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Abstract

Single-image super-resolution technology has become a
topic of extensive research in various applications, aiming
to enhance the quality and resolution of degraded images
obtained from low-resolution sensors. However, most exist-
ing studies on single-image super-resolution have primar-
ily focused on developing deep learning networks operat-
ing on high-performance graphics processing units. There-
fore, this study proposes a lightweight real-time image
super-resolution network for 4K images. Furthermore, we
applied a reparameterization method to improve the net-
work performance without incurring additional computa-
tional costs. The experimental results demonstrate that the
proposed network achieves a PSNR of 30.15 dB and an
inference time of 4.75 ms on an RTX 3090Ti device, as
evaluated on the NTIRE 2023 Real-Time Super-Resolution
validation scale X3 dataset. The code is available at
https://github.com/Ganzooo/LRSRN.git.

1. Introduction

The single-image super-resolution (SISR) technology is
a necessary image processing technique that aims to en-
hance the visual quality of low-resolution (LR) images by
transforming them into high-resolution (HR) images with
increased pixel density and more detailed information. The
technology has a wide range of applications in computer
vision, including remote sensing [35], underwater imag-
ing [9], medical image analysis [31], mobile phones [21],
and multimedia applications [17], autonomous vehicle [34]
[8]. However, transforming LR images to HR images
presents considerable challenges due to multiple potential
HR images. The classic computer vision methods ad-
dressed this problem, such as interpolation-based [42] and
representation-based [33] problems.

Significant improvements in developing deep learning
methods have led to notable advances in super-resolution
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techniques in recent years. Deep learning-based single-
image super-resolution methods studied to achieve state-of-
the-art performance, such as the Super-Resolution Convolu-
tional Neural Network (SRCNN) [12]. Various novel ideas
and techniques were introduced, including different types
of deep learning network architectures [13] [24], loss func-
tions [7], training strategies and techniques [36].

However, numerous SISR methods have primarily fo-
cused on the reconstruction quality of HR images from LR
images, demanding high-performance GPUs. Several tech-
niques and networks were proposed to improve the recon-
struction quality, developing SISR models with numerous
parameters and high computational complexity [38]. How-
ever, the complex network structure, various types of deep
learning techniques, and multiple parameters were chal-
lenges in deploying traditional SISR methods for 4K res-
olution images in real-time. Due to the limited computing
resources of GPUs, a lightweight network and hardware-
friendly deep learning techniques are required for the SISR
model.

We proposed a lightweight real-time image super-
resolution network (LRSRN) capable of reconstructing
low-resolution (LR) images to high-resolution (HR) im-
ages with considerable accuracy and real-time inference
speed, specifically for 4K images. The contribution of
our proposed work was two-fold. Firstly, we introduced
the LRSRN network structure that simultaneously achieves
high accuracy and real-time speed, thereby overcoming the
computational complexity and accuracy of traditional SISR
methods. Secondly, we employed a reparameterized con-
volution (RepConv) layer, which enhances image quality
while maintaining model size and inference speed.

The remainder of the paper is organized as follows. In
Section 2, we discuss the related works of super-resolution.
The proposed method is described in Section 3. The ef-
fectiveness of our LRSRN model was validated in Section
4. Finally, the conclusions of this study are summarized in
Section 5.
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(a) The training mode of proposed network

(b) The inference mode of proposed network

Figure 1. Network structure of a lightweight real-time image super-resolution network.

2. Related Work

2.1. Single Image Super-Resolution Methods

Single Image Super-Resolution (SISR) is a technology
that generates high-resolution images from low-resolution
images, and it is classified into traditional and deep
learning-based methods. Traditional SISR methods in-
clude interpolation-based [42] and representation-based
[39] methods. Interpolation-based methods, such as bilin-
ear, bicubic, and nearest neighbor interpolation, estimate
new pixel values by considering neighboring pixel values.
These methods have relatively low complexity and compu-
tation. However, interpolation-based methods generate im-
ages uniformly without considering detailed image infor-
mation, the results may appear unnatural, and the detailed
information of the original image may be lost. Furthermore,
implementing complex nonlinear models with these meth-
ods is limited due to their computational complexity. On
the other hand, reconstruction-based methods consider de-
tailed image information, resulting in more natural results
than traditional interpolation-based methods. However, the
computational cost of these methods increases due to the
consideration of detailed image information.

