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Abstract

Recently, the single image super-resolution (SISR) based
on deep learning algorithm has taken more attention from
the research community. There are many methods that are
developed to solve this task using CNNs methods. However,
most of these methods need large computational resources
and consume more runtime. Due to the fact that the run-
time is essential for some applications, we propose a mixer-
based local residual network (MLRN) for lightweight image
super-resolution (SR). The idea of the MLRN model is based
on mixing channel and spatial features and mixing low and
high-frequency information. This is done by designing a
mixer local residual block (MLRB) to be the backbone of
our model. Moreover, the bilinear up-sampling is utilized to
transfer and mix low-frequency information with extracted
high-frequency information. Finally, the GELU activation
is used in the main model, proving its efficiency for the SR
task. The experimental results show the effectiveness of the
model against other state-of-the-art lightweight models. Fi-
nally, we took part in the Efficient Super-Resolution 2023
Challenge and achieved good results.

1. Introduction
The image super-resolution (SR) task is one of the com-

puter vision sub-topics. This SR task focuses on convert-
ing the input image with low resolution to another one with
high-resolution and clearer details [2, 11, 41]. This task is
considered an ill-posed task because there a variety of the
output images that can be generated from one input image.
Also, this task can be divided into two main types SISR and
multiple image super-resolution (MISR) [18]. In practice,
the SISR has taken much attention based on the application
of this task [2, 11, 41].

Recently, many methods are proposed to solve this
task using convolution neural networks (CNNs) [2, 11, 41].
These models can be divided into efficient [28, 42, 49] and
classical models [5, 25]. efficient models are needed in ap-
plications that focus on computational resource and mem-

ory consumption. So, to push the progress for the efficient
SR model. Many efficient, super-resolution competitions
are developed based on using advanced deep-learning algo-
rithms [23, 46, 47].

The first competition that focuses on designing an effi-
cient model is AIM 2019 challenge [47], which based on
finding the model that optimizes five factors of (runtime,
parameters, FLOPs, activations, and depths). The win-
ning model of this competition is the information multi-
distillation network (IMDN) [16] which is based on cas-
caded information multi-distillation blocks (IMDB) for the
feature extraction module. After that, AIM 2020 challenge
is organized to find a more efficient model [46] using the
same evaluation criteria as the previous one. The winning
solution of this challenge is the residual feature distillation
network (RFDN) [26], which further improves the IMDN
based on introducing residual learning in the main block.
This RFDN achieved more efficient performance compared
to the previous one in the evaluation criteria. Then, NTIRE
2022 challenge [23] is made to find a more efficient model
than the previous two competitions. The winning solu-
tion of this challenge is the residual local feature network
(RLFN) [20] which achieves a much faster runtime com-
pared to the previous competition.

Lastly, the NTIRE 2023 Efficient Super-Resolution chal-
lenge [24] is organized as an extension of previous chal-
lenges. In this challenge, we aimed further to improve the
winning solution of the previous challenge RLFN [20] to
decrease its weight and reduce the runtime. To do that, one
3 × 3 layer of the RLFN main lock is replaced with a convo-
lution mixer block. This ConvMix block is based on using
depthwise convolution and pointwise convolution for chan-
nel and spatial feature mixing. Based on this ConvMix, the
mixer local residual block (MLRB) is designed as the main
block for our model. Using this MLRB, the mixer local
residual network (MLRN) is built for the SR task. In ad-
dition, the GELU activation function is used instead of the
original LeakyReLU, which proof is more helpful for the
SR task. Finally, inspired by the previous methods, bilinear
up-sampling added to transfer low-frequency information
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Figure 1. The structure of the proposed MLRN

of the input image to the final layer.
The paper contribution is summarised as the following :

• We propose MLRB as a main backbone block of the
SR network based on using ConvMix layer, which rep-
resents a low computations bock,

• Based on the designed MLRB and the bilinear up-
sampling, an efficient MLRN model is proposed for
the SISR.

• The developed model achieved state-of-the-art on the
SR benchmark with a good balance between perfor-
mance and computation. Then, an ablation study is
made, aiming to show the impact of each network com-
ponent.

2. Related Work
The related work of this paper will include CNNs-

based efficient SR, attention-based efficient SR, and ex-
treme efficient-based SR.

