
ProgDTD: Progressive Learned Image Compression
with Double-Tail-Drop Training

Ali Hojjat1, Janek Haberer1, Olaf Landsiedel1,2

1Kiel University, Germany; 2Chalmers University of Technology, Sweden
{aho, jha, ol}@informatik.uni-kiel.de

Abstract

Progressive compression allows images to start loading
as low-resolution versions, becoming clearer as more data
is received. This increases user experience when, for exam-
ple, network connections are slow. Today, most approaches
for image compression, both classical and learned ones,
are designed to be non-progressive. This paper introduces
ProgDTD, a training method that transforms learned, non-
progressive image compression approaches into progressive
ones. The design of ProgDTD is based on the observation
that the information stored within the bottleneck of a com-
pression model commonly varies in importance. To create
a progressive compression model, ProgDTD modifies the
training steps to enforce the model to store the data in the
bottleneck sorted by priority. We achieve progressive com-
pression by transmitting the data in order of its sorted in-
dex. ProgDTD is designed for CNN-based learned image
compression models, does not need additional parameters,
and has a customizable range of progressiveness. For eval-
uation, we apply ProgDTD to the hyperprior model, one
of the most common structures in learned image compres-
sion. Our experimental results show that ProgDTD per-
forms comparably to its non-progressive counterparts and
other state-of-the-art progressive models in terms of MS-
SSIM and accuracy.

1. Introduction

Image compression has been an active research field for
many years and has led to numerous classical compression
methods such as JPEG [41], JPEG 2000 [32], WebP [42]
and BPG [5]. The rise of deep learning [21] inspired new
methods that employ the neural networks’ power for learned
image compression [14, 23, 36, 37]. Among these, particu-
larly the recent success of the variational image compres-
sion led to new, state-of-the-art methods, which often per-
form on par or even better than established, classical and
deep methods [3, 4, 8, 26, 33].

0.02 bpp

Pr
og

DT
D

0.16 bpp 0.18 bpp 0.27 bpp

0.02 bpp

no
n-

pr
og

Ba
llé

0.15 bpp 0.18 bpp 0.26 bpp

0.08 bpp

Ba
llé

0.17 bpp 0.24 bpp 0.26 bpp

Figure 1. Qualitative comparison of reconstructed images from:
ProgDTD (trained with λ = 0.01), non-progressive-Ballé (trained
with λ = 0.0001, 0.001, 0.005, 0.01) and standard-Ballé (trained
with λ = 0.01). ProgDTD and non-progressive-Ballé reconstruct
images of similar quality; meanwhile, removing only a few bits in
standard-Ballé leads to a significant degradation in quality.

Most image compression methods, both classic such as
original JPEG [41], Webp [42], BPG [5] and learned ones
[3, 4, 8, 26], are non-progressive. Thus, these expect the
complete compressed image to be available for decoding.
Such availability of an entire file is, however, a challenge
in many settings: for example, slow network connections
often delay the transmissions. As a result, a user or system
experiences a delay until the image can be reconstructed
for viewing or further processing. Progressive compres-
sion [29] addresses this problem, and the decoder can ob-
tain an initial preview even with a small portion of the data.
Later, by receiving the rest of the bits, the decoder can re-
construct a better-quality image. However, most learned
approaches to image compression are non-progressive, and
only a few are progressive [6, 12, 16, 24, 37].

In this paper, we introduce ProgDTD, a method to
transform learned, non-progressive image compression ap-
proaches into progressive ones. Further, to showcase its ef-
ficiency, we apply ProgDTD to the Ballé [4] architecture,

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1130

which is a widely adopted, state-of-the-art learned image
compression model, and acts as a base architecture for many
recent models [9,26]. The design of ProgDTD builds on the
following observation: Previous research [20,31,43] shows
that the information stored within the bottleneck of a com-
pression model commonly varies in terms of importance,
i.e., its availability impacts the reconstructed image differ-
ently.

