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Abstract

The presence of non-homogeneous haze can cause scene
blurring, color distortion, low contrast, and other degra-
dations that obscure texture details. Existing homogeneous
dehazing methods struggle to handle the non-uniform dis-
tribution of haze in a robust manner. The crucial challenge
of non-homogeneous dehazing is to effectively extract the
non-uniform distribution features and reconstruct the de-
tails of hazy areas with high quality. In this paper, we pro-
pose a novel self-paced semi-curricular attention network,
called SCANet, for non-homogeneous image dehazing that
focuses on enhancing haze-occluded regions. Our approach
consists of an attention generator network and a scene re-
construction network. We use the luminance differences of
images to restrict the attention map and introduce a self-
paced semi-curricular learning strategy to reduce learning
ambiguity in the early stages of training. Extensive quan-
titative and qualitative experiments demonstrate that our
SCANet outperforms many state-of-the-art methods. The
code is publicly available at https://github.com/
gy65896/SCANet.

1. Introduction

The existence of turbid media in the atmosphere can
lead to the absorption and scattering of light, resulting
in degraded hazy scenes that adversely affect the perfor-
mance of vision-driven scene understanding and object de-
tection methods [36, 42]. To tackle this issue, many physi-
cal prior-based image dehazing models have been proposed
[5, 13, 17, 20, 32, 44, 45]. These models typically represent
the imaging process using an atmospheric scattering model,
which can be expressed as follows

I(x) = J(x)t(x) +A(x)(1− t(x)), (1)

*Corresponding author (wenliu@whut.edu.cn).

Figure 1. Dehazing results of the proposed SCANet on the
NTIRE2023 test set. Our method can reconstruct high-quality
haze-free images.

where x is the pixel index, I , J , t, and A represent the
hazy image, clear image, transmission map, and global at-
mospheric light, respectively. However, it is critical for the
success of physical prior-based dehazing methods to esti-
mate t and A. When hazy scenes are complex, the estima-
tion of t and A may be inaccurate, leading to unsatisfactory
dehazing performance. To achieve superior dehazing per-
formance, numerous learning-based single image dehazing
methods [6,7,10,12,14,19,22–25,27,28,39] have been pro-
posed by leveraging the powerful nonlinear feature repre-
sentation capacity of deep neural networks. However, haze
may be spatially variable and non-uniform in the realis-
tic scenes, making many physical prior- and learning-based
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Figure 2. Comparisons of PSNR and parameters of several state-
of-the-art dehazing methods on 15 non-homogeneous images from
NTIRE2020, NTIRE2021, and NTIRE2023 datasets.

methods designed for homogeneous haze inapplicable.
In recent years, many methods have been proposed to

address the challenge of non-homogeneous image dehaz-
ing [21, 31, 37, 41]. However, modeling the complex in-
teractions between non-homogeneous haze and the under-
lying scene remains a challenging task. The key chal-
lenge is accurately perceiving the distribution of haze and
reconstructing the texture detail of haze-dense areas with
high quality. To address this issue, we propose a self-
paced semi-curricular attention network (SCANet) for non-
homogeneous image dehazing, which consists of an atten-
tion generation network and a scene reconstruction net-
work. To better restore areas with significant luminance
changes, we design a self-paced semi-curricular learning
strategy to control the generation of attention maps. Fig-
ure 1 displays three dehazing cases on the NTIRE2023
test set. The proposed SCANet can adaptively extract
non-homogeneous haze features and effectively suppress
its interference. Furthermore, Figure 2 compares the peak
signal-to-noise ratio (PSNR) and parameters of our method
with state-of-the-art methods, demonstrating the competi-
tive performance of our SCANet.

Overall, our main contributions are as follows

• To address the challenging problem of non-
homogeneous image dehazing, we propose an
attention network that learns complex interaction
features between non-homogeneous haze and the
underlying scene. The proposed method employs
a novel “attention generation-scene reconstruction”
paradigm specifically designed for non-homogeneous
image dehazing.

