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Abstract

Even though image denoising has already been studied
for decades, recent progress in deep learning has provided
novel and considerably better results for this classical sig-
nal reconstruction problem. One of the most significant ad-
vances in recent years has been relaxing the requirement
of having noise-free (clean) images in the training dataset.
By leveraging self-supervised learning, recent methods al-
ready reach the reconstruction quality of classical and some
supervised schemes. In this paper, we propose SS-TTA, a
generic test-time adaptation policy that can be applied on
top of various self-supervised denoising methods. Taking a
pre-trained self-supervised denoising model and a test im-
age as input, our SS-TTA algorithm improves the denoising
performance through a proposed ’inference-guided regular-
ization’ process. Based on experiments with three synthetic
and three real noise datasets, SS-TTA improves the denois-
ing results of several state-of-the-art self-supervised meth-
ods, outperforms recent test-time adaptation approaches,
and shows promising performance with supervised models.
Finally, SS-TTA also generalizes to cases where the test-
time noise distribution differs from the noise distribution of
training images.

1. Introduction
Signal reconstruction from noisy observations is a re-

search topic of continuous interest due to its numerous ar-
eas of application. One particularly important application
area is image denoising, where input images are corrupted
by noise, and a denoising algorithm attempts to recover the
underlying clean image. Classic denoising studies [6, 9, 39]
propose optimization-based solutions to recover clean im-
ages, and are successful to some extent. Optimization based
approaches were later replaced by data driven approaches
[31, 34, 42] that provided better denoising quality, but un-
fortunately require ground truth (clean images) – a problem
that has been recently overcome by self-supervised denois-
ing [20, 21, 26, 30].

Clean image Noisy image

Baseline [20] Baseline [20] + SS-TTA

Figure 1. SS-TTA denoising example. The noisy image is the
clean image corrupted by additive Gaussian noise with σ2 = 50.
Bottom row: denoising performance of Noise2Noise [20] with and
without the proposed test-time adaptation approach SS-TTA.

Recent self-supervised denoising studies [3,16,18,20,21,
26, 30, 37] have achieved results that come close to the im-
age denoising performance of fully supervised approaches
[7, 31, 34, 40, 42]. Similarly, a few self-supervised stud-
ies have reported comparable performance by just training
on single images [30], transfer learning [43], or real noise
generation [28]. In practice, the studies mentioned above
address the self-supervised learning problem by means of
data augmentation [26, 38] or tailored regularization tech-
niques [16, 37].

Even though the reported denoising performance of
these self-supervised approaches is impressive, their best
performance can only be observed in cases where the noise
distribution of test images matches the noise characteristics
of the training images (i.e. in-domain noise). In contrast,
for test images with out-of-domain noise, their performance
degrades [25], which implies shortcomings in their general-
izability.

In general, self-supervised denoising methods [26, 29]
rely on pairs of noisy images, instead of the noisy-clean
image pairs used by fully supervised denoising methods.
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In self-supervised training, the noise characteristics of the
training set are a critical factor for obtaining good denoising
performance, i.e., high noise intensity limits the resulting
denoising performance, as first observed in [3]. In contrast,
lower noise intensity in the training set can be expected to
lead to better performance in self-supervised training. Fol-
lowing this rationale, we propose a denoising approach that
synthesizes additional low-intensity noise training images
at test time to adapt a pre-trained denoising model towards
improved image restoration performance.

Based on this hypothesis, this work proposes a general
test-time adaptation (TTA) method that can be applied on
top of existing self-supervised denoising approaches. The
proposed SS-TTA scheme takes as input an initial denois-
ing model, and an image that has been denoised by the ini-
tial model. Consequently, our SS-TTA scheme creates two
noise-added test-time training images from the denoised
image, and adapts the initial denoising model towards im-
proved performance considering the input image. The pro-
posed SS-TTA method can be applied on top of a chosen
neural network based denoising model (See Figure 1), and
converges at test time within a few training epochs, improv-
ing the denoising performance of both synthetic and real
noise images. In summary, the contributions of the pro-
posed work are:

• To our knowledge, SS-TTA is the first study indepen-
dent of additional trainable parameters or manual rep-
resentation tuning within test-time adaption of denois-
ing.

• SS-TTA is the first test-time adaptation scheme to re-
port improved denoising performance for images with
real-world, in- and out-of-domain synthetic noise.