To create a progressive compression model, we identify
the most important data for each input within the bottleneck
and transmit these ordered by their significance. For this,
we modify the training steps of the model to enforce it to
store the data in the bottleneck sorted by priority. We build
on the tail-drop technique [20] and, as an example, apply it
to the training of both the latent and hyper latent bottlenecks
of the Ballé model [4]. We call this process double-tail-drop
(DTD).

Our experimental results show that our progressive com-
pression model trained with double-tail-drop has compara-
ble performance in terms of MS-SSIM and accuracy and
has a slight drop in PSNR compared to non-progressive-
Ballé (ensemble of Ballé models trained for different λ)
and other state-of-the-art models. A key benefit of our pro-
gressive model is that we do not add any parameters to the
model. Instead, we modify the training method to sort the
information in the bottleneck in order of importance. Also,
ProgDTD has a customizable range of progressiveness, so
we can choose the desirable bitrate range. Figure 1 shows
a qualitative comparison of ProgDTD, non-progressive-
Ballé and standard-Ballé. It underlines that ProgDTD and
non-progressive-Ballé achieve similar results, whereas the
standard-Ballé model requires the whole latent for a mean-
ingful reconstruction of an image. Overall, the contribu-
tions of ProgDTD are as follows:

1. We introduce ProgDTD, a progressive image compres-
sion method that enables a non-progressive model to
become progressive.

2. ProgDTD is a training approach that does not need ad-
ditional parameters and is designed for learned image
compression.

3. ProgDTD has a customizable range of progressive-
ness.

4. ProgDTD performs on par compared to its non-
progressive version and other state-of-the-art bench-
marks.

The remainder of this paper is structured as follows: In
Section 2, we present related works. Then, in Section 3, we
introduce the design of ProgDTD and its training. In Sec-
tion 4, we evaluate ProgDTD by comparing it to the state-
of-the-art. Section 5 concludes the paper.

2. Related Work
In this section, we introduce the required related work on

learned image compressions, learned variable bitrate com-
pression, and deep progressive image compression.

2.1. Learned image compression

Most of the learned image compression methods are
based on autoencoders or an extension of them. In these
types of networks, an encoder ga(x;ϕg) compresses the in-
put x into a latent space y. In deep image compression,
authors usually call this the AnalysisNetwork. Next, en-
tropy models like Huffman encoding or arithmetic encod-
ing [22] compress and quantize the latent space y to ŷ. Dur-
ing training, random noise often simulates quantization loss
and helps the model to adapt to quantization effects [3].
For decoding, a so called SynthesisNetwork, receives the
bits, recovers ŷ and another network gs(ŷ; θg) reconstructs
x̂.

Ballé et al. [4] introduce a hyperprior for extracting spa-
tial correlation in images. It assumes that correlations in
each image are normal distributions with a mean of zero,
and the task of the hyperprior network is to predict the stan-
dard deviation and the location of these distributions:

pŷ|ẑ(ŷ|ẑ) ∼ N(0,σ2) (1)

Minnen et al. [26] consider these correlations as N(µ,σ2).
Cheng et al. [8] extend this work and assume that these cor-
relations contain multiple distributions and detect them with
a GMM (Gaussian Mixture Model). In other work, Cui et
al. [10] use asymmetric normal distributions N(µ,σ2

1 ,σ
2
2)

to simulate these correlations. Rippel and Bourdev [30],
Tschannen et al. [38], and Agustsson et al. [1] adapt
GANs [13] for image compression, and Nakanishi et al.
[28] use multi-scale autoencoders to compress images at
multiple levels. Nonetheless, deep compression methods
commonly compress images at one specific, fixed bitrate.

2.2. Variable bitrate learned image compression

Some compression methods provide variable bitrates due
to adaptive models [36] or by employing dynamic quantiza-
tion [9, 35]. For example, Yang et al. [46] propose a mod-
ulated network allowing the encoder and decoder architec-
ture to provide variable bitrates. Cai et al. [6] introduce a
CNN-based multi-scale decomposition transformation with
content-adaptive rate allocation for variable bitrates. Yang
et al. [45] use swimmable networks to train one compres-
sion model for different bitrates: At low bitrates, they only
use parts of the network.