• To enhance the haze removal ability in areas with
significant luminance differences, we introduce a
self-paced semi-curricular learning-driven attention
map generation strategy. This approach improves
model convergence and reduces the learning ambiguity
caused by multi-objective prediction in the early stages
of training.

• We extensively evaluate the proposed SCANet through
qualitative and quantitative experiments, demonstrat-
ing its superior performance compared to state-of-the-
art methods. We conduct an ablation analysis to con-
firm the effectiveness of our method, highlighting the
contribution of each component to the overall perfor-
mance of SCANet.

2. Related Works

Physical Prior-Based Dehazing. Physical prior-based
methods depend on the physical scattering model. Some
methods treat empirical observation as the prior knowledge
to restore a hazy image, such as dark channel prior (DCP)
[17], color attenuation prior [43], and non-local prior [5].
He et al. [17] proposed a dark channel prior (DCP) of clean
outdoor images in terms of pixel intensities and achieved a
nice dehazing performance. Zhu et al. [43] discovered the
brightness and saturation of the pixels in hazy images are
different and proposed the color attenuation prior. Berman
et al. [5] proposed an effective non-local path prior based
on the observation that the pixel are usually non-local in a
given RGB space. While these priors can yield impressive
results in certain scenarios, they may not always be practi-
cally applicable. In the real world, haze is often influenced
by a variety of complex factors, making these priors unsuit-
able and resulting in suboptimal dehazing outcomes. For
instance, the DCP [17] fails to dehaze the sky regions prop-
erly due to the inapplicable prior assumption.

Deep Learning-Based Dehazing. With the rapid ad-
vancement of deep learning, numerous learning-based de-
hazing methods have been proposed. Cai et al. [6] intro-
duced an end-to-end network (DehazeNet), which gener-
ates the transmission map of the hazy image and recovers
a clear image via the atmospheric scattering model. Li et
al. [22] proposed an all-in-one dehazing network (AOD-
Net) that jointly estimates the atmospheric light and trans-
mittance to recover the hazy image. Ren et al. [30] applied
a fusion-based strategy using a multi-scale structure in their
haze-free image generation framework. Zhang et al. [38]
proposed a densely connected pyramid dehazing network
(DCPDN), which estimates the transmission map using
an edge-preserving densely connected en-decoder structure
with a multilevel pyramid pooling module. Qu et al. [29]
proposed an enhanced pix2pix dehazing network (EPDN)
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Figure 3. The network structure of our SCANet. The proposed method comprises an attention generation network and a scene reconstruc-
tion network. The red slash means we only use MGT during the training phase.

that uses a generative adversarial network and an enhancer
to accomplish the dehazing task. Chen et al. [7] intro-
duced a gated context aggregation network (GCANet) that
uses the smoothed dilation technique to efficiently generate
a haze-free image. Liu et al. [26] proposed an attention-
based multi-scale network (GridDehazeNet), which learns
the feature map directly instead of estimating the transmis-
sion map. Recently, some studies [7, 9, 28, 35] tend to esti-
mate the haze-free image or the residual between the hazy
image and the corresponding clear image. Hong et al. [18]
proposed an uncertainty-driven dehazing network (UDN)
that improves the dehazing results by using the relation-
ship between uncertain and confident representations. Al-
though significant progress has been made by these methods
in dehazing tasks, they tend to overlook the issue of non-
homogeneous haze suppression. In recent years, several
methods [21, 31, 37, 41] have been proposed to address this
challenge. However, researchers are still struggling with the
difficulty of learning haze distribution features and the poor
quality of detail recovery in heavily hazy regions.

3. Proposed Method
In this section, we first introduce the network architec-

ture of our SCANet. Then, we describe the proposed self-
paced semi-curricular learning-driven attention map gener-
ation method. Finally, the loss functions employed in model
training are mentioned.

3.1. Network Architecture

As illustrated in Figure 3, our method comprises two
sub-networks: the attention generation network (AGN) and
the scene reconstruction network (SRN). The AGN is com-
posed of multiple dual-attention basic units (DAUs) to gen-
erate attention feature maps, while the SRN is an encoder-
decoder network to reconstruct haze-free images.