• Compared to recent test-time adaptation approaches,
SS-TTA requires a magnitude or two less iterations to
convergence and outperforms existing approaches in
denoising performance

• In the experimental section, results are presented for
three synthetic and three real-world noise datasets, and
for two different baseline neural architectures.

2. Related work
Most of the recent denoising studies [2, 31, 34, 42] rely

on supervised learning, and present among others, cascaded
network design [2, 31], feature ensembles [7], ensemble
learning [40], custom loss functions [8, 24, 44], and appli-
cation area specific data augmentation [23]. Although ca-
pable of providing superior performance, supervised meth-
ods require large quantities of paired training data — un-
fortunately, large-scale datasets with real-world noisy-clean
image pairs are scarce. Self-supervised denoising meth-
ods [3, 16, 18, 20, 21, 26, 30, 37] relax the requirement of

having clean, noise-free images, and leverage a form of
noise augmentation [26, 29, 38, 43] or spatial regulariza-
tion [3, 4, 16, 17, 30, 37] for training.

Unpaired denoising studies [11, 15, 36] generally con-
sider two datasets for noise removal, where one dataset con-
tains pairs (the guiding dataset), and the other one is un-
paired (the denoising dataset). In order to provide good
performance, both datasets should however exhibit simi-
lar noise characteristics. Unfortunately, unpaired denoising
faces significant challenges [28] with datasets that consist
of images corrupted by real-world noise.

There are also several studies that propose test time adap-
tation [10, 25, 33, 35, 43] for denoising. One of these previ-
ous works [33] presented a solution based on Stein’s unbi-
ased risk estimator (SURE) loss function, in order to adapt
the model’s parameter space to the test data. In contrast,
[43] proposed noise resampling for retraining to improve
the performance of the baseline model. However, [43] re-
quires multiple phases of training to improve baseline per-
formance. GainTuning [25] addresses the test time adapta-
tion problem by injecting a gain parameter to each channel
of the given network, and tuning the parameter for the given
test image. Compared to previous works, GainTuning [25]
achieves better performance and model generalizability. Fi-
nally, Lidia [35] has been built on a lightweight CNN, and
relies on patch processing, non-local self-similarity and rep-
resentation sparsity. Whereas Lidia presents high image
restoration quality, the method relies on a specific neural
architecture.

In contrast to the aforementioned works, the proposed
SS-TTA method can be applied on top of any self-
supervised denoising approach, improving performance
across synthetic and real noise dataset, and provides state-
of-the-art results.

3. Proposed method
Before describing the proposed SS-TTA method, the the-

oretical background of self-supervised denoising is briefly
presented. The necessary mathematical notation is ex-
plained in Table 1.

3.1. Self-supervised denoising

Let Fθ represent the baseline denoising model, (Y,X )
the dataset with noisy-clean pairs, where a single pair
(y, x) ∈ (Y,X ), and y = x + n, where additive noise is
n ∼ N (0, σ2). Following any standard training strategy
and an appropriate set of hyperparameters, the supervised
cost function ∥Fθ(y)− x∥22 for the denoising task can be
minimized, and consequently the initial parameter space Fθ

will converge to a local or global minima Fθ∗ .
If the same training procedure is applied to a

self-supervised setting, the cost function will become
∥Fθ(y)− y∥22, where convergence to identity needs to be
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Test-time 
Adapted 

SS Model 

Pre-trained  
SS Model 

Figure 2. Flowchart of the proposed test-time adaptation scheme. Here, Fθ∗
s

is the pretrained self-supervised (SS) model, FθTTA is the
model for test-time adaptation, F

θ
+
TTA

is the model after gradient update, and ∇FθTTA
is the gradient w.r.t. FθTTA .

Notation Description
x Clean image
y Noisy image
n ∼ N (0, σ2) Additive noise
σ2 Noise variance
(y, x) Noisy-Clean pair
E Expectation
(y, y′) Noisy-Noisy pair
Fθ(y) Output from the pre-trained model
FθI Ideal denoiser
z = Fθ(y) + n Noisy inferred image
x − Fθ(x) Details of the clean image
Fθ∗ Pre-trained supervised model
Fθ∗

s
Pre-trained self-supervised model

FθTTA Initial test-time adapted model
∇FθTTA

Gradient w.r.t. FθTTA

F
θ
+
TTA

Model after GD update
Fθavg

TTA
Average of F

θ
+
TTA

and Fθ∗
s

Fθ∗
TTA

Final test-time adapted model
LMSE Mean-square loss function

Table 1. Descriptions of the necessary notations.