2.1. CNNs-based Efficient SR

In [28], Luo et al. developed a multi-scale receptive
field fusion network (MRFN) based on utilizing a multi-
scale receptive field fusion block for the fusion of differ-
ent scales of spatial information and increasing the recep-
tive field. After that, in [42], the authors introduced a pro-
gressive representation recalibration network (PRRN) [42]
based on the learning of full and effective feature repre-
sentations using a progressive representation recalibration
block (PRRB). Then, an asymmetric information distilla-
tion network (AIDN) [49] is suggested by basing on the idea
that repeating the process of distilled information can help
the ability of key information extraction.

A lightweight super-resolution network named DDistill-
SR [39] is developed based on the idea to capture and reuse
more supportive information in a static-dynamic feature dis-
tillation manner. Moreover, a multi-stage residual distilla-
tion network (MRDN) [44] is introduced based on using

a multi-stage residual distillation block (MRDB) that de-
creases the parameters using a combination of the channel
separation and the skip connection. Also, a hierarchical
residual feature network (HRFFN) [32] is developed based
on using multiple mixed attention blocks (MABs) as basic
blocks for boosting the model representative ability.

2.2. Attention-based Efficient SR

In [33], an attentive residual refinement network (AR-
RFN) is developed based on using a stack of attentive resid-
ual refinement blocks (ARRFB) for improving the perfor-
mance based on the attentive residual mechanism. After
that, a non-linear perceptual multi-scale network (NLPM-
SNet) [43] is suggested by considering the fusion of the
multi-scale image information in a non-linearly. In [9], a
large kernel attention super-resolution network (LKASR) is
introduced based on using multiple cascaded visual atten-
tion modules (VAM) for to extract global and local features
iteratively. In [50], the authors introduced self-calibrated
efficient Transformer (SCET) [50] using the notion of the
pixel attention mechanism is a self-calibrated module for
effectively extracting image features. In [12], Gendy et al.
suggested a balanced spatial feature distillation and pyra-
mid attention (BSPAN) based on balancing different atten-
tion types.

In addition, a lightweight local-global attention network
(LGAN) [35] is developed based on the idea of improving
both the local features and global features. A vast-receptive-
field attention model is introduced [48] based on enhancing
the pixel attention block to improve the performance and
decrease the number of parameters. Lastly, a wavelet-based
Transformer for image super-resolution (WTSR) [34] is de-
veloped based on implicitly mining the self-similarity of
image patches on the wavelet domain based on using Trans-
former. The attention-based methods can achieve good per-
formance, however, these models need large memory and
use a large computational resource.
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Figure 2. The structure of the proposed MLRB

2.3. Extreme Efficient-based SR

A very lightweight and efficient image super-resolution
network (VLESR) is developed by Gao et al. [10] based
on using a frequency grouping fusion block (FGFB) for
the fusion of the high-frequency and low-frequency fea-
ture information. Then, in [36], the ShuffleMixer is de-
veloped for lightweight image SR based on exploring large
convolution and channel split-shuffle operation. In [38],
an edge-enhanced feature distillation network (EFDN) is
suggested based on preserving high-frequency information
under constrained resources. Moreover, a channel mix-
ing Net (CDFM-Mobile) [13] is introduced based on the
idea of channel mixing by utilizing a pointwise convolu-
tion layer. A fast nearest convolution module (NCNet)
[29] is introduced based on nearest convolution, which is
much fast than nearest upsampling and achieves similar per-
formance. Lastly, a content-aware dynamic quantization
(CADyQ) [14] model is suggested based on adaptively al-
locating optimal bits to local regions and layers.

3. Proposed Model.

The proposed MLRN is built using three stages, includ-
ing shadow and deep feature extraction, and ends with one

module to reconstruct the image. The shallow feature ex-
traction is a basic convolution layer for transforming the im-
age space to feature space. Then, the deep feature stage is
based on a mixer-based local residual block, further modi-
fying the original RLFN [20]. The MLRB is built by adding
a convolution mixer [37] to the RLFN for spatial and chan-
nel feature mixing. In addition, GELU activation is used
instead of the LeakyReLU in the RLFN. Finally, we used
bilinear up-sampling [8, 13] to further improve the model
performance with any extract parameter cost. We will dis-
cuss the detail of the MLRB as follows:

3.1. Mixer-based Local Residual Block (MLRB)

The MLRB further improves the previous RLFB [20] for
reducing the parameters and flops. This is done by replacing
one 3 × 3 convolution with convolution mixer (ConvMix)
[37]. Also, similar to some previous methods, ESA [27] is
used at the end of the block. Given the input feature Fin,
the MLRB block function is be represented as:

Fconv31 = HGELU (HConv3(Fin)), (1)

Fconv32 = HGELU (HConv3(Fconv31)), (2)
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Table 1. The Results on Benchmark Datasets to Evaluate Quantitatively . Best is indicated in Bold and Second Best is indicated in
Underline. We Averaged the Time in (ms) on DIV2K Validation Dataset.