Attention Generator Network. Our first sub-network
(AGN) is designed to produce the attention feature map.
Essentially, the AGN is stacked by multiple dual-attention
units (DAUs), as shown in Figure 4. The input feature map

Figure 4. The pipeline of the dual attention unit (DAU). The DAU
contains channel attention and multi-scale pixel attention.

will be sequentially processed by channel attention (CA)
and multi-scale pixel attention (MSPA) to obtain the output
feature map. The CA comprises two 3 × 3 convolutional
layers, a global average pooling layer, two 1 × 1 convolu-
tional layers, and a sigmoid function. The obtained weights
of each channel by CA will be multiplied by the input fea-
ture map. The MSPA includes two 3× 3 convolutional lay-
ers, three dilated convolutional layers with different dilated
ratios ∈ {3, 5, 7}, two 1 × 1 convolutional layers, and a
sigmoid function. To improve the perception of the spa-
tial distribution of haze, three dilated convolutions are spe-
cially used to obtain feature information of multiple recep-
tive fields. Finally, a 7×7 convolutional layer and a sigmoid
function are employed to obtain the attention map Mg .

Scene Reconstruction Network. To improve the haze-
free image reconstruction quality, an encoder-decoder net-
work is employed. As illustrated in Figure 3, the SRN first
adopts two 3× 3 convolutional layers with the stride of 2 to
extract 4× downsampled features. Then, multiple residual
blocks and two deformable convolutional layers are used to
learn the hazy feature representations in the low-resolution.
In particular, the deformable convolution [8] can adjust the
kernel shape to focus on the features of interest by using
offsets. Subsequently, two transposed convolutional layers
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with a stride of 2 are used to restore the features to the orig-
inal resolution. Finally, the haze-free results are produced
by a tail block, which contains a reflection padding, a 7× 7
convolutional layer, and a tanh function.

3.2. Self-Paced Semi-Curricular Attention

Why Supervise Attention Map. In non-homogeneous
image dehazing, attention mechanisms can enable the net-
work to flexibly focus on haze features to reconstruct high-
quality haze-free images. However, attention maps are of-
ten unsupervised, which can lead to low-importance regions
being assigned higher weights and generating low-quality
reconstruction results. Figure 5 (b) and (e) display the at-
tention map directly generated by AGN and the haze-free
outputs generated by SRN. Obviously, the attention map
has excessively high weights in the sky area, resulting in
obvious block artifacts in the reconstruction result. Accord-
ing to our observations, non-homogeneous haze can signifi-
cantly increase the luminance of occluded areas (except for
the sky area). Theoretically, paying more attention to the
restoration of areas with significant luminance changes can
avoid the over-enhancement issue to improve the overall im-
age reconstruction performance. Therefore, we transform
the hazy and clear images into the YCbCr color space and
calculate the Y channel-based luminance deviation as the
ground truth of the attention map MGT .

Self-Paced Semi-Curricular Learning. Note that
multi-objective prediction tasks (i.e., obtaining both haze-
free image and attention map) tend to increase the learning
ambiguity. To make the model converge better, inspired by
[11], we adopt a self-paced semi-curricular learning strat-
egy to train the network from easy to hard. During training,
the attention map Mg generated by AGN and the ground
truth MGT are fused to generate the final attention map M .
Let λ be the trade-off parameter, M can be expressed math-
ematically as

M = λ ·Mg + (1− λ) ·MGT . (2)

In particular, the trade-off parameter can be dynamically
adjusted through the smooth L1 loss La

sl1 of the attention
map, i.e.,

λ =


0, if La

sl1 > 0.1,
La

sl1−0.1
0.1−0.05 , if 0.1 ≥ La

sl1 > 0.05,

1, if La
sl1 ≤ 0.05.