avoided for enabling minimization. For example, the well-
known work Noise2Noise [20] avoids converging to iden-
tity by leveraging y′ = x + n′, which is a secondary noisy
observation of the clean image (here, n′ ∼ N (0, σ2

1)).
Hence, the minimization task becomes ∥Fθ(y)− y′∥22, and
following the presentation in [29], it can be expanded as
follows:

En,n′

{∥∥Fθ(y)− y′∥∥2
2

}
=En,n′

{∥∥Fθ(y)− x− n′∥∥2
2

}
=En,n′

{
∥Fθ(y)− x∥22 − 2

(
n′)⊤ (Fθ(y)− x) +

(
n′)⊤ n′

}
=En,n′

{
∥Fθ(y)− x∥22

}
+ constant.

The −2En,n′

{
(n′)

⊤ Fθ(y)
}

component is excluded
from the last line as it will converge to zero due to the
orthogonality of the noise components, and (n′)⊤n′ is a
constant, which depends on the noise distribution of the in-
put y and target images y′. This constant term (n′)⊤n′

causes the self-supervised model and supervised model
to reach different minima and potentially differing perfor-
mance. There are several previous studies [3,13,19,29] that
point out this observation, and Appendix 1 shows a brief
experimental analysis of the significance of constant term
(n′)⊤n′.

This performance gap motivates proposing our solution
for improving the denoising performance of Fθ∗

s
. In con-

trast to recent test-time adaption works [25, 35], the pro-
posed approach adjusts all the parameters of Fθ∗

s
to im-

prove denoising quality. The following section explains the
technical details of the SS-TTA algorithm.

3.2. SS-TTA

Figure 2 shows the generic procedure of the proposed
test time adaptation algorithm. In the first step of test time
adaptation, test images Y with random (zero mean or not,
underlying noise variance unknown) additive noise are ac-
quired. For a noisy test image y ∈ Y , and the given pre-
trained self-supervised model Fθ∗

s
, Fθ∗

s
(y) is the denoised

approximation of the unknown clean image x.
To enable SS-TTA test time adaptation, we sample

additional noisy observations of Fθ∗
s
(y) by adding

synthetic noise to it. The resulting additional noisy
images z1, z2 are acquired from Fθ∗

s
(y) such that

z1 = Fθ∗
s
(y) + n1, z2 = Fθ∗

s
(y) + n2, where

n1 ∼ N (0, σ2
1), n2 ∼ N (0, σ2

2), and σ2
1 < σ2

2 . Ini-
tialized by the pre-trained self-supervised model Fθ∗

s
and
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z1, z2, the initial test-time adapted model FθTTA provides
FθTTA(z1), and FθTTA(z2), and the test-time model
updating can start. For this, two variants of the training loss
are proposed:

SS-TTA1. This general-purpose variant regularizes
the pre-trained self-supervised model through a combina-
tion of mean-square error (MSE) loss terms. The first
loss component is Ls1 =

∥∥Fθ∗
s
(y) − FθTTA(z1)

∥∥2
2

,
which is a relaxed form of supervised minimiza-
tion, as we consider Fθ∗

s
(y) the quasi-clean tar-

get. The second loss Ls2 regulates the FθTTA by
Ls2 = ∥FθTTA(z1) − FθTTA(z2)∥

2
2. Here, direct min-

imization with regard to the quasi-clean target Fθ∗
s
(y)

would result in over-smoothed images, as empirically ob-
served, and is hence replaced by FθTTA(z1).

In order to properly explain the last loss component
of SS-TTA, we briefly need to consider an ideal denoiser
FθI , which can exactly reconstruct clean images from
noisy samples: if FθI is provided clean (noise-free) in-
put, the observed output should be identical to the clean
input, i.e., ∥FθI (y) − FθI (FθI (y))∥

2
2 ≡ 0. However,

such identity mapping is missing from current state-of-
the-art self-supervised architectures, and to mitigate the
effects of missing identity mapping, the identity map-
ping loss L3 is added to the SS-TTA method: L3 =∥∥Fθ∗

s
(y) − FθTTA(Fθ∗

s
(y))