Method Scale #Params #Mult-
Adds Time Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 2 - - - 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN [6] 2 8K 52.7G 23 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663

FSRCNN [7] 2 12k 6.0G 15 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020 36.67 0.9710
CARN [21] 2 1,592K 222.8G 210 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765

LapSRN [22] 2 251K 29.9G 320 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133 37.55 0.9732
IDN [17] 2 553K 174.1G 230 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 38.01 0.9749

IMDN [16] 2 694K 158.8G 150 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
RFDN [26] 2 534K 102.7G 140 38.05 0.9606 33.68 0.9184 32.16 0.8994 32.12 0.9278 38.88 0.9773
RLFN [20] 2 527K 97.9G 121 38.07 0.9607 33.72 0.9187 32.22 0.9000 32.33 0.9299 - -

MLRN (Our) 2 488k 90.4G 130 38.07 0.9607 33.59 0.9180 32.21 0.9000 32.28 0.9297 38.76 0.9773
Bicubic 3 - 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556

SRCNN [6] 3 8K 52.7G 14 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN [7] 3 12 k 5.0G 9 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210
CARN [21] 3 1,592K 118.8G 100 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440

IDN [17] 3 553K 105.6G 170 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
IMDN [16] 3 703K 71.5G 67 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
RFDN [26] 3 541K 52.1G 64 34.41 0.9280 30.34 0.8420 29.09 0.8050 28.21 0.8525 33.67 0.9449

MLRN (Our) 3 496K 40.9G 62 34.46 0.9267 30.35 0.8426 29.10 0.8054 28.20 0.8533 33.66 0.9450
Bicubic 4 - - 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

SRCNN [6] 4 8K 52.7G 10 30.48 0.8626 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN [7] 4 12 k 4.6G 8 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
CARN [21] 4 1,592K 90.9G 79 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084
LapSRN [22] 4 502K 149.4G 163 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

IDN [17] 4 553K 81.87G 145 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632 29.41 0.8942
IMDN [16] 4 715K 40.9G 41 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
RFDN [26] 4 550K 26.5G 38 32.24 0.8952 28.61 0.7819 27.57 0.7360 26.11 0.7858 30.58 0.9089
RLFN [20] 4 543K 25.3G 35 32.24 0.8952 28.62 0.7813 27.60 0.7364 26.17 0.7877 - -

MLRN (Our) 4 507K 23.5G 38 32.30 0.8956 28.62 0.7824 27.57 0.7365 26.10 0.7867 30.56 0.9092

where Fconv31 , Fconv32 is the output of the first and second
convolution layers of MLRB. Also, HGELU , Hconv3 are the
function of the GELU activation and the 3 × 3 convolution.
Then, the depthwise convolution with residual learning are
applied to Fconv32 as:

FDWC = HGELU (HDWC(Fconv32)) + Fconv32 , (3)

where HDWC is the function of the depthwise convolution
layer and FDWC is the output of depthwise convolution
layer. Afterward, the pointwise convolution layer (HPWV )
with GELU activation are added as fellows:

FCM = HGELU (HPWV (FDWC)) (4)

where FCM , is the output of ConvMix layer. After that,
both the second pointwise convolution with ESA are added.

Fout = HESA(Hconv1(FCM + Fin)), (5)

where Fout is the output of MLRB. Also, HESA, Hconv1

are the functions of the f ESA layer, and the second point-
wise convolution layer.

3.2. The Mixer-based Local Residual Network
(MLRN) Framework

As indicated in Figure 1, the MLRN model is designed
based on using the stages of shallow feature extraction, deep
feature extraction, and image reconstruction. For the shal-
low feature extraction stage, we used 3 × 3 convolution

(Hconv3), which is able to change from the image domain
to feature domains. Then, the stage function can be repre-
sented as:

F0 = Hconv3(x) (6)

After that, we built the deep feature extraction stage based
on utilizing m layers of MLRB (HMLRB).