(3)

Eq. (3) is used to adjust the specific gravity of Mg and
MGT . In the initial stage, M mainly consists of MGT to al-
leviate the learning ambiguity due to the large value of La

sl1.
As La

sl1 decreases, the proportion of the attention map Mg

generated by the network will continue to increase. When
La
sl1 is less than 0.05, M will only consist of Mg . Mean-

while, we only adopt the semi-curricular learning strategy

Figure 5. Visual comparisons of images generated by different
strategies. From top-left to bottom-right: (a) hazy image, (b) atten-
tion map directly generated by AGN, (c) attention map generated
by self-paced semi-curricular learning-driven AGN, (d) ground
truth of the attention map, (e) dehazing result generated based on
(b), (f) dehazing result generated based on (c), and (g) haze-free
image. Note that the dehazing result (e) appears over-enhanced
and exhibits noticeable artifacts, which can be attributed to the
significant weight placed on the sky area by the attention map (b).

in the first 25% epochs to avoid the model’s over-reliance
on MGT .

After obtaining the attention map M , we adaptively
weight the feature map through a learnable parameter α. Let
Fin be the input feature map, the feature map Fout weighted
by the attention map can be given by

Fout = (1− α) · Fin + α ·M ⊗ Fin, (4)

with ⊗ being the operator of pixel-wise multiplication.

3.3. Loss function

In this section, we introduce the joint loss function of
the proposed SCANet. Specifically, this joint loss func-
tion Ljoint mainly consists of smooth L1 loss (including Lsl1

and La
sl1), multi-scale structural similarity (MS-SSIM) loss

LMS-SSIM, perceptual loss Lp, and adversarial loss La, which
can be expressed as follows

Ljoint = γ1Lsl1+γ2La
sl1+γ3Lp+γ4LMS-SSIM+γ5La, (5)

where γ1, γ2, γ3, γ4, and γ5 are the hyper-parameters. The
best performance is achieved when we assign them the val-
ues of 1, 0.3, 0.01, 0.5, and 0.0005, respectively.

Smooth L1 Loss. In the image restoration task, Zhao
et al. [40] have demonstrated that the L1 loss function has
better effects compared with L2 loss. Therefore, we use
smooth L1 loss [15] to supervise the final output Ĵ and the
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predicted attention map Mg , which can be expressed as fol-
lows

Lsl1 = L1(Ĵ − J), (6)

La
sl1 = L1(Mg −MGT ), (7)

where L1 (·) represents the smooth L1 loss function, Lsl1

is the loss between the network’s output Ĵ and the ground
truth J , La

sl1 is the loss between the predicted attention map
Mg and the ground truth of attention map MGT .

Let Q denotes the input, the L1 operation can be ex-
pressed as follows

L1(Q) =
1

N

N∑
i=1

Dl1(Q(i)), (8)

where i is the index pixel, N denotes the sum of pixels.
Finally, the smooth L1 operator Dl1 can be given by

Dl1(Q(i)) =

{
0.5 ·Q2(i), if |Q(i)| < 1,

|Q(i)| − 0.5, otherwise.
(9)

Perceptual Loss. To improve the similarity between the
output and ground truth in feature space, we add the percep-
tual loss Lp, which can be written as follows

Lp =
1

3

∑
r

∥∥∥ϕv
J

(
Ĵ
)
− ϕv

k (J)
∥∥∥2
2

CkHkWk
, (10)

where ϕv
k(·) represents the feature map of VGG16 in k-

layer, and (Ck, Hk,Wk) denotes the shape of the feature
map in the corresponding layer. In this paper, r ∈ { relu1 2,
relu2 2, relu3 3}.

MS-SSIM Loss. To improve the contrast of high-
frequency regions in the image, we adopt MS-SSIM loss
LMS-SSIM, which can be defined as follows

LMS-SSIM =LMS-SSIM(J, Ĵ), (11)

where LMS-SSIM(·) represents the multi-scale structure sim-
ilarity function. The SSIM value can be written as follows

SSIM(x) =
2µJµĴ + c

µ2
J + µ2

Ĵ
+ c

·
2σJĴ + c∗

σ2
J + σ2

Ĵ
+ c∗

= l(x) · cs(x),
(12)

where x demotes the pixel index, c and c∗ are two constants
to avoid the denominator becoming zero. The means µJ

, µĴ , standard deviations σJ , σĴ , and covariance σJĴ are
computed by a Gaussian filter. Finally, the operation of MS-
SSIM can be defined as follows

LMS-SSIM = 1− lαP ·
P∏

j=1

[csj ]
βj , (13)

Table 1. The details of the datasets used in our experiments. (w/o
GT) represents the lack of public ground truth for this set.