∥∥2
2
. In summary, the total

loss of our first variant becomes

LIGR1 = Ls1 + Ls2 + L3 (1)

where IGR stands for inference-guided loss.
SS-TTA2. It is well-known that besides reducing un-

desired noise, image denoising smoothenes the input im-
age, removing small details. In order to address this un-
desired reduction of image sharpness, the detail-preserving
SS-TTA2 variant of our method is proposed; considering
a clean image x, the image details (high-frequency com-
ponents) of x can be expressed as IHF = x − Fθ∗

s
(x),

where Fθ∗
s

can be understood to function like a low-pass
filter. Similarly, in the case of self-supervised denoising,
IHF = Fθ∗

s
(y) − Fθ∗

s
(Fθ∗

s
(y)), where Fθ∗

s
(y) can be

understood as a reasonable-quality reconstruction of x, and
Fθ∗

s
(Fθ∗

s
(y)) as a further-smoothened version of Fθ∗

s
(y)

(through re-applying Fθ∗
s

). In the case of SS-TTA2, the
noisy input y is used for estimating IHF .

With this background, SS-TTA2 computes
adapted image details in every epoch as follows:
IHFa = Fθ∗

s
(y) − FθTTA(Fθ∗

s
(y)). By IHFa ,

the target variable Fθ∗
s
(y) is sharpened, and

guided by image details, the loss terms become
LD1 =

∥∥Fθ∗
s
(y) + IHFa − FθTTA(z1)

∥∥2
2

, and

LD2 =
∥∥Fθ∗

s
(y) + IHFa − FθTTA(z2)

∥∥2
2

. While
keeping the identity mapping term identical to SS-TTA1,

the total loss of SS-TTA2 becomes:

LIGR2 = LD1 + LD2 + L3 (2)

SS-TTA model update. Using the total loss LIGR1 or
LIGR2, the obtained gradient is labeled as ∇FθTTA

, and
after gradient descent (GD), the updated model becomes
F

θ
+
TTA

. To perform the final GD, weight averaging is ap-
plied for improved model generalization [14, 22]: by av-
eraging F

θ
+
TTA

and Fθ∗
s

we compute Fθavg
TTA

and update
the current state of FθTTA . The total overall procedure
is repeated for several epochs to obtain the final test-time
adapted model Fθ∗

TTA
.

Rationale of SS-TTA. As discussed earlier, in contrast
to supervised approaches, self-supervised methods tune the
input model with regard to the noisy target. Addition-
ally, depending upon the noisy input images, the perfor-
mance of the self-supervised studies is limited by the con-
stant (n′)⊤n′ term that is not present in a supervised setup.
Hence, self-supervised denoising methods are tunable after
the regular training phase with a possibility of performance
improvement. This does not fully generalize to the super-
vised case, as there is no theoretical performance limit apart
from the network topology and training strategy.

In SS-TTA, we have an identical training setup (not more
than five epochs, no annealing factor) for both SS-TTA1 and
SS-TTA2, details described later.

4. Experiments and results
In this section, the proposed SS-TTA method is evalu-

ated using several datasets, noise domains and baseline self-
supervised denoising methods: Noise2Noise [20], Nois-
ier2Noise [26] and Decay2Distill [4]. Furthermore, we
compare the performance of SS-TTA to recent test-time
adaptation approaches GainTuning [25] and Lidia [35]. In
Tables 2, 3, 4, 5, 6 results from baseline methods [4, 20, 26]
without test-time adaptation are shown in regular font, and
baseline+SS-TTA results in boldface. Figure 4 shows visual
examples for the approaches [4,20,26] with and without ap-
plying SS-TTA.

Datasets: SS-TTA is evaluated using synthetic and real
noise datasets. For synthetic noise, BSD68 [42], Kodak24,
and Urban100 [12] datasets are used with input noise vari-
ances of 25 and 50. To explore the performance limits of
SS-TTA, we also experimented with noisy images with a
high noise variance of 90. In the real noise domain, SIDD
[1], PolyU [41], and CC [27] datasets were used. For SIDD,
the validation set was used for our study (collected from the
SIDD hosting website), whereas for CC and PolyU datasets,
only the test sets were used.

Denoising methods: We have used pre-trained weights
from the Noise2Noise [20], Noisier2Noise [26], and De-
cay2Distill [4] methods, built on the DnCNN [42] network.
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Methods BSD68 [42] Kodak24 Urban100 [12]
N2N [20] 30.14 30.97 29.23

N2N+ SS-TTA1 30.19 31.07 29.26
N2N+SS-TTA2 30.28 31.09 29.36

Nr2N [26] 28.54 29.02 27.9
Nr2N+ SS-TTA1 28.72 29.43 28.01
Nr2N+SS-TTA2 28.82 29.63 28.10

D2D [4] 30.26 31.02 29.15
D2D+ SS-TTA1 30.32 31.07 29.22
D2D+SS-TTA2 30.49 31.26 29.41

Table 2. Average denoising performance on BSD68, Kodak24,
and Urban100 datasets with synthetic in-domain σ2 = 25 noise.
Units are in PSNR and the model architecture is DnCNN [42].

