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Abstract

Light Field (LF) cameras are promising due to their
ability to capture both spatial and angular information of
scenes. However, the trade-off between spatial and angular
resolution significantly limits the real-world applications.
In this paper, we propose a spatial-angular multi-scale de-
coupling network to reconstruct high-resolution LF images.
Considering the epipolar geometry, we propose a spatial-
angular multi-scale processing approach to explore the cor-
respondence of sub-pixel information with different dispar-
ity ranges between sub-aperture images in LFs. We extract
sub-pixel information from various dimensions and fuse it
to generate global high-frequency details. Finally, we com-
bine upsampled low-frequency and high-frequency details
to generate high resolution results. To further filter the cor-
rect interpolation information, we use the shear operation
to change the disparity range of the LF images and fine-
tune the results. Experimental results on synthetic and real-
world datasets demonstrate that our method outperforms
other state-of-the-art methods in visual and numerical eval-
uations, especially on datasets with small disparity ranges.
Furthermore, our approach fully considers the epipolar ge-
ometry of the LF image, enabling us to recover information
that better maintains the imaging consistency of the LF.

1. Introduction
Light Field (LF) cameras have immense potential appli-

cations in 3D reconstruction, virtual reality, and other fields
due to their ability to capture both angular and spatial infor-
mation of the scene [34]. In the past, LF images were cap-
tured using camera arrays that recorded Sub-Aperture Im-
ages (SAIs) with a large baseline. More recently, handheld
plenoptic cameras [15,17] have been developed by inserting
a micro-lens array between the main lens and the imaging
plane. These plenoptic cameras capture SAIs with a small
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baseline in a single shot, making them suitable for a wider
range of applications, such as image refocusing [16]. How-
ever, the resolution of images generated by these cameras
is lower than the large baseline LF cameras, limiting their
effectiveness for many practical visual applications. To im-
prove the performance of these applications, we need to en-
hance spatial resolution through Light Field Spatial Super-
Resolution (LFSSR) technology.

Unlike a single image, LF images are represented by
a sequence of multiple views to record scene information
from different angles. Therefore, we can utilize the sub-
pixel information between SAIs to recover High-Resolution
(HR) details. In order to accurately find the position of sub-
pixel in other SAIs, it is crucial to obtain disparity infor-
mation for providing pixel-level offsets. Traditional meth-
ods have attempted to register sub-pixel information by ex-
plicitly warping other view images using prior disparity in-
formation [19, 29, 37]. However, existing methods for es-
timating disparity in LF images are susceptible to issues
such as occlusions, noise, and textureless regions [6], which
result in significant artifacts in the reconstructed LF im-
ages. Deep learning methods, particularly Convolutional
Neural Networks (CNN), have recently been proposed to
learn disparity information between SAIs for LFSSR im-
plicitly [23, 32]. In order to explore the redundancy infor-
mation between SAIs, CNNs learn the disparity information
by processing different combinations of SAIs [5,32] or pro-
cessing information in both spatial and angular dimensions
through convolution operations. Although LFSSR models
have shown impressive performance in processing complex
scenes, their effectiveness is limited to a specific range of
scenes. Typically, these models perform better on specific
disparity scenes, but their performance decreases signifi-
cantly when dealing with large or small disparity ranges.
In other words, the main challenge for current LFSSR mod-
els is to increase the search range of redundant information
while maintaining their generalization ability.

After careful analysis of the phenomenon mentioned
above, we have concluded that the decline in performance
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can be attributed to the locality of the convolution operation.
In LF images, sub-pixels are usually distributed widely.
When there is a small disparity between scenes, it is often
necessary to extract redundant information across multiple
SAIs. However, when dealing with scenes that have a large
disparity, the pixels move a significant distance in the spa-
tial domain of adjacent SAIs. This opposite characteristic
limits the potential of CNNs. To overcome this challenge,
expanding the range of perceived information extracted by
the convolution kernel is necessary, thus ensuring the com-
plete extraction of sub-pixel information.