Recently, with the advancement of deep learning, the
result of deep learning-based SISR has significantly im-
proved. SRCNN [12], the first deep learning-based SISR
network proposed by Dong, improved the quality of images
enlarged by the conventional bicubic interpolation using a
network with only three fully connected layers. Afterward,
a lightweight model, FSRCNN [13], was proposed to re-
duce the computation and number of parameters while im-

proving the performance. Unlike the previous approach of
improving the quality of images generated by bicubic inter-
polation, FSRCNN [13] added deconvolution layers within
the network to generate SR images through training. How-
ever, existing networks have three major issues. First, they
employ a limited number of convolution layers, which re-
sults in the utilize information from a small receptive field.
Second, when a high learning rate is used, gradient vanish-
ing and exploding issues occur. Third, existing networks
can handle only a single scale factor per model. To ad-
dress these issues, several networks have been proposed
that use deep convolution layers to utilize information from
the large receptive fields and employ residual learning to
resolve problems such as gradient vanishing and explod-
ing [22] [23]. In addition, a network that improves per-
formance by removing unnecessary elements (e.g., Batch
Normalization) from the network and increasing its depth is
proposed [27].

Although the performance of deep learning-based SISR
has significantly improved, the size of models and com-
putational cost has also increased. Furthermore, there is
a demand for real-time processing of SISR. Various stud-
ies are being conducted to achieve this goal. Some stud-
ies have proposed models for real-time SISR by reduc-
ing the computational complexity and model size of SISR
networks [5, 18, 43], and also for SR on mobile devices
[2,3,14,16,20,28,29]. Other methods such as transformer-
based SISR have been researched [10] [26], showing sig-
nificant performance improvements compared to other ex-
isting super-resolution techniques.

The Real-Time Image Super-Resolution task of NTIRE
2023 [11] aims to perform super-resolution of JPEG-
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compressed 4K images in real-time. Therefore, based on
this objective, we propose a model, training methodology,
and dataset designed to operate in real-time and enable the
super-resolution of JPEG-compressed 4K images.

3. The proposed method
This section presents detailed information about the pro-

posed method. Initially, we illustrate the architecture of
LRSRN. Subsequently, we describe the parameterization
(RepConv) block, an over-parameterized strategy to en-
hance the network’s performance. Thus our base RepConv
block is based on SCSRN [16], and we improve RepConv
block efficiency. Finally, we explain our training strategies.

3.1. The architecture of LRSRN

The overall structure of the LRSRN is illustrated in Fig
1, which is an SCSRN-inspired structure comprising four
components. The first component is a feature extraction
layer that extracts the features from an LR image. The sec-
ond component is a backbone comprising four RepConv
blocks to learn deeper features. The third component in-
cludes a transition layer for the residual learning effect af-
ter directly adding the backbone’s feature maps and input
features. The final component (PixelShuffle) involves pixel
re-arrangement for restoring the HR image.

For more clear understanding, let LR and HR denote
the input and output of the network. We get the features
extraction result of Fet0 as follows:

Fet0 = Ffe(LR), (1)

where Ffe(·) denotes that features extraction from an LR
image. Subsequently, we obtained the Fet1 by

Fet1 = Fbb(Fet0), (2)

where Fbb represents the function that contains high fre-
quency and texture information extraction. Therefore, we
add the Fet0 and Fet1, expecting a residual effect. After
that, we pass the result through the transition layers for ob-
taining HR as follows:

HR = Fps(Ftr(Fet0 + Fet1), (3)

where FTR denotes the transition layer. Using the pixel
shuffle function Fps to shuffle pixels to high-resolution im-
ages.

Unlike the SCSRN [16], the first feature of LR and the
backbone feature were added. Also, we applied the Rep-
Conv block to all convolution layers. Moreover, the SC-
SRN uses the concatenation operation that helps to reduce
the quantization error; however, this research did not need
to concern with quantization error.

(a) RepConv when in/out channels are equal

(b) RepConv when in/out channels are not
equal

Figure 2. RepConv Block of training mode.

3.2. The Reparameterization block

We applied the reparameterization (RepConv) method in
the training stage to improve the reconstructed image qual-
ity. According to [6] and as depicted in Fig. 2, the RepConv
can be reconstructed if it maintains the linearity property,
even if the convolution layer overlaps in various manners.
Thus, [6] [16] are applied RepConv only convolution layer’s
input and output channels are equal. However, we applied
RepConv to each convolution layer, which is a more effi-
cient application method, as illustrated in Fig. 1. When
input and output channels are equal, we applied the original
RepConv block in Fig. 2a. Input and output channels are
not equal, we applied an advanced version of the RepConv
block. This block used the Conv 1 × 1 block instead of
the skip connection. Therefore, our RepConv block learns
high-level information in the training step and can be sim-
plified to the Conv 3× 3 layer in the inference step.