The networks of [4, 20, 26] were trained [42] with images
containing synthetic noise, both for real noise and syn-
thetic noise datasets. Rotation and translation process was
used along with cosine learning rate decay to train [42]
with [4, 20, 26]. Synthetic train set was sampled from the
DIV2K dataset. For images with real-world noise, self-
supervised works rely on a variety of training strategies,
such as single-image training [29], fine tuning [13], or reg-
ular training [28]. Unfortunately, the exact training proce-
dures or pre-trained models for real noise cases are not pub-
licly available.

Test-time adaptation details: For test time adaptation,
the noisy test image, the pre-trained initial model Fθ∗

s
, and

adaption noise variance parameters σ2
1 , σ

2
2 are required. For

synthetic noise removal experiments, it was observed that
σ2
1 = 25, σ2

2 = 30 were appropriate values for successful
denoising. These noise parameters were also used with the
real-world noise SIDD dataset, however, for the CC dataset
we used σ2

1 = 1 and σ2
2 = 1, and for the PolyU dataset

σ2
1 = 5 and σ2

2 = 6.
The number of SS-TTA test time training epochs was

kept at 5 across all experiments, using the Adam optimizer
with a learning rate of 0.0001, without any scheduler. In-
creasing the epoch count resulted only in marginal denois-
ing performance improvements. For test-time adaption pa-
rameter aggregation, we have used the convex sum policy
and λ1 = 0.9, λ2 = 0.1 for Fθ∗

s
and F

θ
+
TTA

, respectively.

4.1. SS-TTA denoising performance

Table 2 shows the effect of SS-TTA test time adaptation
when applied on top of three recent self-supervised denois-
ing methods in the case of synthetic noise with σ2 = 25:
SS-TTA surpasses the improves the performance of all three
baseline methods, and SS-TTA2 outperforms SS-TTA1 in
each case. Similarly, Table 3 shows the results for synthetic
noise with σ2 = 50, which reveals that in the presence of
stronger noise, the noise removal performance SS-TTA is
likewise higher than in the σ2 = 25 case.

Methods BSD68 [42] Kodak24 Urban100 [12]
N2N [20] 26.63 27.51 25.55

N2N+ SS-TTA1 26.72 27.69 25.63
N2N+SS-TTA2 26.84 27.80 25.71

Nr2N [26] 25.60 26.35 24.56
Nr2N+ SS-TTA1 25.85 26.80 24.76
Nr2N+SS-TTA2 26.04 27.02 24.91

D2D [4] 26.53 27.48 25.49
D2D+ SS-TTA1 26.69 27.72 25.64
D2D+SS-TTA2 26.90 27.94 25.84

Table 3. Average denoising performance on BSD68, Kodak24,
and Urban100 datasets with synthetic in-domain σ2 = 50 noise.
Units are in PSNR and the model architecture is DnCNN [42].

Methods BSD68 [42] Kodak24 Urban100 [12]
N2N [20] 21.33 21.91 20.56

N2N+ SS-TTA1 21.94 22.73 20.88
N2N+SS-TTA2 22.28 23.18 21.07

Nr2N [26] 20.30 20.75 19.55
Nr2N+ SS-TTA1 20.82 21.55 19.85
Nr2N+SS-TTA2 21.17 22.02 20.06

D2D [4] 19.17 19.33 19.01
D2D+ SS-TTA1 20.25 21.02 19.74
D2D+SS-TTA2 21.02 22.06 20.27

Table 4. Average denoising performance on BSD68, Kodak24,
and Urban100 datasets, synthetic out-of-domain σ2 = 90 noise.
Units are in PSNR and the model architecture is DnCNN [42].

To assess the generalizability of the SS-TTA method, the
performance of the model with σ2

1 = 25, σ2
2 = 30 was also

tried in denoising of σ2 = 90 noisy input images. The re-
sults of Table 4 show that the baseline methods perform de-
noising much worse than with σ2 = 25 or σ2 = 50 noise,
but SS-TTA improves the PSNR performance of each de-
noiser by around 1 dB.

