48 ! ! 0.411 22.66 28.97
50 ! ! 0.443 24.50 28.99
52 ! ! 0.476 26.41 28.99
50 # ! 0.432 23.93 28.95

4.3. Ablation Study

Multi-Scale Feature Fusion Module In order to verify
the impact of multi-branch structure on model performance,
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Table 5. Performance comparison experiment of different loss
function on DIV2K [24] validation set (RGB color soace).

L1 Charbonnier FFT PSNR (dB)

! # # 28.95
# ! # 28.97
# ! ! 28.98

Table 6. Inference time of RepRFN, IMDN, and RFDN under
different deployment schemes.

Model ONNX(RK3588) PaddleLite(Snapdragon865/820) RKNN(RK3588)
Run Time (ms) Run Time (ms) Run Time (ms)

IMDN 4605.629395 1636.7737/4245.3735 966.550171
RFDN 3268.103027 905.4292/2847.237 312.565491

RepRFN 2255.510498 645.4514/2049.4033 250.944626

Table 7. NTIRE 2023 ESR Challenge result.

Model Val PSNR Test PSNR Val Time Test Time Ave Time Params FLOPs Acts Mem Conv(dB) (dB) (ms) (ms) (ms) (M) (G) (M) (M)

RFDN 29.04 27.11 42.41 28.66 35.54 0.433 27.10 112.03 788.13 64
RepRFN 28.99 27.05 30.58 21.37 25.97 0.402 25.23 81.88 344.51 39

we designed an experiment, which referred to the reparam-
eterized planar model of RepRFN proposed in this paper
as RepRFN-P (P: Plain), meaning that RepRFN-P does not
contain multi-branch structure, similar to the RFN structure
proposed in Section 3.1, In terms of experimental setup, it is
the same as RepRFN, and RepRFN-P was retrained to ob-
serve the performance differences between it and RepRFN.
From the Table 3, it can be seen that RepRFN is relatively
superior in performance to RepRFN-P without using a multi
branch structure, indicating that the multi-branch structure
is beneficial for improving the performance of the model.

Model Structure We explored the redundancy of the
model structure. Starting from three aspects: the number of
model channels, 1×1 convolution used for channel transfor-
mation, and ESA. We investigated the impact of these three
factors on model performance and efficiency. The baseline
model is based on a model with a channel number of 48,
preserving 1 × 1 convolution and the original ESA mod-
ule. From the Table 4, it can be seen that the model per-
formance of the modified ESA module has been increased
by about 0.03dB, indicating that there is some redundancy
in the convolution groups in ESA module. As the number
of channels increases to 50, the PSNR also correspondingly
improves by 0.02dB, with an 8% increase in both param-
eter and FLOPs. When the number of channels increases
to 52, the PSNR no longer increases and the model com-
plexity continues to increase. This indicates that the impact
of channel numbers on model performance is manifested as
the larger the number of channels, the more saturated the
model performance tends to be, and the higher the com-
plexity. Under the modified ESA module with the same
number of channels of 50, removing the 1 × 1 convolu-

tion used for channel transformation can reduce the amount
of parameters and FLOPs, but the performance also de-
creases by about 0.04dB. In order to obtain a model with
lower complexity, we sacrificed some performance to de-
sign a model with lower complexity, the model RepRFN
ultimately adopts the design of channel number 48, modi-
fied ESA module, and removes 1× 1 convolutions used for
channel transformation.

Loss function In order to verify the effectiveness of
the proposed Fourier transform based loss function, we ex-
plored the impact of L1 loss, Charbonnier loss, and Fourier
transform based loss on the performance of the SR model.
It can be seen from the Table5 that Charbonnier loss is bet-
ter than L1 loss in PSNR. After the introduction of Fourier
transform based loss function, the performance of the model
has been increased, indicating that the Fourier transform
based loss function is beneficial to the model performance.

4.4. NTIRE 2023 ESR challenge

We have participated in NTIRE 2023 Efficient Super-
Resolution Challenge [16]. This competition aims to devise
a network that reduces one or several aspects such as run-
time, parameters, FLOPs, activations, and depth of RFDN
while at least maintaining PSNR of 29.00dB on validation
datasets. Our results are shown in the Table 7.

5. Conclusion
In this paper, we propose a Reparameterized Residual

Feature Network for lightweight image super-resolution. A
multi branch structure is designed to capture the features of
various patterns as much as possible and fuse them, then,
reparameterization is introduced to enable complex multi-
branch structures to be applied to lightweight networks.
In the process of network training, a loss function based
on Fourier transform is designed, which converts the im-
age from spatial domain to frequency domain to guide the
model to learn frequency information. Experiments have
shown that the proposed method achieves better balance in
performance and efficiency compared to other networks.
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