Datasets Train Validation Test Image Size
NTIRE2020 45 5 5 1200 × 1600
NTIRE2021 25 5 (w/o GT) 5 (w/o GT) 1200 × 1600
NTIRE2023 40 5 (w/o GT) 5 (w/o GT) 4000 × 6000

where P denotes the default parameter of scales.
Adversarial Loss. To improve the generalization ability

of the proposed network, we add the additional adversarial
loss, i.e.,

La = − 1

S

S∑
n=1

log
(
D

(
J − Ĵ

))
, (14)

where D(·) represents the discriminator, S represents the
number of training data.

4. Experiments
In this section, we first describe the datasets, implemen-

tation details, evaluation metrics, and competitors. Then,
we compare the proposed SCANet with other state-of-the-
art dehazing methods. Finally, we conduct the ablation
study to demonstrate the rationality of each module in the
proposed SCANet.

4.1. Experiment Settings

Datasets. We choose NTIRE2020 [1, 2], NTIRE2021
[3], and NTIRE2023 [4] datasets to train and evaluate the
proposed SCANet. The haze patterns in all three datasets
are non-uniformly distributed. Specifically, NTIRE2020
dataset (termed NH-Haze) contains 45 training, 5 valida-
tion, and 5 test image pairs. NTIRE2021 dataset (termed
NH-Haze2) contains 25 training image pairs, 5 validation
hazy images, and 5 test hazy images. NTIRE2023 dataset
contains 40 training image pairs, 5 validation hazy images,
and 5 test hazy images. Note that only the validation and
test sets of NTIRE2020 dataset contain the corresponding
ground truth. More details about these datasets can be found
in Table 1.

Implementation Details. The proposed SCANet is im-
plemented by PyTorch 1.9.1 and trained on a PC with an
Intel(R) Core(TM) i9-13900K CPU @5.80GHz and Nvidia
GeForce RTX 3080 GPU. We use the Adam with exponen-
tial decay rates being β1 = 0.9 and β2 = 0.999 for op-
timization. The initial learning rate and batchsize are set
to 0.0001 and 2, respectively. During the training stage,
we resize the images into 0.5, 0.7, and 1 scales and ran-
domly crop them to several image patches of size 512 ×
512 with a stride of 400. Meanwhile, these image patches
are randomly flipped 0, 90, 180, and 270 degrees. In ad-
dition, we train two models for NTIRE2023 validation and
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Table 2. Quantitative comparisons for non-homogeneous dehazing on NHIRE2020, NHIRE2021, and NHIRE2023 datasets. The best
results are in bold, and the second best are with underline.

Methods NTIRE2020 NTIRE2021 NTIRE2023 Average
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Hazy 11.31 0.4160 11.24 0.5787 8.86 0.4702 10.47 0.4883
(TPAMI’10) DCP [17] 12.35 0.4480 10.57 0.6030 10.98 0.4777 11.30 0.5096
(ICCV’17) AODNet [22] 14.04 0.4450 14.52 0.6740 13.75 0.5619 14.10 0.5603
(ICCV’19) GridDehazeNet [26] 14.78 0.5074 18.05 0.7433 16.85 0.6075 16.56 0.6194
(AAAI’20) FFANet [28] 16.98 0.6105 19.75 0.7925 17.85 0.6485 18.20 0.6838
(CVPRW’21) TNN [37] 17.18 0.6114 20.13 0.8019 18.19 0.6426 18.50 0.6853
(CVPR’22) DeHamer [16] 18.53 0.6201 18.17 0.7677 17.61 0.6051 18.10 0.6693
SCANet 19.52 0.6488 21.14 0.7694 20.44 0.6616 20.37 0.6933

Table 3. FLOPs and Parameters comparisons of all methods.