2.3. Progressive learned image compression

In the field of progressive, learned compression, many
approaches employ RNNs. For example, Toderici et al.

1131

[36] introduce an iterative LSTM based [15] compression
method. First, it feeds the image to the LSTM-based com-
pression model, calculates the residual, and feeds it again.
After T repetitions, this design results in a T-step progres-
sive compression. In further work, Toderici et al. [37] im-
prove upon this by utilizing a Pixel-RNN [39]. Cai et al. [7]
introduce a progressive compression method based on a
two-level encoder-decoder. The first level encodes the input
image into a basic representation with low quality, and the
second level encodes the input image into a higher-quality
enhancement representation. Gregor et al. [14] introduce a
GAN-based compression method with RNNs which recon-
structs the input image by feeding compressed data to the
generative models. The benefit of GANs is that they can
reconstruct the image even with a small part of the data and
produce a more accurate reconstruction by getting more and
more data. Lee et al. [24] proposes to create a progressive
compression method based on trit-planes.

Most of these progressive methods are specifically de-
signed neural networks for progressiveness and can be very
complex. In this paper, we propose ProgDTD, which is
a training method based on tail-drop [20] (see Figure 2).
We adopt the tail-drop idea in ProgDTD to work with
CNNs and demonstrate that with a hyperprior-based model.
ProgDTD can then add progressiveness without adding any
parameters or complexity and has a customizable range of
progressiveness.

3. Proposed Algorithm
In this section, we introduce ProgDTD, a method to

transform learned, non-progressive image compression ap-
proaches into progressive ones. To demonstrate the effec-
tiveness of our method, we integrate it into the Ballé et
al. [4] architecture, which is a widely adopted, state-of-the-
art learned image compression model, and acts as a base ar-
chitecture for many recent models [9, 26]. Our approach is
not restricted to this particular architecture and is designed
for learned image compression models with multiple latent
representations. In Section 3.1, we briefly introduce and ex-
plain the Ballé model, then in Sections 3.2 and 3.3, we ex-
plain how we design and integrate ProgDTD into the Ballé
architecture.

3.1. Model architecture

As discussed in Section 2, we formulate image compres-
sion as:

y = ga(x;ϕ) (2)
ŷ = Q(y) (3)
x̂ = gs(ŷ;θ) (4)

where x, x̂,y, ŷ and Q are raw images, reconstructed
images, latent representation before quantization, latent

Im
po
rt
an
ce

1

0

62.5 % Drop

37% Drop

12 % Drop

0 % Drop

37 % Drop

75 % Drop

Figure 2. Tail-Drop Training: This image shows an example of the
information distribution in the bottleneck B[8,M,M]. If we train
the model with the tail-drop, the training procedure puts the data
in order of their importance. The colors show the importance of
each filter.

representation after quantization and quantization respec-
tively. Furthermore, ϕ and θ are neural network-based
transformations consisting of convolution, de-convolution,
GDN, and IGDN [2]. As common, we approximate quanti-
zation as a uniform noise U

(
− 1

2 ,
1
2

)
to generate noisy codes

ŷ during training. Ballé et al. define a hyperprior, by intro-
ducing side information z to capture spatial dependencies
among the elements of y, formulated as:

z = ha (y;ϕh) (5)
ẑ = Q(z) (6)

pŷ|ẑ(ŷ | ẑ)← hs (ẑ;θh) (7)

where ha and hs denote the analysis and synthesis in the
auxiliary autoencoder. Further, pŷ|ẑ(ŷ | ẑ) is the estimated
distribution conditioned on ẑ. Like Ballé et al., we use a
normal distribution with a zero mean to extract spatial de-
pendencies:

pŷ|ẑ(ŷ|ẑ) ∼ N(0,σ2) (8)

We use the RD-Loss (rate-distortion loss function) as:

L = R(ŷ) +R(ẑ) + λ · D(x, x̂) (9)

where λ controls the rate-distortion trade-off and differ-
ent λ values corresponded to different bitrates. R(ŷ) and
R(ẑ) denote the consumed bitrate in each of the bottle-
necks. D(x, x̂) denotes the distortion term [8].