Fi = HMLRBi(Fi−1), i = 1, 2, ..,m (7)

where Fi represents the m layer of output of the the MLRB.
Afterward, 3 × 3 is used for smoothing the aggregated fea-
tures as:

FDF = HConv3(Fm), (8)

where HConv3 is the function of 3 × 3 convolution layer. In
addition, we generated the output SR image based on using
reconstruction modules as follows:

FSR = Hrecont(FDF + F0), (9)

where Hrecont deontes the reconstruction function rep-
resented by both 3 × 3 convolution and Sup-pixel up-
sampling and, FSR denotes the SR model output. Finally,
the bilinear up-sampling is made for the input image x and
added to the image.

y = HBU (x) + FSR, (10)

where y is the model output and HBU is the function of the
bilinear up-sampling module.
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Figure 3. Urban100 dataset Visual Comparison at × 4 SR.

4. Experiment

4.1. Benchmarks

As for the training section, the DIV2K [1] dataset is used
for training our method, and we used the bicubic down-
sampling method to create the LR image from the HR im-
age by downsampling it using the bicubic downsampling
method. There are five datasets that were used to test the
model, including Set5 (5 images) [4], Set14 (14 images)
[45], B100 (100 images) [3], Urban100 (100 images) [15],
and Manga109 (109 images) [30]. Finally, in order to evalu-
ate the model based on the Y channel, the PSNR and struc-
tural similarity index (SSIM) [40] were used.

4.2. Implementation Details

The patch size is set to 192 × 192, 192 × 192, 256 ×
356 for scales of × 2, × 3, and × 4, respectively. In addi-

tion, batch sizes is fixed to 64 to train the MLRN models.
Moreover, 90, 180, and 270 degrees of random rotation and
horizontal flipping are used to augment the input images.
Afterward, the number of MLRB is set to 6. In addition,
the number of features is fixed at 58. The ADAM opti-
mizer [19] is applied with β1 = 0.9, β2 = 0.99 and ϵ= 1e−8.
Additionally, the learning rate starts with 5 × 10−4 and half
every 200 epochs. We used the L1 loss function for train-
ing the model for 1000 epochs. Also, the warm-start strat-
egy [20] is utilized for the MLRN, and it is not used for the
ablation study model for saving time. Finally, we designed
the model based on the PyTorch [31] framework and trained
using Nvidia 2080 Ti GPUs.

4.3. Comparison with State-of-the-art SR models

Our methods are compared with 8 state-of-the-art meth-
ods for SR of lightweight images that have been developed
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Figure 4. The Models Used in Ablation Study

in recent years. The methods can be categorized to SR-
CNN [6], FSRCNN [7], CARN [21], LapSRN [22], IDN
[17], IMDN [16], RFDN [26], and RLFN [20]. In order
to compare our model to these methods, we analyzed them
quantitatively, qualitatively, and in relation to their model
size.

4.4. Comparison with State-of-the-art SR models

4.4.1 Quantitative Evaluations

In this section, there five datasets are utilized to make this
quantitative comparison with other state-of-the-art methods,
as indicated in Table 1. The table shows that our model has
better performance in cases of the PNSR and SSIM for most
of the cases. For example, at the 3 × scale, our model has
better PSNR than RFDN [26] for the datasets of Set5, Set14,
and B100 by 0.05 dB, 0.01 dB, and 0.01 dB. Also, for the
case of SSIM, our model performs better than the RLFN
[20] for datasets of Set5, Set14, and B100 by improving the
values from 0.8952, 0.7813, and 0.7364 to 0.8956, 0.7824,
and 0.7365, respectively. These results show that our model
can benefit from the ConvMix block to make the mixing of
channel and spatial features.

4.4.2 Qualitative Evaluations

In the part of the result, we aimed to compare our model
with other state-of-the-art models in the case of qualitative

results, as shown in Figure 3. The figure shows that our
model has better visual image quality than the other dif-
ferent methods, including the RFDN [26] and RLFN [20].
For instance, for the img 073, the window details are much
clearer in our case than in the other methods. Moreover,
in the case of img 076, the horizontal lines of the building
in our method are much straight compared to the different
models. The results indicated that our model is able to ex-
tract more features using ConvMix, which helps it achieve
good performance.