Methods FLOPs Parameters
(ICCV’17) AODNet [22] 1.68G 1.76K
(ICCV’19) GridDehazeNet [26] 271.95G 702.47K
(AAAI’20) FFANet [28] 4211.91G 4.46M
(CVPRW’21) TNN [37] 1235.84G 50.35M
(CVPR’22) DeHamer [16] 866.96G 29.44M
SCANet 258.63G 2.39M

test sets and NTIRE2020/2021/2023 datasets, respectively.
For NTIRE2023 validation and test sets, we only use 35
training pairs in NTIRE2023 for training. The epoch is set
to 85, and the learning rate decays by 0.5 every 20 epochs.
Due to the large size of the test images, we adopt the Nvidia
A100 GPU for testing. For NTIRE2020, NTIRE2021, and
NTIRE2023 datasets, we select 45 training pairs and 5 val-
idation pairs in NTIRE2020, the first 20 training pairs in
NTIRE2021, and the first 35 training pairs in NTIRE2023
as the train set. The test set is composed of 5 test pairs in
NTIRE2020, the last 5 training pairs in NTIRE2021, and
the last 5 training pairs in NTIRE2023. In this experiment,
the images of NTIRE2023 are compressed to 1/4 (i.e., 1000
× 1500) to ensure a similar size with other datasets. In ad-
dition, the epoch is set to 500, and the learning rate decays
by 0.5 every 150 epochs.

Evaluation Metrics and Competitors. To conduct an
exhaustive analysis of the dehazing performance, we em-
ploy the peak signal-to-noise ratio (PSNR) [33] and struc-
tural similarity index (SSIM) [34] to quantitatively evalu-
ate the restored images. Meanwhile, we compare the pro-
posed SCANet with the state-of-the-art methods, including
a prior-based method (i.e., DCP [17]), a physical model-
based CNN method (i.e., AODNet [22]), three hazy-to-clear
CNN methods (i.e., GridDehazeNet [26], FFANet [28], and
TNN [37]), and a CNN-Transoformer combined method
(i.e., DeHamer [16]).

4.2. Comparisons with the State-of-the-Arts

Results on NTIRE2020/2021/2023. Table 2 presents
the PSNR and SSIM results of various dehazing methods on
NTIRE2020, NTIRE2021, and NTIRE2023 datasets. Prior
knowledge of DCP fails in the non-homogeneous dehazing
task, resulting in relatively low values of PSNR and SSIM.
Learning-based methods show better adaptability in gener-
ating haze-free images, with a significant boost in metrics.
Among these methods, the proposed SCANet achieves sat-
isfactory performance, ranking first in most cases. We also
show the visual comparisons in Figure 6. The results gen-
erated by DCP have the issue of serious color distortion.
AODNet, GridDehazeNet, and FFANet fail to remove haze
completely. The performance of TNN on the NTIRE2023
benchmark falls short of expectations. Specifically, five im-
ages lack sufficient color saturation, while the first image
exhibits overly darkened ground. DeHamer is effective in
haze suppression. However, color restoration and detail
preservation abilities still need improvement. Compared
with other methods, the proposed SCANet exhibits superior
visual performance.

Results on NTIRE2023 Validation and Test Sets. Ac-
cording to our submission on the NTIRE2023 website, our
SCANet can achieve PSNR 21.13dB and SSIM 0.6907 on
the validation set and PSNR 21.75dB and SSIM 0.6955
on the test set. Meanwhile, the visual comparison of our
method and the state-of-the-art on 5 validation and 5 test
images are shown in Figure 7. It can be observed that
DCP, AODNet, and GridDehazeNet perform poorly in non-
homogeneous image dehazing. Although FFANet, TNN,
and DeHamer can partially remove the haze, residues still
exist in dense haze regions. Compared to existing methods,
the proposed SCANet have a more natural performance.
However, our method still cannot fully restore the color and
details of high haze concentration areas.