This paper proposes a Spatial-Angle Multi-Scale Spa-
tial Super-Resolution (SAMSSR) network for LFSSR. In
our method, we use the Multi-Dimension Interaction Block
(MDIB) to process information from different organiza-
tional forms of LF images, particularly for extracting dis-
parity information. In order to solve the problems existing
in the current LFSSR method, we design the Multi-Scale
Process Block (MSPB) to learn spatial-angular consistency
information by processing multiple 2D Epipolar Plane Im-
ages (EPIs). Specifically, based on the multi-branch struc-
ture, we explicitly expand the perception range of disparity
by setting different dilated convolutions to expand the re-
ceptive fields in the spatial and angular dimensions. More-
over, residual operations have been incorporated into our
network. Furthermore, we propose a shear ensemble ap-
proach tailored with LF image Super-Resolution (SR) to en-
hance the SR performance with different disparity ranges.

Our proposed LFSSR method ranked well in the
CVPR2023 NTIRE workshop challenge [24]. Extensive
experiments over various challenging scenes show that the
proposed SAMSSR achieves State-Of-The-Art (SOTA) re-
sults in terms of numerical and visual evaluations in LFSSR
tasks. Moreover, the comparison of EPIs shows that the
proposed method can preserve the corresponding relations
in super-resolved view images. We also conducted addi-
tional experiments to validate the proposed ideas’ effective-
ness further. The contributions are:

1) We propose the MSPB, which expands the model’s
perception range to the LF images and solves the limi-
tations of CNNs in processing sub-pixel information.

2) We proposed a shear ensemble approach tailored to
LFSSR for performance enhancement.

3) Experiments show that our method expands the per-
ceptual range of sub-pixel information and alleviates
the performance degradation caused by the locality of
convolution operation without increasing parameters.

2. Related Work
The learning-based LFSSR method can be divided into

two categories: convolutional neural network-based mod-

els, and transformer-based models.

In recent years, deep CNNs have become widely used for
Single-Image Super-Resolution (SISR) [3]. Various meth-
ods have been proposed, such as residual learning, recur-
sive layers, or designing deeper convolutional models, re-
sulting in significant performance improvements [7,21,39].
For LFSSR, CNNs have been used to learn the correspon-
dence between LF SAIs and achieve interpolation of the
correct pixels for SR tasks. For instance, LFCNN [33] uti-
lizes SRCNN [2] to independently upsample the viewing
angle and fine-tune the upsampled image in pairs. Yoon
et al. [32, 33] designed spatial and angular SR networks to
generate new SAIs by combining enhanced SAIs into differ-
ent relative ones. Wang et al. [23] designed a bi-directional
recurrent CNN for horizontal and vertical stack processing,
which combines SAIs and utilizes stacked generalization
techniques to produce a complete view image. To address
the significant computational overhead of 4D convolution,
Yeung et al. [31] proposed using Spatial-Angular Separable
convolutions (SAS) to characterize LFs. Inspired by SAS,
Wang et al. [26] proposed a new structure to extract spatial
and angular features. Jin et al. [5] used the specific struc-
ture of the LF to propose an all-to-one structure and struc-
tural consistency regularization to guarantee the restoration
of the characteristics of the image. Zhang et al. [36] used a
multistream residual network by stacking SAIs along differ-
ent angular directions as inputs and further improved the SR
performance by performing 3D convolutions on SAI stacks
of different angular directions [35]. These proposed LF-
SSR methods do not use both branches for processing but
only extract sub-pixel information from the EPI structure.
We think that disregarding the spatial and angle processing
branches in LFSSR models results in a significant loss of in-
formation, which may negatively impact their performance.
The spatial processing branch is capable of extracting the
spatial features of SAIs as a whole, while the angular branch
is adept at capturing angular information within fixed spa-
tial pixels. This implicit learning of consistency between
SAIs and their spatial features ensures the recovery of over-
all image style and light intensity. Thus, the spatial and an-
gular processing branches are crucial for preserving impor-
tant information and optimizing the performance of LFSSR
models. Recently, Wang et al. [25] proposed a model for
extracting different dimensional information of LF directly
on micro-lens images.