3.2. Rateless autoencoder

In ProgDTD, we adjust the training steps to store data in
the bottleneck sorted by significance. Then by transmitting
the filters of the bottleneck ordered by their significance,
we inherently achieve progressive compression. We achieve

1132

Algorithm 1: Double-tail-drop training. The red
text marks our extensions over the original algo-
rithm.

Data: Bottleneck of the latent: Blat[C,Ml,Ml],
Bottleneck of the hyperprior: Bhp[C,Mh,Mh],
Number of batches: Nbatch,
Number of epochs: Nepoch,
Batch size: Nbatch−size

Result: Progressively trained network
for 1 ≤ ei ≤ Nepoch do

for 1 ≤ bi ≤ Nbatch do
for 1 ≤ xi ≤ Nbatch−size do
Blat = ImageAnalysis(D[xi]);
Bhp = HyperAnalysis(Blat);
/* dropping from Tail */
K ← Generate a sample from U(u1, u2);
Bhp[K : C,Mh,Mh] = 0;
Blat[K : C,Ml,Ml] = 0;
Bhp, Php = HyperBottleneck(Blat);
σ = HyperSynthesis(Bhp);
Blat, Plat=ImageBottleneck(Blat, σ);
Php[K : C,Mh,Mh] = 1;
Plat[K : C,Ml,Ml] = 1;
RecImage = ImageAnalysis(Blat);

end
end
L = RDLoss(Rec, Plat, Php);
Back-propagation;
Updating the model parameters θ;

end

this goal by modifying the training steps of the model to en-
force it to store the data in the bottleneck sorted by priority.
We build on the tail-drop technique [20], extend it, and, as
a case study, apply it to the training of both the latent and
hyper latent bottlenecks of the Ballé model [4]. We call this
approach double-tail-drop (DTD).

We define the bottleneck B with C filters of size M ∗M
as B[C,M,M]. Further, B[0:K,M,M] denotes that we keep the
first K filters of the bottleneck and drop the others. For
simplicity, we define the loss function of an autoencoder
with K filter in the bottleneck as:

L(θ, ϕ,K) (10)

We define our loss function as the following multi-
objective optimization problem:

∀K∈{0,1,2,...,N} minL(θ, ϕ,K) (11)

A naı̈ve solution is weighted sum optimization to reduce

the problem to a single objective function as follows:

min
θ,ϕ

N∑
K=1

ωLL(θ, ϕ,K) (12)

Koike-Akino et al. [20] propose that stochastic tail-drop
regularization during training can be interpreted as a weight
ωL for MLP neural networks. During training, for each
batch, they draw a random number K from the uniform
distribution U(0, 1) and then drop K% last filters from the
bottleneck iteratively for T times. In other words, they
calculate the loss T times for each batch. The complex-
ity of this training is in order of O(epoch ∗ batch ∗ T ∗
Closs−complexity). Their approach is specifically designed
for MLP-based neural networks, is computationally heavy,
and is not directly applicable to multi-stage autoencoders
with auxiliary autoencoders and RD-Loss [3, 4, 26]. In the
next section, we close this gap.

3.3. ProgDTD

In this section, we introduce our double-tail-drop algo-
rithm and how we integrate it into multi-stage autoencoders
[3, 4, 26]. Then, we discuss the progressive behavior of our
model and explain how we extend the RD-Loss function to
support double-tail-drop.

3.3.1 Double-tail-drop

We extend the concept of tail-drop [20] to enable pro-
gressive image compression. During training, for each in-
put image, we draw a random number K uniformly from
U(u1, u2) and drop K% of the tail of the bottleneck for that
specific image. If we do the tail dropping for each image of
each batch, we distribute the knowledge like a CDF of uni-
form distributions U(u1, u2). Our experimentation results
show that the uniform distribution performs best among the
common distributions. Furthermore, when we calculate the
loss for each batch, we drop different percentages of each
image in the batch. This allows us to optimize for all of the
images in the batch simultaneously by calculating the gra-
dient signals in a way that considers different tail drops to
optimize the loss function (Eq. 11).