Complexity Analysis. Table 3 shows the number of net-
work parameters and floating point operations (FLOPs) on
1200 × 1600 images of the proposed method and other
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Figure 6. Visual comparisons of various methods on NTIRE2020, NTIRE2021, and NTIRE2023 datasets.

comparable methods. By comparison, our SCANet has
lower FLOPs and fewer network parameters. To visually
demonstrate the superiority of our method, we compare the
PSNR and parameter amount of different methods in Figure
2. It is worth mentioning that our time complexity is also
relatively modest. It takes an average of 0.1962 seconds
to process a 1200 × 1600 image on the NVIDIA GeForce
RTX 3080 GPU.

4.3. Ablation Analysis

We conduct a series of experiments as an ablation
study to demonstrate the effectiveness of different compo-
nents, including attention generation network (AGN), scene
reconstruction network (SRN), self-paced semi-curricular
learning strategy (SCL), and each loss function. As shown
in Table 4, we design seven models with different con-
figurations and employ NTIRE2020, NTIRE2021, and
NTIRE2023 datasets as both training and test sets.

The quantitative results are presented in Table 4. By
comparing Model (1) and (2), our method achieves per-
formance improvement after adding the attention genera-
tor network (AGN) before the scene reconstruction network
(SRN). This result demonstrates that unlike homogeneous
image dehazing, restoring non-homogeneous images re-
quires the network to be more sensitive to the haze regions.
Moreover, we use La

sl1 to supervise the attention feature

map, resulting in satisfactory improvement in both PSNR
and SSIM by observing Model (2) and (3). The supervi-
sion of the attention map avoids assigning higher weights
to low-importance regions, which can provide better recon-
struction results. Additionally, applying self-paced semi-
curricular learning (SCL) during training leads to the fur-
ther improvement of metrics, which indicates that SCL can
reduce the network’s convergence difficulty and improve its
performance. By comparing the examples shown in Fig-
ure 5, we can find the change from Model (2) to Model (4)
more intuitively. Obviously, our SCL strategy for attention
map constraint can make the SRN more fully focus on the
regions with significant luminance changes and avoid the
distortion issue in the sky region. Furthermore, the usage of
MS-SSIM loss, perceptual loss, and generative adversarial
loss can further enhance the dehazing performance of our
SCANet by comparing Model (5), (6), and (7) in Table 4.

5. Conclusion

In this paper, we provided a robust solution (termed
SCANet) for non-homogeneous image dehazing by effec-
tively extracting non-uniform haze distribution features and
reconstructing the details with high quality. Our attention
generator network and scene reconstruction network work
together in a novel “attention generation-scene reconstruc-
tion” paradigm. Moreover, we proposed a self-paced semi-
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Figure 7. Visual comparisons of various methods on NTIRE2023 validation set (#41 ∼ 45) and test set (#46 ∼ 50).

Table 4. The ablation study of different configurations. The best results are in bold, and the second best are with underline.

Number Methods Lf
sl1 La

sl1 Lp LMS-SSIM La PSNR ↑ SSIM ↑
(1) SRN ✔ 18.84 0.6634
(2) AGN + SRN ✔ 19.29 0.6714
(3) SRN + AGN ✔ ✔ 19.71 0.6787
(4) SRN + AGN + SCL ✔ ✔ 19.92 0.6881
(5) SRN + AGN + SCL ✔ ✔ ✔ 19.85 0.6890
(6) SRN + AGN + SCL ✔ ✔ ✔ ✔ 20.02 0.6957
(7) SRN + AGN + SCL ✔ ✔ ✔ ✔ ✔ 20.37 0.6933

curricular learning-driven attention map generation strategy
to improve the model convergence and reduce learning am-
biguity during the early stage of training. Our proposed
method outperforms many state-of-the-art methods in both
quantitative and qualitative experiments, demonstrating the
effectiveness of our approach. Additionally, ablation analy-
sis confirms the contribution of each component in the over-
all performance of our SCANet. We believe that the pro-
posed method can provide a promising solution for the ap-
plications of real-world non-homogeneous image dehazing.

Future work can extend our method to handle more com-
plex scenarios. Examples include handling multiple types
of haze and integrating our method with other computer vi-
sion tasks.
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