Methods CC PolyU [41] SIDD [1]
N2N [20] 34.39 35.29 27.95

N2N+ SS-TTA1 35.15 36.54 30.01
N2N+SS-TTA2 35.17 36.85 30.22

Nr2N [26] 34.70 35.23 28.53
Nr2N+ SS-TTA1 35.52 36.10 29.49
Nr2N+SS-TTA2 35.68 36.56 29.84

D2D [4] 33.98 36.27 28.41
D2D+ SS-TTA1 34.32 36.50 29.02
D2D+SS-TTA2 34.55 36.33 29.15

Table 5. Average denoising performance on SIDD, PolyU, and CC
datasets, with real-world noise. Units are in PSNR and the model
architecture is DnCNN [42].

For real-world noisy images, three datasets: CC, PolyU,
and SIDD, were considered. The same baseline methods
[4, 20, 26] as with the synthetic noise cases were used for
real-world noise as well. From Table 5, the performance

1182



Methods BSD68
N2N [20] 29.48

N2N+SS-TTA1 29.58
N2N+SS-TTA2 29.66

Nr2N [26] 27.60
Nr2N+SS-TTA1 27.89
Nr2N+SS-TTA2 28.01

D2D [4] 29.44
D2D+SS-TTA1 29.47
D2D+SS-TTA2 28.01

Table 6. Performance increase provided by SS-TTA for λ ∈
[5, 50] Poisson distribution noise for the BSD68 dataset.

Figure 3. The effect of σ2
1 , σ

2
2 on test-time adaptation. The x-

axis shows the value of the SS-TTA σ2
1 , σ

2
2 for the parameters,

whereas the y-axis shows the obtained PSNR score. The noise
variance for the input image is σ2 = 25. The baseline model is
Noise2Noise [20]. Note that, σ2

2 > σ2
1 and σ2

2 = σ2
1 + 5.

increase over the baseline studies [4, 20, 26] by SS-TTA is
shown, and it is evident that SS-TTA works equally well
across synthetic and real-world noise.

A short experiment on Poisson distribution noise re-
moval was also performed. As shown in Table 6, our
test-time adaptation algorithm generalizes well for Poisson
noise when applied on top of several baseline algorithms
[4, 20, 26].

4.2. Comparison with other TTA methods

For comparing the proposed SS-TTA method with other
test-time adaptation methods for denoising, we are required
to rely upon the comparison table provided in [25], since
the pre-trained models of related methods GainTuning [25]
and Lidia [35] are not publicly available. Table 7 shows
the results for the BSD68 dataset with σ2 = 30, 40, 50, and
shows a comparison between SS-TTA, GainTuning [25] and
Lidia [35]. As shown in the table, SS-TTA outperforms [25]
and [35] in each case.

4.3. The effect of noise variance

In the previous denoising experiments, the σ2
1 and σ2

2 pa-
rameters were kept at fixed values, as given early in Sec-
tion 4. Here, we show the denoising effect of adjusting

Method Inference σ2 = 30 σ2 = 40 σ2 = 50

GainTuning [25] Pre-trained 28.39 27.16 26.27
Adapted 28.47 27.23 26.33

Lidia [35] Pre-trained 28.24 26.91 25.74
Adapted 28.23 26.97 26.02

SS-TTA1+ [20]+ [42] Pre-trained 29.30 27.87 26.63
Adapted 29.42 28.00 26.84

SS-TTA1+ [20]+ [32] Pre-trained 30.64 28.46 28.22
Adapted 30.91 28.78 28.44

Table 7. SS-TTA performance compared with other test-time
adaptation methods in the synthetic noise domain for the BSD68
dataset. Here, SS-TTA is applied on pre-trained DnCNN [42] and
UNet [32] using Noise2Noise [20]. The input noise variances are
σ2 = 30, 40, 50. The test-time adapted versions are in boldface
for all methods.

Method Inference σ2 = 25 σ2 = 50 σ2 = 90

Nr2N [26] + SS-TTA1
with L3 30.85 27.30 21.57

without L3 30.78 27.24 21.52

Table 8. SS-TTA1 ablation with and without the L3 loss for the
5set dataset. Here, pre-trained model is [26] and input image noise
variances are (σ2 = 25, 50, 90).