3.3. Training strategy

We trained our model in two stages, including the scratch
training stage and fine-tuning stage, with a different loss
function.
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Backbone Channels Patch Sizes RepConv Fine-Tune NTIRE2023 val PSNR NTIRE2023 val SSIM Inference Time (ms) Scores
5 64 96 X X 31.897 0.9291 26.62 4.47
4 64 96 X X 31.920 0.9296 22.19 4.98
4 32 96 X X 31.909 0.9295 9.77 7.44
4 32 192 X X 31.900 0.9294 9.77 7.40
4 32 192 O X 32.784 0.9382 9.77 13.66
4 32 192 O DIV2K [1] 32.812 0.9386 9.77 13.92
4 32 192 O Proposed work 32.831 0.9388 9.77 14.11

Table 1. Ablation study results on DIV2K [1] val dataset.

3.3.1 Scratch train stage:

In the first stage, we train our model from scratch. The LR
patches cropped from LR images with 192 × 192 size (128
x 128 for scale 3)and eight mini-batch sizes. The Adam op-
timizer uses a 0.0005 learning rate during scratch training.
The cosine warm-up scheduler set a 0.1 percentage warm-
up ratio. The total number of epochs is set to 800. We use
l1 loss expressed in Eq. (4).

Ll1(θ) =
1

n

n∑
i=1

∣∣f(LRi)−HRi
∣∣ , (4)

where θ represents the trainable parameters of the proposed
network, and n denotes the number of training patched im-
ages. LRi and HRi represent the patch image of LR and
corresponding HR images. f(·) denotes the function of the
proposed work.

3.3.2 Fine-tuning stage:

In the second stage, the model we initialize with the weights
trained in the first stage. To improve the accuracy, we ap-
plied l2 loss as expressed in Eq. (5). Fine-tuning with l2
loss improves the peak signal-to-noise ratio (PSNR) value
by 0.01 ∼ 0.02 dB. In this step, the initial learning rate is
set as 0.0001, and the Adam optimizer is used. The cosine
warm-up scheduler is set with a 0.1 percentage warm-up
ratio. The total epoch is set to 200 epochs.

Ll2(θ) =
1

n

n∑
i=1

(
f(LRi)−HRi

)2
(5)

4. Experiment
This section describes our implementation details for the

training of our proposed network. Then, we conducted an
ablation study to compare the optimization performance of
our proposed model. Finally, we compare the quantitative
and qualitative results of our proposed model LRSRN with
the recent state-of-the-art model.

4.1. Training Details

For training, we implemented Pytorch 1.13 version for
all training steps. And we used DIV2K [1] dataset for the

scratch training stage. A new SISR dataset proposed to val-
idate and test the NTIRE2023 Real-Time Super-Resolution
Challenge [11]. This dataset includes high-resolution, high-
quality filtered content like generative models, digital art,
video games, and photographs. Sample images illustrated
in Fig. 3. To enhance performance on these datasets, we
customized dataset includes the DIV2K [1] train set (800
images), Flicker2K [37] train set (2650 images), GTA [32]
(train seq 00 − 19 seq) sample 361, and LSDIR [25] (first
1000 images). And we used our customized datasets for
the fine-tuning stage. The training process executed using
NVIDIA RTX 3090Ti GPUs. It takes 16 hours for scratch
training and 24 hours for fine-tuning, based on X2 SISR.

Figure 3. NTIRE2023 Real-Time Super-Resolution Challenge
[11] validation and test dataset.

4.2. Ablation study

We compared the performance improvement of each
contribution, such as model structure, reparameterization
block, and training strategy. The ablation study was con-
ducted for the X2 task. The PSNR, SSIM, and score
changes for each contribution can be shown in Table 1. The
score is calculated by NTIRE2023 evaluation script [15].
First, we adopted the RTSRN [40] model structure provided
by NTIRE2023 as the baseline. To further improve infer-
ence time, we reduced the backbone of the model and de-
creased the channel size. As a result, PSNR and SSIM re-
sults are degraded, while we achieve a faster inference time.
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Scale Network Set5 Set14 B100 Urban100 DIV2K

PSNR SSIM PSNR (Y) PSNR SSIM PSNR (Y) PSNR SSIM PSNR (Y) PSNR SSIM PSNR (Y) PSNR SSIM PSNR (Y)

X2

Bicubic 29.96 0.8676 31.86 27.38 0.8121 28.58 27.67 0.8169 28.05 24.98 0.8069 25.53 29.85 0.8662 30.79
FSRCNN [13] 31.36 0.8892 33.41 28.38 0.8335 28.81 28.57 0.8379 29.01 26.44 0.8440 27.16 30.39 0.8849 31.95