The transformer model has also been applied to image-
processing tasks, including LFSSR. Specifically, the trans-
former model is commonly utilized self-attention for mod-
eling LF images and facilitating the transmission of cross-
perspective information. This mechanism allows the model
to effectively capture the inter-view dependencies in LF,
which can help improve the quality of super-resolved im-
ages. Wang et al. [22] approach LFSSR as a task of re-
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Figure 1. Display of three different disparity ranges of pixels on the horizontal EPIs. The intersection point of the dotted line grid represents
the pixel on EPI, the three colors blue, red, and green represent the pixel points with three disparity ranges, and the square represents the
convolution kernel. For pixels with different disparity ranges, different convolution kernels are needed to extract sub-pixel information.

constructing a sequence and propose a transformer model
that preserves details by utilizing gradient maps of the LF
to guide sequence learning. Afterward, Liang et al. [11]
proposed a simple yet effective transformer-based method
for LFSSR that captures both local and long-range de-
pendencies within each SAI and incorporates complemen-
tary information among different SAIs. Recently, Liang et
al. [12] proposed a transformer-based model named EPIT
to learn non-local consistency by finding corresponding
long-distance pixels. However, these methods do not con-
sider different processing of sub-pixel information in differ-
ent disparity ranges, which significantly affects the perfor-
mance of LFSSR methods.

3. Motivation

ResLF [36] and MEG-Net [35] pointed out that EPI’s
rich sub-pixel information can help restore high-quality LF-
SSR images. That is because EPI has oriented line patterns
with different slope values, which benefits estimating the
disparity or reconstruction of LF in many challenging cases,
such as occlusion and reflection areas.

Figure 1 illustrates three lines with different slopes cor-
responding to three disparity cases in the horizontal EPI.
As mentioned, pixels with small disparity values move rel-
atively slowly at adjacent angles, while those with large dis-
parity values move relatively quickly in adjacent SAIs. We
use blue, red, and green triangles to represent disparity val-
ues of 0.5, 1, and 2, respectively. When the angular coor-
dinate moves, the three different pixel points will move 0.5,
1, and 2 pixels in the spatial dimension, respectively. As
a result, we need to capture information from every other
SAIs to obtain the corresponding pixel information for blue
points. In the case of red disparity, we can find the neces-
sary information from adjacent SAIs. However, green pix-
els have a large disparity value. Even a slight change in
the angular coordinate can cause sub-pixel information to

move considerably in the spatial dimension, spanning mul-
tiple spatial pixels. This non-local nature of pixel movement
leads to the inability of the convolution kernel to fully ex-
tract the corresponding sub-pixel information when it per-
forms feature extraction. To effectively capture the sub-
pixel information of pixels with small disparity, extracting
information from adjacent spatial coordinates across view-
ing angles is necessary. Conversely, for pixels with large
disparity values, expanding the receptive field in the spa-
tial dimension is essential. Thus, we use dilated convolu-
tion in the angular and spatial dimensions to enhance the
SR model’s performance.

In Fig. 1, we use a square to demonstrate the convolu-
tion kernel size used by most methods, which indicates the
sub-pixel information range that can be perceived. The red
pixels show that typical convolution can only perceive spe-
cific sub-pixel information ranges. Although the range of
perception can be implicitly expanded through cascades and
other methods, its effectiveness is limited. Our multi-scale
strategy addresses this limitation by allowing convolution to
perceive the sub-pixel information of blue and green points
in different SAIs.

4. Methodology

LF is usually represented by a 4D tensor L (u, v , x , y) ∈
RU×V×H×W , where (u, v) represent angular coordinate,
and (x , y) represent spatial coordinate [10]. Given the input
LR image LLR of resolution (U ,V ,X ,Y ), our proposed
model SAMSSR can extract the sub-pixel information from
three representations of LF to restore the SR image LSR

with resolution (αU , αV ,X ,Y ), where α represents the
upsampling factor in spatial resolution.

4.1. Framework Overview

The overview of our SAMSSR is presented in Fig. 2 (a).
Our network comprises three main stages: feature extrac-
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Figure 2. An overview of our SAMSSR network.

tion, spatial-angular decoupling, and feature upsampling.
In the first stage, we extract features from the LR images.
Next, the LR feature is passed through the cascaded Multi-
Dimension Interaction Group (MDIG) module to extract
sub-pixel information. The MDIG module decouples the
spatial and angular information for more effective process-
ing. After the high-frequency features are fully extracted,
the output features are passed to the upsampling model to
improve the image quality. In this paper, we convert images
to YCbCr color space and only deal with Y channel images
for better training.

4.2. Feature Extraction

Similar to most LFSSR methods, we apply convolu-
tional operations on the spatial dimension of the input LR
SAIs to obtain the LR high-dimensional feature FLR

SAIs ∈
RU×V×H×W×C as follows:

FLR
SAIs [u, v, :, :, :] = WS ⊗ LLR [u, v, :, :, :] , (1)

where FLR
SAIs ∈ RU×V×H×W×C denotes the LR high-

dimensional feature, ⊗ denotes the convolution operation.
In detail, the Spatial Conv2D contains a convolutional layer
with a kernel size of 3× 3, a stride of 1.