σ2
1 and σ2

2 for Fθ∗
s

, which is crucial to the SS-TTA per-
formance. Figure 3 shows the noise variance σ2

1 = 25 ver-
sus PSNR performance for SS-TTA1 applied on top of the
Noise2Noise method. Here, the noisy input images have
noise variance σ2 = 25, and evidently, the best PSNR
score is achieved when augmented noise variance is also
σ2
1 = 25. Similarly, Figure 5 presents an experiment for in-

put image noise variance σ2 = 50 for SS-TTA with the un-
derlying baseline method Decay2Distill [4]. For this case,
SS-TTA denoising performance increases when augmented
noise variance surpasses σ2

1 = 20. Although Figure 3 and
Figure 5 do not reflect general behavior, the graphs indi-
cate that performance improvement starts or peaks around
σ2
1 = 25, which was also observed in other experiments.

The baseline denoiser [4, 20, 21, 26] models have generally
been trained with σ2 = 25, which might affect the observed
behavior, but the topic requires more investigation. Simi-
larly, the current approach that σ2

1 and σ2
2 are manual hy-

perparameters of our method, is also a weakness that we
aim to address in the future.

4.4. Technical remarks

This section discusses several technical aspects of the
proposed test-time adaptation method.

Number of σ2 components. Instead of using only
σ2
1 and σ2

2 as suggested earlier in the paper, SS-TTA per-
formance was also evaluated with higher orders of σ2 and
it was observed that increasing noisy inputs improves the
average restoration quality up to 0.06 dB. However, this
also increases inference complexity dramatically. Conse-
quently, two noisy inputs was determined as the best quality

1183



σ2 = 50 [20] [20] + SS-TTA1 [20] + SS-TTA2

σ2 = 25 [4] [4] + SS-TTA1 [4] + SS-TTA2

σ2 = 90 [20] [20] + SS-TTA1 [20] + SS-TTA2

Figure 4. Visual comparison of denoising sRGB images in the setting of σ2 = [25, 50, 90].

Figure 5. Performance of Decay2Distill [4] for noisy images with
σ2 = 50. The denoising performance of SS-TTA starts taking
effect when the σ2

1 parameter is increased beyond the value 20.
However, this trend is not generic to every experiment/dataset.

vs. computation time trade-off.
Applicability. SS-TTA has its highest potential in the

pre-processing steps of scientific imaging such as biomed-
ical, microscopic [25], and astronomical imaging [35], as
well as with regular imaging where quality is prioritized
over the processing time.

Estimating σ2 from test images. For estimating the σ
values, the approach proposed in [5] was followed. Suitable
σ values for synthetic images are discoverable using [5],
but for real-world noise, our approach currently relies on
empirical evidence.

Avoiding over-smoothing. To address potential over-
smoothing/enhancement during adaptation, FθTTA is grad-
ually updated through the convex sum policy with Fθ∗

s
.

Consequently, our final adapted model Fθ∗
TTA

for a given
sample is always within nearby region of Fθ∗

s
, preventing

over-enhancement.
Effect of loss L3 in SS-TTA. Both variants SS-TTA1

and SS-TTA2 utilize identity mapping loss L3 for smoother
output. Table 8 illustrates the filtering result of SS-TTA
with and without L3.

Batch denoising. Batch processing of images using SS-
TTA was experimented with batch sizes between 2 and 16,
which caused PSNR decline between 0.05-0.20 dB. Since
the adaptation parameters are instance-dependent, this per-
formance loss is expected.

4.5. SS-TTA with supervised models

Even though our test-time adaption algorithm is primar-
ily designed for self-supervised methods and shows con-
siderable improvement, we also briefly extend our experi-
ments to fully supervised models. Table 9 shows the PSNR
improvements provided by applying SS-TTA to UNet and
DnCNN models that have been pre-trained in a supervised
fashion. Although the performance improvements are mod-
est compared to the main application area of SS-TTA, self-
supervised methods, especially with strong out-of-domain
noise (σ2 = 90), SS-TTA delivers a significant increase in
denoising effect.