4.4.3 Model Size Analysis

Here, these three factors parameters, multi-Adds, and run-
time, are used to make the model size analysis compared
to the winner for the previous three challenges, as shown
in Table 1. Firstly for the parameters, our model has few
parameters compared to RLFN [20] by 39K at the scale of
2 × with comparable good performance. In addition, for
the Mult-Adds, our model has 11.2G fewer Mult-Adds than
RFDN [26] at the scale of × 3. Moreover, for the runtime, it
is clear that our model has a slight increase in the runtime of
about 8% than RLFN at the scale of × 4, but our model has
fewer parameters, multi-Adds, and better performance. So,
our model can balance the performance and computational
cost.
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Table 2. The Ablation Study Results at the Scale × 2

Method #Params #Mult-
Adds

Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MLRN 488k 90.4G 38.05 0.9606 33.59 0.9179 32.19 0.8999 32.18 0.9288 38.67 0.9771
MLRN W/O ConvMix 484.3K 85.6G 38.05 0.9606 33.49 0.9172 32.17 0.8996 32.08 0.9278 38.61 0.9770

MLRN W/O depthwise conv 484.4k 89.7G 38.04 0.9606 33.59 0.9179 32.18 0.8997 32.13 0.9283 38.65 0.9771
MLRN W LeakyReLU 488k 90.4G 37.99 0.9604 33.52 0.9173 32.17 0.8999 32.05 0.9229 38.58 0.9770

MLRN W/O Bilinear Up-sampling 488k 90.4G 38.03 0.9606 33.60 0.9177 32.19 0.8998 32.14 0.9284 38.63 0.9770
MLRN W Warm-Start 488k 90.4G 38.07 0.9607 33.59 0.9180 32.21 0.9000 32.28 0.9297 38.76 0.9773

4.5. Ablation Study

During our ablation, the same model settings for the dif-
ferent scales were used, but we used the model before the
warm-start strategy to save time. This ablation studies im-
portant factors used in the designing of the model, such as
the impact of including the ConvMix block in the model,
the impact of including the depthwise convolution layer in
the model, the impact of using GELU activation instead
of LeakyReLU activation which is found on the original
model, the effect of using the bilinear up-sampling, and at
the end, we show the impact of using the warm-start strat-
egy.

4.5.1 Ablation Study in Using the ConvMix Block

In this part of ablation, we aimed to show the impact of
the ConvMix layer, so we used the same model as MLRN
and compared it with the model when the ConvMix is not
included in the main model, as shown in Figure 4 (Model
1). The result is shown in Table 2 ( the second row vs.
the first row). It is clear that the ConvMix impacts the re-
sult with a slight increase of the parameters and Mult-Adds.
For instance, the PSNR dropped by 0.1 dB and 0.1 dB for
Set14 and Urban100 datasets, respectively. Based on this
result, we can conclude that ConvMix can help the model
by making channel and spatial mixing with sight increase
the computational cost.

4.5.2 Ablation Study in Using the depthwise convolu-
tion Layer

In this part of ablation, we aimed to show the impact of
the depthwise convolution, so the same model as MLRN is
used and compared it with the model when the depthwise
convolution was not included in the main model. The re-
sult is shown in Table 2 ( the third row vs. the first row).
It is clear that the depthwise convolution impacts the result
with a slight increase of the parameters and Mult-Adds. For
instance, the PSNR dropped by 0.05 dB and 0.02 dB for Ur-
ban100 and Manga109 datasets, respectively. Based on this
result, we can conclude that the depthwise convolution can
help the model by making spatial mixing with sight increase
the computational cost.

4.5.3 Ablation Study in Using the GELU Activation

In this part of ablation, we aimed to show the impact of the
GELU activation, so we used the same model as MLRN
and compared it with the model when the LeakyReLU ac-
tivation was used in the main model, as shown in Figure
4 (Model 3). The result is shown in Table 2 ( the fourth
row vs. the first row). It is clear that the GELU activation
greatly impacts the result; for example, the PSNR decreased
by 0.06 dB and 0.13 dB for Set5 and Urban100 datasets, re-
spectively. Based on this result, we can conclude that GELU
activation is more suitable for SR task than LeakyReLU ac-
tivation.

4.5.4 Ablation Study in Using the Bilinear Up-
sampling

In this part of ablation, we aimed to show the impact of
the bilinear up-sampling, so we used the same model as
MLRN and compared it with the model when the bilinear
up-sampling is not included in the main model. The result
is indicated in Table 2 ( the fifth row vs. the first row). It ob-
vious the bilinear up-sampling impacts the result without an
increase of the parameters and Mult-Adds. For example, the
PSNR dropped by 0.03 dB, 0.04 dB, and 0.04 dB for Set5,
Urban100, and Manga109 datasets, respectively. Based on
this result, we can conclude that bilinear up-sampling can
help by transferring the low-frequency information to the
final layer.