4.3. Multi-Dimension Feature Interact

In SAMSSR, we utilize the cascaded MDIG module to
disentangle spatial and angular information as follows:

Fm
MDIG = MDIGm

(
Fm−1

MDIG

)
,m = 1 , ...,M (2)

where MDIGm denote the process of the m-th block MDIG
and the Fm

MDIG represent the output feature of the m-
th block MDIG. Note that, the F0

MDIG is the LR high-
dimensional feature FLR

SAIs .
As illustrated in Fig. 2(b), like the overall framework

structure of the model, MDIG is composed of the basic
modules MDIB in series. The main idea of MDIB is to
untangle spatial and angular information by processing dif-
ferent forms of LF images. Specifically, we parallel process
SAI, MacPI, and EPI through four branches.

For SAI branches, we use the same operation as the ini-
tial feature extraction. The convolution operation on the
SAIs is used to extract the overall spatial information from
each SAI, in which only pixels located on the corresponding
SAI will be processed simultaneously.

FLR
spa [u, v, :, :, :] = Wspa ⊗FLR [u, v, :, :, :] , (3)

The dimension of feature FLR
spa ∈ RU×V×H×W×C

4 is a
quarter of the input feature.

Similarly, for the MacPI branch, we design the Angular
Conv2D to obtain the angular information of the LF images.
Unlike the SAI branch, where we apply convolution opera-
tions to the angular dimensions of LF images. The output
feature dimension is also a quarter of the feature FLR

FLR
ang [:, :, x, y, :] = Wang ⊗FLR [:, :, x, y, :] , (4)

where FLR
ang ∈ RU×V×H×W×C

4 denotes the angular di-
mension features.
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The SAI branch and MacPI branch in MDIB use convo-
lution kernels of the same size that do not share weights.
These kernels have a size of 3 and a stride size of 1. In
the two remaining horizontal EPI branch and vertical EPI
branch, we exploit the similarity of spatial pixels from dif-
ferent SAIs on the EPI structure using the designed MSPB.
Details of the MSPB will be shown in Sec. 4.4.

Finally, the features obtained by the four branches are
reshaped to form SAIs and concatenated. After that, we use
a 1 × 1 convolution to reduce the channels of the concate-
nated feature. The channel attention module and the local
residual learning operation obtain the final feature.

4.4. Spatial-Angular Mutil-Scale Process

In the horizontal EPI branch and the vertical EPI branch
of the MDIB, we process the sub-pixel information by
multi-scale operation in spatial and angular dimensions.
The initial feature FLR is first reshaped into the hori-
zontal EPI FLR

h ∈ RVW×U×H×C and the vertical EPI
FLR

v ∈ RUH×V×W×C . Then, feature FLR
H

(
FLR

V

)
is fed

into the MSPB module to interact with pixels with different
disparity ranges.

FLR
epih = MSPB

(
FLR

H

)
, (5)

FLR
epiv = MSPB

(
FLR

V

)
, (6)

As shown in Fig. 2 (c), MSPB and MDIB are struc-
turally similar and perform multi-branch parallel processing
based on residual connection. However, MDIB focuses on
feature extraction in different dimensions, and MSPB uses
multi-scale operations to explore the differences between
views to achieve accurate interpolation. For a given fea-
ture FLR

H

(
FLR

V

)
, we use dilated convolution kernels with

different dilate rates. Each branch has the same convolu-
tion kernel size 3 but has different dilate rates of (1× 1),
(2× 1), (1× 2), respectively. As analyzed in Fig. 1, sub-
pixel information in different disparity ranges is extracted
only after the dilate operation is performed in a certain di-
mension of spatial or angular. Expanding in the angular
dimension can ensure that the model extracts information
on small disparity pixels while extending in the spatial di-
mension can ensure that the model extracts a larger range
of disparity. Under the condition of ensuring the number of
parameters, the accuracy degradation caused by the locality
of the single convolution kernel size is alleviated. Note that
the EPI structure can compare the relationship between the
intuitive response spatial and angular. We let the model fo-
cus on processing the EPI structure so the output features of
each branch have a higher feature dimension. Taking verti-
cal EPI as an example, the process of three branches is as
follows:

FA
epiv [:, v, y, :] = WA

epiv ⊗FLR
V [:, v, y, :] , (7)

FN
epiv [:, v, y, :] = WN

epiv ⊗FLR
V [:, v, y, :] , (8)

FS
epiv [:, v, y, :] = WS

epiv ⊗FLR
V [:, v, y, :] , (9)

where WA
epih , WN

epih , WS
epih denote the convolution kernel

parameter with dilated rates of (2× 1), (1× 1), (1× 2).
The channels for the three outputs are 3C

8 . Then, the fea-
tures will be concatenated and fused by the channel atten-
tion module.