4.6. Computational complexity

Finally, the SS-TTA algorithm is computationally much
lighter than the related test-time adaptation works GainTun-
ing [25] and Lidia [35]. For every presented experiment, the
SS-TTA test time adaptation was performed in five epochs
for a given noisy image (independent of the variant), while
GainTuning [25] requires some hundreds of epochs. Ad-
ditionally, GainTuning [25] also segments the input im-
age into a large number of random patches to complete
the tuning process. Even though Lidia [35] allows enable
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Method Inference σ2 = 25 σ2 = 50 σ2 = 90

UNet [32] Baseline 33.70 30.03 21.40
Baseline + SS-TTA1 33.71 30.04 21.51
Baseline + SS-TTA2 33.72 30.06 21.61

DnCNN [42] Baseline 30.21 27.16 18.64
Baseline + SS-TTA1 30.30 27.16 19.47
Baseline + SS-TTA2 30.32 27.23 20.12

Table 9. SS-TTA performance with supervised models in the syn-
thetic noise domain for the BSD68 dataset. Here, pre-trained
weights are from [32, 42] and input image noise variances are
(σ2 = 25, 50, 90).

execution after five epochs, the method’s internal mecha-
nism relies on patch processing, leveraging non-local self-
similarity, and exploiting representation sparsity, which im-
plies a significant computation burden. On the contrary, the
proposed SS-TTA method does not require patch conver-
sion or other similar operations. SS-TTA requires, on av-
erage, 0.80s to process each image instance (w/o SS-TTA
0.09s) with DnCNN [42] running on Intel Core i7-10700K
CPU and an NVidia RTX3090 GPU, which is reasonable
considering the potential application domains.

4.7. Discussion

Our current choice of noise injection for the proposed
SS-TTA algorithm is not entirely adaptive, as observed with
real-world noisy mitigation. In future studies, we would like
to address solutions that are more adaptive than the present
design. Additionally, we aim to present results for more
diverse noise domains for both image and video samples.
Finally, readers might get the impression that our SS-TTA2

outperforms SS-TTA1 in almost every case. However, for
some applications from biometric or clinical domains, SS-
TTA2 keeps the potential to introduce false details despite
the higher metric performance. Our future study will aim to
address the above scenarios with proper alternatives.

Apart from that, from Figure 3 and Figure 5, it is clear
that SS-TTA performs better when the augmented noise is
higher. From Figure 5, noisy input images are corrupted by
noise of high intensity σ2 = 50, which implies noise con-
straints are higher for such samples, and larger σ2

1 ,σ2
2 boost

SS-TTA performance. However, this trend is not generaliz-
able for lower input noise intensities such as σ2 = [15, 25].
From Figure 3, for input noise variance of σ2 = 25, SS-
TTA with larger σ2

1 ,σ2
2 leads to better performance up to

some extent, but then decreases at σ2
1 = 40. Generally,

self-supervised models are trained for images with σ2 = 25,
and for input images with noise levels σ2 = 25 or 50, SS-
TTA works well with σ2

1 = 25, σ2
2 = 30, as empirically

observed. Hence, the noise parameters have been fixed ac-
cordingly. However, we have changed σ2

1 = 1,σ2
2 = 2 for

the supervised case (Table 9) with σ2 = [25, 50], as the
noise constraint is absent in the supervised setup.

Figure 6. Layer-wise parameter distance between supervised [42]
and self-supervised [26] DnCNN models.

5. Conclusion

This paper presents SS-TTA, a test-time adaptation ap-
proach for improving the performance of self-supervised
denoising methods. SS-TTA can be applied on top of a vari-
ety of self-supervised denoising methods, as well as super-
vised ones. Our evaluation shows that SS-TTA is model-
independent and outperforms recent test-time adaptation
works across different noise categories: in/out-domain, syn-
thetic, and real noise scenarios. Internally, SS-TTA relies
on the controlled addition of synthetic noise and inference-
guided regularization, a novel class of loss functions. Re-
garding computational efficiency, SS-TTA is considerably
simple compared to other similar works. For future work,
we intend to concentrate on automating the setting of two
internal noise parameters that currently require manual ad-
justment. However, our extensive experiments have shown
that even by default values of noise parameters, SS-TTA de-
livers state-of-the-art performance in test-time adapted de-
noising.

Appendix 1: Parameter distance between su-
pervised and self-supervised models

One might assume that the constant term (n′)⊤n′ only
offsets the loss making the minima of both Fθ∗ and Fθ∗

s

the same. As an illustration that this is not the case, an
identical training setup (epoch count, batch size, learning
rate, stochastic order, and initialization) was established and
used to train supervised and self-supervised DnCNN [42]
models. Comparison of layer-wise global norms between
each layer (Figure 6) shows that the global norm differ-
ence for each layer is sufficiently large to indicate that su-
pervised and self-supervised local minima are not identical
nor equivalent. Hence, it can be concluded that the con-
stant term (n′)⊤n′ causes the self-supervised and super-
vised models to have different minima.
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