4.5.5 The Ablation Study on Warm-Start Strategy

In this task, the warm-start strategy [20] is utilized to make
retraining the model again, beginning from the pre-train
model on the same scale. We made the comparison in Ta-
ble 2 (the last row compared to the first row). The results
indicate that the warm-start strategy can improve perfor-
mance. For example, in Urban100 and Manga109 datasets,
the model performance is case of PSNR enhanced from
32.18 dB and 38.67 dB to 3.28 dB and 38.86 dB, respec-
tively. So, these results show that the warm-start strategy
can enhance the performance without any additional param-
eters and Multi-Adds cost.
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Table 3. Results of NTIRE 2023 Efficient SR Challenge.

Team Time [ms] PSNR [dB] #Params FLOPs #Acts GPU Mem. Model Overall #ConvAve. Val. Test Val. Test [M] [G] [M] [M] Comp.

MegSR 18.30(1) 21.26 15.33 29.04 26.95 0.243(12) 14.90(11) 72.97(6) 495.91(19) 23(11) 49(2) 39
Zapdos 18.59(2) 21.69 15.48 28.96 27.03 0.352(25) 21.97(25) 63.01(2) 420.50(13) 50(25) 67(10) 26
DFCDN 18.71(3) 21.91 15.51 29.00 27.08 0.245(13) 15.49(14) 82.76(13) 376.99(12) 27(14) 55(4) 39
KaiBai Group 20.49(4) 23.94 17.05 28.95 27.01 0.272(17) 16.76(17) 65.10(3) 296.45(7) 34(17) 48(1) 35
R.I.P. ShopeeVideo 20.65(5) 24.34 16.96 28.97 27.04 0.255(15) 16.16(16) 74.97(7) 439.60(14) 31(15) 57(5) 35
Antins cv 20.92(6) 24.45 17.39 29.00 26.95 0.315(24) 20.07(24) 70.82(5) 488.61(17) 48(24) 76(14) 29
Young 22.09(7) 25.86 18.33 28.97 27.00 0.543(30) 33.38(30) 61.87(1) 293.05(6) 60(30) 74(13) 23
NTU607 ESR 22.71(8) 26.73 18.68 29.00 27.07 0.281(19) 17.31(19) 76.11(9) 364.24(11) 38(19) 66(8) 39
CMVG 24.42(9) 28.51 20.33 29.01 27.08 0.307(21) 18.98(21) 81.55(11) 454.51(15) 42(21) 77(15) 41
Touch Fish 25.61(10) 30.09 21.12 29.00 27.09 0.415(27) 27.16(27) 75.50(8) 769.56(27) 54(27) 99(26) 20
CUC SR 25.97(11) 30.58 21.37 28.99 27.05 0.402(26) 25.23(26) 81.88(12) 344.51(9) 52(26) 84(20) 39
SeaOuter 26.26(12) 30.93 21.59 28.95 27.05 0.285(20) 18.63(20) 80.48(10) 218.97(3) 40(20) 65(7) 44
NoahTerminalCV B 27.83(13) 32.73 22.94 28.96 27.03 0.209(10) 13.34(10) 118.71(18) 188.21(1) 20(10) 52(3) 49
NJUST R 28.63(14) 33.59 23.66 28.99 27.07 0.237(11) 15.40(13) 86.11(14) 303.06(8) 24(12) 60(6) 58
NoahTerminalCV A 28.71(15) 33.74 23.69 28.99 27.06 0.310(23) 19.99(23) 68.38(4) 188.60(2) 46(23) 67(9) 25
Sissie Lab 30.34(16) 34.62 26.07 29.00 27.00 0.461(28) 28.85(28) 107.07(16) 628.94(25) 56(28) 113(29) 48
GarasSjtu (Our) 32.30(17) 37.99 26.62 28.91 26.99 0.275(18) 16.85(18) 97.87(15) 556.22(22) 36(18) 90(22) 43
USTC ESR 34.16(18) 40.11 28.20 29.03 27.09 0.503(29) 31.56(29) 112.57(17) 489.33(18) 58(29) 111(28) 48
SEU CNII 40.84(19) 48.35 33.33 28.99 27.08 0.616(31) 38.63(31) 133.57(19) 944.91(29) 62(31) 129(31) 64
AVC2 CMHI SR 43.46(20) 51.30 35.61 29.01 27.06 0.262(16) 15.52(15) 154.19(20) 821.45(28) 31(16) 99(25) 84
NJUST M 68.11(21) 79.54 56.68 28.96 27.05 0.104(3) 6.56(3) 199.35(23) 503.49(20) 6(3) 70(12) 66
TelunXupt 75.89(22) 88.10 63.68 29.00 27.09 0.095(1) 5.58(1) 220.88(25) 517.14(21) 2(1) 70(11) 317
Set5 Baby 99.79(23) 117.33 82.25 29.01 27.08 0.129(6) 8.29(5) 202.70(24) 652.41(26) 11(5) 84(19) 86
NJUST E 106.61(24) 125.02 88.20 28.97 27.04 0.099(2) 6.02(2) 242.96(26) 606.38(24) 4(2) 78(16) 66
LVGroup HFUT 112.68(25) 132.10 93.26 28.98 27.05 3.426(32) 224.19(32) 335.28(30) 590.58(23) 64(32) 142(32) 94
FRL Team 4 124.13(26) 145.18 103.07 28.95 27.02 0.173(7) 10.60(7) 187.32(22) 1266.92(31) 14(7) 93(23) 198
Dase-IDEALab 130.73(27) 153.30 108.17 29.00 27.07 0.118(5) 9.06(6) 332.39(29) 1114.77(30) 11(6) 97(24) 122
FRL Team 1 186.02(28) 218.82 153.23 29.01 27.03 0.200(9) 12.76(9) 243.20(27) 265.25(5) 18(9) 78(18) 100
FRL Team 0 196.64(29) 230.14 163.14 29.01 26.98 0.115(4) 7.38(4) 170.26(21) 2028.66(32) 8(4) 90(21) 58
FRL Team 3 201.34(30) 237.73 164.94 29.00 27.09 0.179(8) 11.54(8) 285.41(28) 262.67(4) 16(8) 78(17) 112
AIIA-SR 224.45(31) 264.99 183.91 29.00 27.07 0.307(22) 19.53(22) 355.47(31) 482.70(16) 44(22) 122(30) 89
FRL Team 2 282.42(32) 331.55 233.29 29.02 27.02 0.245(14) 15.37(12) 422.90(32) 355.94(10) 26(13) 100(27) 158