Although the structure of model [25] is similar to ours,
their focus is different. While their model also extracts in-
formation from four dimensions, they emphasize extracting
spatial and angular information, whereas we focus more on
decoupling spatial and angular information. In addition, we
propose a spatial-angular multi-scale process to implicitly
expand the disparity range that the model can explore while
reducing the number of parameters. Our method also avoids
feature resolution reduction due to convolution operations
during processing.

4.5. Feature Upsampling

After the model has extracted sufficient information in
the four dimensions of the LR SAIs, we use the upsampling
operation to restore the HR image as:

LFSR = UP
(
FM

MDIG

)
, (10)

where the UP denote the upsample model and the LFSR

means the final output HR LF image. Specifically, we use
the pix-shuffle operation to recover the high-frequency in-
formation of the HR image. In order to ensure that the low-
frequency information of the original image is preserved,
we upsample the input image and obtain the final super-
resolution result through residual learning. The final result
is expressed as:

FSR = Fup

(
LLR)

+ pixshuffle
(
FM

MDIG

)
, (11)

where Fup denote the bicubic operation.

4.6. Refine Mechanism

To ensure the applicability of the final model to a broader
range of disparity, we incorporate the LF Shear Attention
network [1] as a second-stage model to enhance the accu-
racy of the results. Firstly, the pre-trained SAMSSR model
is applied to sheared LF images with varying disparity val-
ues, resulting in a set of SR outputs. These results are then
sheared back using the ×α disparity values to restore the
original disparity. Subsequently, we train the LF Shear At-
tention network [1] to identify relevant information from
different sheared levels and fuse them to generate the final
SR outcome.
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5. Experiment

We use five public datasets EPFL [18], HCInew [4],
HCIold [30], INRIA [9], STFgantry [20] for training and
testing. All images have an angular resolution of 9 × 9.
We calculate the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measurement (SSIM) for the Y
channel of the image [28] as the evaluation metrics. We
first demonstrate the performance of our approach in this
challenge. We then conducted a comparative analysis be-
tween our SAMSSR model and several SOTA methods,
includes three SISR methods (i.e., VDSR [7], EDSR [7],
RCAN [38]) and ten LF image SR methods (resLF [36],
LFSSR [31], LFATO [5], LF-InterNet [26], LF-DFnet [27],
MEG-Net [35], LF-IINet [14], DPT [22], LFT [11], Dist-
gSSR [25]). Finally, the ablation experiments were con-
ducted to verify the effectiveness of the block in SAMSSR
and the refine mechanism.

5.1. Implementation Details

Our network was trained using the L1 loss and optimized
using the Adam method [8] with β1=0.9, β2=0.999. Our
SAMSSR was implemented in PyTorch on a PC with one
NVidia RTX A5000 GPU. The learning rate was initially set
to 2× 10−4 and decreased by 0.5 for every 20 epochs. The
training was stopped after 65 epochs. Besides, we randomly
augmented the datasets by flipping the images horizontally,
vertically, or rotating 90 degrees.

For the first stage of the model SAMSSR training, we
randomly crop successive 5× 5 SAIs to improve the gener-
alization ability of the model. For 4× SR tasks, we crop the
SAIs and use the bicubic downsampling to generate patches
of size 32 × 32 as the LR input. Each MGI-group has four
MDIB modules. Our SAMSSR consist of eight MGI-group
modules.

Besides, in order to verify the validity of our proposed
super-resolution model SAMSSR, we train the lightweight
version, lablled as SAMSSR-l. Instead of randomly crop-
ping 5 × 5 SAIs in 9 × 9 LFs, we crop the center 5 × 5
for training on the SAMSSR-l. Another difference is that
SAMSSR-l has five MGI-group modules.