SESR [5] 31.71 0.8944 33.98 28.78 0.8423 30.29 28.94 0.8461 29.37 27.38 0.8641 28.20 31.40 0.8923 32.47
IMDN [20] 32.24 0.9022 34.32 29.34 0.8525 30.66 29.26 0.8521 29.65 28.38 0.8821 29.18 31.98 0.9006 32.90
RTSRN [40] 30.33 0.8713 32.31 27.72 0.8196 29.06 28.02 0.8171 28.44 25.41 0.8171 26.05 30.20 0.8719 31.23
SCSRN [16] 31.72 0.8952 33.99 28.78 0.8426 30.29 28.92 0.8466 29.35 27.34 0.8640 28.15 31.41 0.8925 32.46

Proposed work 31.84 0.8969 33.92 28.84 0.8436 30.26 28.93 0.8470 29.34 27.35 0.8641 28.11 31.44 0.8933 32.41

X3

Bicubic 27.28 0.7962 28.84 25.16 0.7190 26.11 25.43 0.7098 25.76 22.71 0.7040 23.13 27.42 0.7918 28.16
FSRCNN [13] 28.41 0.8284 30.03 25.96 0.7436 27.06 26.03 0.7314 26.39 23.63 0.7430 24.12 28.17 0.8127 28.96

SESR [5] 29.05 0.8429 30.84 26.39 0.7590 27.51 26.40 0.7432 26.73 24.37 0.7713 24.91 28.62 0.8240 29.42
IMDN [20] 29.68 0.8559 31.32 26.86 0.7714 27.84 26.67 0.7514 26.96 25.13 0.7961 25.63 29.13 0.8357 29.79
RTSRN [40] 27.55 0.7997 29.16 25.4 0.7263 26.43 25.62 0.7196 25.98 22.97 0.7137 23.44 27.63 0.7974 28.43
SCSRN [16] 29.06 0.8431 30.84 26.41 0.7597 27.53 26.40 0.7449 26.74 24.41 0.7728 24.94 28.65 0.8253 29.44

Proposed work 29.13 0.8459 30.75 26.47 0.7606 27.51 26.40 0.7443 26.72 24.40 0.7713 24.88 28.69 0.8255 29.41

Table 2. Quantitative results comparison on benchmark datasets.(Red indicates best PSNR/SSIM values within each dataset and Blue
indicates second best.)

Scale Models Params (K) Inference Time (ms) NTIRE2023 val (PSNR db) [11] Scores

X2

FSRCNN [13] 25.35 33.05 29.60 5.65
SESR [5] 23.64 12.52 29.95 10.99

IMDN [20] 873.20 143.34 30.44 4.75
RTSRN [40] 193.40 23.37 29.14 4.77
SCSRN [16] 46.80 10.24 29.95 12.15

Proposed work 41.40 9.77 30.15 14.11

X3

FSRCNN [13] 25.35 14.68 29.60 7.91
SESR [5] 23.64 6.11 29.95 15.63

IMDN [20] 881.88 63.97 30.44 6.78
RTSRN [40] 202.00 10.67 29.14 6.74
SCSRN [16] 53.01 5.05 29.95 17.19

Proposed work 45.70 4.75 30.15 20.36

Table 3. Development phase results of NTIRE2023 Real-Time Super-Resolution Track1 (X2) and Track2 (X3) with benchmark.

Thus, the final score also showed an improvement of 2.97
compared to the baseline model.

We also used reparameterization blocks and fine-tuning
to improve PSNR and SSIM without increasing inference
time. When using the reparameterization block, the infer-
ence time remained the same, while PSNR and SSIM were
improved by 0.875 dB and 0.0087, respectively. As a re-
sult, the final score increased by 6.22. In addition, when
we trained the fine-tuning stage of Section 3 using only
DIV2K [1], the PSNR and SSIM improved by 0.028 dB and
0.0004, respectively, and the final score increased by 0.28.
Finally, to improve the performance of the NTIRE2023 val-
idation dataset, which is composed of various datasets, we
used a customized dataset for fine-tuning. We improved
PSNR by 0.19 dB, SSIM by 0.0002, and the final score by
0.19.