4.6. MLRN for NTIRE 2023 Challenge

We took part in NTIRE 2023 Challenge on Efficient
Super-Resolution [24], and our model achieved a good re-
sult, as shown in Table 3. Our MLRN-entire model is
slightly changed from the MLRN model in the paper; it con-
tains 4 MLRB blocks, each containing two 3 × 3 convolu-
tion with one ConvMix block each with GELU activation,
in which the number of feature maps is set to 50. Also,
the channel number of the ESA is set to 16, similar to [20],
and we set the RGB range to 255, not to 1, as in the paper.
In our training, DIV2K, and LSDIR [22] are used to train
the model. After that, the model is trained in the follow-
ing steps. At the starting stage, we trained the model from
scratch using the DIV2K and LSDIR [22] datasets, with a
patch size of 256 × 256 and a batch size of 64. In this train-
ing, the L1 loss function is used with the Adam optimizer.
This stage is trained for 800 epochs with an initial learning
rate 5 ×10−4 reduced by half every 200 epochs. After the
previous stage, the model starts its training from the pre-
vious pre-trained weights using the DIV2K and Flickr2K
datasets with an initial learning rate 5 ×10−4that drops by

50% at every 200 epochs for 1000 epochs using L1 loss

5. Conclusion
This paper proposes a mixer-based local residual net-

work (MLRN) for single image super-resolution (SISR).
The MLRN was built by further improving the original
RLFN using the convolutional mixer (ConvMix). The Con-
vMix is built based on using depthwise and pointwise to
mix channel and spatial features. Based on the ConvMix,
the mixer residual local block (MLRB) is built as the back-
bone for our model. In addition, both GELU activation and
bilinear up-sampling are used to improve the model further.
Based on the result, our model achieved good results against
other state-of-the-art models in multiple benchmarks. In ad-
dition, our model takes part in Efficient Super-Resolution
Challenge 2023 and shows amenable performance.
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