For the second stage of the refine model training, we
add our data integration strategy to the above five datasets
to generate training data. We perform model training and
testing by cropping out the central 5 × 5 SAIs. We first
downsample the image using bicubic interpolation and ap-
ply the shear operation based on the preset disparity val-
ues of {−1,−0.5, 0, 0.5, 1}. The trained SAMSSR model
is used to upsample the sheared images, resulting in a set
of SR outputs. These outputs are then sheared back using
the disparity values of {4, 2, 0,−2,−4} to generate the cor-
responding sheared image group as the input. Finally, we
crop the SAIs into patches of size 128× 128.

Table 1. Result of the LF image SR Challenge

Team Name PSNR(avg) #Params Architec* Rank

Group-1 30.664 20.34M Hybrid 1
Group-2 30.6355 28.99M CNN 2
Group-3 30.5619 10.52M Transf 3
Group-4 30.3772 2.63M Transf 4

SAMSSR+refine 30.3547 5.44M CNN 5
Group-6 30.1286 8.83M Transf 6
Group-7 30.1141 4.08M Transf 7
Group-8 30.0559 3.35M Transf 8
Group-9 29.8968 7.79M CNN 9
Group-10 29.8492 14.82M CNN 10
Group-11 29.8265 7.28M CNN 11
Group-12 29.1163 - - 12

5.2. Comparisons with Challenge methods

In this section, we present the performance of our
method in the LFSSR challenge. We demonstrate the quan-
titative results in Tab. 1, which shows that our model (i.e.,
SAMSSR) achieves relatively good results while utilizing
a small number of parameters. Furthermore, we provide
the model architecture of the different methods in Tab. 1.
Specifically, Transf denotes that the model adopts the Trans-
former as a basic component, CNN denotes that the model
is developed based on convolutions only, and Hybrid de-
notes that the model contains sub-models developed using
both CNNs and Transformers.

Among the models with the same architecture as ours,
only the method in group two outperforms ours. However,
the model parameters of this group are four times larger than
ours, which would greatly affect computational efficiency.
Moreover, our model performs better than some models
based solely on the Transformer. This finding proves that
the multi-branch structure of our model can effectively ad-
dress the performance degradation caused by convolutional
locality.

5.3. Comparisons with State-of-the-Art Methods

To ensure a fair comparison, we compare the perfor-
mance of our model with the most recent state-of-the-art LF
spatial SR methods, which have been trained on the same
benchmark datasets.

Table 2 displays the quantitative results of SOTA meth-
ods on different upscaling factors. We use our lightweight
SAMSSR-l model without the second refinement stage for
a more fair comparison. Our SAMSSR-l model achieves
the highest PSNR/SSIM values on nearly all datasets in
both tasks, with a particularly significant improvement on
the EPFI and INRIA datasets for 2× SR. The main rea-
son is that our method is able to capture in-depth features
across the spatial, angular, and EPI domains. Addition-
ally, the MSPB module extends its perceptual range on the
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Table 2. Quantitative evaluations (PSNR / SSIM) of LFSSR results.The best results are in red, the second results are in blue.

Methods
#Params. x2 x4

(×2/× 4) EPFL HCInew HCIold INRIA STFgantry EPFL HCInew HCIold INRIA STFgantry

Bicubic – 29.74/0.9376 31.89/0.9356 37.69/0.9785 31.33/0.9577 31.06/0.9498 25.26/0.8324 27.72/0.8517 32.58/0.9344 26.95/0.8867 26.09/0.8452
VDSR [7] 0.665M 32.50/0.9598 34.37/0.9561 40.61/0.9867 34.44/0.9741 35.54/0.9789 27.25/0.8777 29.31/0.8823 34.81/0.9515 29.19/0.9204 28.51/0.9009
EDSR [13] 38.62/38.89M 33.09/0.9629 34.83/0.9592 41.01/0.9874 34.99/0.9764 36.30/0.9818 27.83/0.8854 29.59/0.8869 35.18/0.9536 29.66/0.9257 28.70/0.9072
RCAN [38] 15.31/15.36M 33.16/0.9634 35.02/0.9603 41.13/0.9875 35.05/0.9769 36.67/0.9831 27.91/0.8863 29.69/0.8886 35.36/0.9548 29.81/0.9276 29.02/0.9131
resLF [36] 7.98/8.65M 33.62/0.9706 36.69/0.9739 43.42/0.9932 35.40/0.9804 38.35/0.9904 28.26/0.9035 30.72/0.9107 36.71/0.9682 30.34/0.9412 30.19/0.9372