4.3. Comparison with the State-of-the-Arts

To compare our proposed network, we selected several
state-of-the-art networks, including traditional network FS-
RCNN [13], SESR [5], IMDN [20], the baseline model
RTSRN [40] provided by NTIRE2023 real-time super-
resolution challenge, and the best network in Mobile AI
& AIM 2022 Real-Time Single-Image Super-Resolution

Challenge SCSRN [16]. To ensure a fair comparison, we
trained the existing networks using the JPEG-compressed
DIV2K [1] dataset. To compare the results of the trained
networks, we used six benchmark datasets: Set5 [4], Set14
[41], B100 [30], Urban100 [19], and DIV2K [1] dataset,
and the validation dataset provided in NTIRE 2023 [11]
[40].

The primary goal of the challenge is to perform real-
time SISR on JPEG-compressed datasets. Therefore, we
compressed the benchmark images using JPEG format with
a compression ratio of q = 90, and we used the com-
pressed datasets for comparison. And we compared PSNR
and SSIM in the RGB domain and measured the inference
time of each model. Lastly, we reached the final scores used
in NTIRE2023. Eq. 6 is the score function used for the X2
and X3 tasks.

scores =
2PSNR−thr

0.1×
√
InferenceT ime

(6)

, where thr is equal to 31.69 at X2 tasks and 29.00 at
X3 tasks. The inference time is measured at a resolution of
3840x2160 (4K).

Table 2 shows the PSNR, SSIM and PSNR (Y) results
for the LRSRN and SOTA network. Our proposed network
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(a) image 011 from Urban100

(b) image 045 from Urban100

Figure 4. Qualitative comparison of proposed work with previous networks on scale X3.

shows the second-best performance regarding PSNR and
SSIM for the X2 task. Furthermore, it also indicates the
second-best performance in most benchmarks for the X3
task. However, in Table 3, which indicates the number of
parameters, inference time, and scores of each model, it can
be seen that although IMDN [20] shows the best PSNR re-
sult, it included a large number of parameters and is inef-
ficient in terms of inference time. On the other hand, our
proposed network shows approximately 16 times faster in
the X2 task and approximately 15 times faster in the X3
task compared to IMDN [20], although its PSNR is lower.
Therefore, considering the overall performance in inference
time and PSNR, our proposed network exhibits the highest

score among the compared methods.

We compared the subjective image quality of the SOTA
network and our proposed network. Fig. 4 present the qual-
itative results of the X3 SISR. The results for Urban100
demonstrate that the existing networks generate relative
blurred or distorted images. On the other hand, we can see
that our proposed network generates relatively sharp im-
ages. Moreover, we also present the qualitative results of
the X2 SISR in Fig. 5. In these results, we can see that our
proposed network successfully reconstructs the edges and
textures.

Finally, Table 4 compares our network and the top-
ranked teams participating in the NTRE2023 Real-Time
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(a) image 886 from DIV2K

(b) image 896 from DIV2K

Figure 5. Qualitative comparison of proposed work with previous networks on scale X2.

Super-Resolution Challenge. The competition provided
PSNR, SSIM, PSNR (Y), and inference time. Moreover, in-
ference time was measured using RTX 3060 or RTX 3090.
Although the inference time of the proposed network is
slower than other teams, it works in real-time and achieves
the best PSNR performance in X2 SISR track and the sec-
ond best in X3 SISR track.

5. Conclusions

The proposed work proposes a lightweight approach to
address the problem of real-time image super-resolution
for 4K images using a lightweight neural network archi-
tecture. The proposed network employs a reparameteri-

zation method that enhances the quality of super-resolved
images without affecting the inference time performance.
The experimental results demonstrate that the proposed net-
work achieves a PSNR of 30.15 dB and an inference time
of 4.75 ms on an RTX 3090Ti device, as evaluated on the
NTIRE 2023 Real-Time Super-Resolution validation scale
X3 dataset.
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Scale Network NTIRE2023 test [11]

PSNR SSIM PSNR (Y) Inference Time

X2

Bicubuc 33.92 0.8829 36.66 0.45
Noah TerminalVision 35.02 0.8957 37.74 3.19

ALONG 34.68 0.8906 37.38 1.91
RTVSR 34.71 0.8910 37.50 2.24

Team OV 34.62 0.8899 37.45 2.91
Proposed work 35.02 0.8948 37.76 11.19

X3

Bicubuc 31.30 0.8246 33.82 0.5
Aselsan Research 32.06 0.8344 34.56 1.17

Team OV 32.17 0.8376 34.72 1.51
ALONG 32.18 0.8367 34.66 1.66
RTVSR 32.22 0.8372 34.77 1.96

Proposed work 32.59 0.8446 35.05 5.47

Table 4. Test phase results of NTIRE2023 Real-Time Super-
Resolution Track 1 and Track 2

formation and Data Verification Technology for the Mutual
Utilization of Self-driving Learning Data for Different Ve-
hicles)
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