LFSSR [31] 0.89/1.22M 33.67/0.9744 36.80/0.9749 43.81/0.9938 35.28/0.9832 37.94/0.9898 28.60/0.9118 30.93/0.9145 36.91/0.9696 30.59/0.9467 30.57/0.9426
LF-ATO [5] 1.22/1.36M 34.27/0.9757 37.24/0.9767 44.21/0.9942 36.17/0.9842 39.64/0.9929 28.51/0.9115 30.88/0.9135 37.00/0.9699 30.71/0.9484 30.61/0.9430

LF InterNet [26] 5.04/5.48M 34.11/0.9760 37.17/0.9763 44.57/0.9946 35.83/0.9843 38.44/0.9909 28.81/0.9162 30.96/0.9161 37.15/0.9716 30.78/0.9491 30.37/0.9409
LF-DFnet [27] 3.94/3.99M 34.51/0.9755 37.42/0.9773 44.20/0.9941 36.42/0.9840 39.43/0.9926 28.77/0.9165 31.23/0.9196 37.32/0.9718 30.83/0.9503 31.15/0.9494
MEG-Net [35] 1.69/1.78M 34.31/0.9773 37.42/0.9777 44.10/0.9942 36.10/0.9849 38.77/0.9915 28.75/0.9160 31.10/0.9177 37.29/0.9716 30.67/0.9490 30.77/0.9453
LF-IINet [14] 4.84/4.89M 34.73/0.9773 37.77/0.9790 44.85/0.9948 36.57/0.9853 39.89/0.9936 29.04/0.9188 31.33/0.9208 37.62/0.9734 31.03/0.9515 31.26/0.9502

DPT [22] 3.73/3.78M 34.49/0.9758 37.35/0.9771 44.30/0.9943 36.41/0.9843 39.43/0.9926 28.94/0.9170 31.20/0.9188 37.41/0.9721 30.96/0.9503 31.15/0.9488
LFT [11] 1.11/1.16M 34.80/0.9781 37.84/0.9791 44.52/0.9945 36.59/0.9855 40.51/0.9941 29.26/0.9210 31.46/0.9218 37.63/0.9735 31.21/0.9524 31.86/0.9548

DistgSSR [25] 3.53/3.58M 34.81/0.9787 37.96/0.9796 44.94/0.9949 36.59/0.9859 40.40/0.9942 28.99/0.9195 31.38/0.9217 37.56/0.9732 30.99/0.9519 31.65/0.9535

SAMSSR-l (ours) 3.38/3.43M 35.18/0.9800 38.00/0.9800 45.06/0.9950 36.88/0.9860 40.60/0.9941 29.26/0.921 31.45/0.923 37.72/0.9740 31.23/0.9530 31.62/0.9534
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Figure 3. Visual comparison between the SOTA methods and our proposed method for an upscaling factor of ×4. Our results of the central
view images and EPIs outperform the other SOTA methods with significant higher PSNR and SSIM. The background letters along the
occlusion boundary are clearly recovered with sharp edges both in view and EPIs using the proposed method, while the others exhibit
strong artifacts or ambiguous textures.

EPI dimension, enabling it to learn richer sub-pixel infor-
mation. In contrast, previous methods do not thoroughly
exploit all pixel correlations in 4D LF data, which results
in limited performance gains. Notably, our model outper-
forms transformer-based models like LFT [22] and DPT
[22] on most datasets, indicating that our MSPB partially
overcomes the performance degradation caused by convo-
lution operation locality. Especially on the small disparity
datasets EPFL [18] and INRIA [9], our method outperforms

the DistgSSR [25] methods by approximately 0.37dB and
0.29dB in terms of PSNR at a scaling factor of ×2.

Figure 3 offers a visual comparison between our method
and other SOTA methods for an upscaling factor of ×4. We
employ the SAMSSR and refine models to generate results.
Our approach achieves superior perceptual quality in terms
of both complex texture and detailed information when
compared to other methods. Notably, our method recovers
the exact shape of numbers with fine structures, while other
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methods produce heavily blurred and broken characters in
the ”ISO Chart 1” image from the EPFL dataset. This vi-
sual comparison aligns with the objective results, where our
method outperforms the LFT [11] and DistgSSR [25] meth-
ods by approximately 3.39dB and 4.46dB, respectively, in
terms of PSNR at a scaling factor of ×4.

5.4. Ablation Investigation

In this subsection, we conduct experiments on 5 × 5 LF
images for 4× SR to investigate the effects of setting dif-
ferent dilation ratios in MSPB, attention fusion, and fine-
tuning policies on the final results. We compared the vari-
ation models by averaging their performance across five
datasets.

Table 3. Ablation experiments of dilation rate.

Spatial - Angular dilation in MSPB Avg (PSNR/SSIM)

model (1− 1) 32.168/ 0.9444
model (2− 2) 32.254/ 0.9448
model (2− 3) 32.185/0.9443
model (3− 2) 32.175/0.9441
model (3− 3) 32.199/0.9446

The quantitative results of the different models with var-
ious dilation rates are presented in Tab. 3. For instance, in
our MSPB module, the dilation rates of the three branch
convolution kernels are (2× 1), (1× 1), and (1× 2),
which is labelled as model (2− 2). We set up five models
with varying dilation ratios of the spatial and angular do-
main in the EPI MSPB branches as model (1− 1), (2− 2),
(2− 3), (3− 2), and (3− 3). The best-performing model
is achieved when the dilation rates of the spatial and angular
dimensions on the EPI structure are set to 2. Compared with
no dilation operation, i.e., model (1− 1), our model has
a wider sub-pixel information perception range, allowing
for learning of more abundant redundant information and
achieving accurate interpolation. Theoretically, when the
dilation rate of the angular dimension is set to 3, the con-
volution kernel perceives the information among 7 views,
which is needless for the 5× 5 LF images. Similarly, when
the dilation rate of the spatial dimension is set to 3, the con-
volution kernel perceives the information for scenes with
disparity equal to 3, which is also needless for scenes with
small disparities (for the 4× SR task, the maximum dispar-
ity of the input image change is 1.75). Therefore, as the
dilation rate increases, the effect of our model does not im-
prove.

Besides, We demonstrate the effectiveness of the chan-
nel attention mechanism for multi-branch fusion by selec-
tively removing them from our network. Specifically, ”w/o-
att1” meant removing the channel attention of the MDIB,
while ”w/o-att2” meant removing the channel attention of
the MSPB. As shown in Tab. 4, the performance of the mod-

Table 4. Ablation experiments of attention and refine strategy.

Variants #Params Avg (PSNR/SSIM)

w/o-att1 3.33M 32.184/0.9446
w/o-att2 3.39M 32.203/0.9444

SAMSSR-l 3.58M 32.254/ 0.9448
SAMSSR 5.43M 32.322/0.9451

SAMSSR+refine 5.44M 32.94085/0.9481

els declined when we remove the channel attention mech-
anism from both models. Notably, when we remove the
attention mechanism in the MSPB module, the model per-
forms poorly on the datasets, indicating that the branch in-
formation fusion of the MSPB module is insufficient, lead-
ing to the model being unable to adapt well to the extrac-
tion of sub-pixel information in multiple disparity ranges.
Furthermore, when we remove the attention mechanism in
the MDIB module, the model’s performance declined on all
datasets, highlighting the importance of the fusion of differ-
ent forms of feature information from LF images.

By comparing the performance of SAMSSR-l and
SAMSSR, we observe that when we increase the basic mod-
ule of the model (i.e., MDIB), the model generalizes better
on the training data and improves the performance. Ad-
ditionally, when we apply the refine strategy to the results
of SAMSSR processing, the model performs significantly
better with a small number of parameters. By using shear-
based data integration operations, we vary the disparity
range of the scene and train models to better extract inter-
polating information from SR images of LF with different
disparity ranges in the same scene.

6. Conclusion

Our paper introduces the SAMSSR network as a solu-
tion to enhance the spatial resolution of light field images
by leveraging the information extracted from spatial, an-
gular, and epipolar feature extractors. The MSPB module,
designed explicitly for EPI structures, extracts sub-pixel in-
formation. Our experimental results demonstrate that our
method outperforms state-of-the-art methods in terms of
PSNR and SSIM and delivers superior visual effects. Ad-
ditionally, our network effectively preserves the epipolar
property of images and can be applied to various types of
light field images with different angular resolutions. Mean-
while, our approach ranked fifth in the Light Field Image
Super-Resolution challenge.
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