Figure 2 shows an example of the tail-drop for a batch of
size 6 and 8 filters in the bottleneck. With tail-drop training,
we force the model to update gradient signals so that the
first filters have more important information compared to
the later filters. This is because the first filters are involved
more frequently in the model training and dropped less of-
ten, whereas the final filters have less knowledge due to be-
ing dropped more frequently. The complexity of ProgDTD
is in order of O(epoch ∗ T ∗ Closs−complexity).

1133

Image
Analysis

Hyper
Analysis

Hyper
Synthesis

Image
Synthesis

Ta
ilD

ro
p

QIn
pu

t
Im

ag
e

Re
c

Im
ag

e !𝑥

𝑥

𝑦

𝑧

!𝑦 �̂�

!𝑦 �̂�

!σ

010100
011100
101010

AE

AD

AE

AD

Q

BitRate
Controller

Ta
ilD

ro
p

010100
011100
101010

Figure 3. The network architecture of the hyperprior model [4] with double-tail-drop. Quantization is represented by Q, and arithmetic
encoding and decoding are denoted by AE and AD, respectively. With the bitrate controller, we can determine the bitrate that we want to
have.

3.3.2 Double-tail-drop for ImageAnalysis and Hyper-
Analysis networks

ProgDTD is designed for CNN-based compression net-
works. To properly evaluate the benefits of ProgDTD, we
employ the hyperprior model [4], the fundamental architec-
ture for most of today’s learned image techniques. Figure 3
shows the position of the double-tail-drop in the Ballé (hy-
perprior) model. We employ two different tail-drop blocks:
one for the latent and one for the hyperlatent. As shown
in Algorithm 1, we drop a similar percentage in both tail-
drop blocks. Therefore we only employ one random num-
ber generator. For example, if we keep 30 percent of the
latent bottleneck Blat, we also keep 30 percent of the hy-
perlatent bottleneck Bhp. Nevertheless, we can apply tail-
drop with different random number generators, but based
on our results, the single generator performs better. The
reason is that we need to train the model in a way that puts
more important information in both bottlenecks simultane-
ously, which means if we want to send K% percent of both
bottlenecks, it can select the most important parts of the hy-
perprior and the latent at the same time. Algorithm 1 shows
the procedure of tail-drop training.

3.3.3 Exploring progressive behavior

As noted in the previous sections, we need to sample from
U(u1, u2) during the training of ProgDTD, and by set-
ting the range (u1, u2), we specify the range of scalabil-
ity. ProgDTD has the following limitation: If we set a wide
range of progressiveness, we lose some performance. For
example, if we set (u1 = 0, u2 = 1), our model can produce
scalable results starting from less than 0.01 bpp. However,
if we set (u1 = 0.3, u2 = 1), we can achieve better per-

formance with a narrower range of progressiveness. Thus,
by considering the application of the compression model,
we can specify the target bitrate range and train the model
on that specific range. In our evaluation in Section 4, we
further discuss and evaluate this effect, see Figures 6b, 5a,
5b.

After training our model with ProgDTD, we send data
in the bottlenecks according to its index. During training,
we drop values by setting them to zero. Further, on the
decoder side, we know the positions of the missing filters
and thus initialize these as zeros before feeding them with
the received filters into the decoder. Overall, this technique
leads to a significant reduction in the size of the compressed
images.

As discussed in Section 2, most of the existing deep
progressive models have limited steps in their scalability
of progressiveness [7, 36, 37, 40]. In contrast, in our ap-
proach, we achieve C × (u2 − u1) steps of scalability with
Blat[C,M,M] as a bottleneck and U(u1, u2) as a random
number generator. For example, in our implementation,
which we adapted from Ballé [4], we have 196 progressive
steps with U(u1 = 0, u2 = 1) and 129 progressive steps
with U(u1 = 0.3, u2 = 1) (see Figures 6b, 5a, 5b).

3.3.4 Rate Distortion loss function

Since we do not send the dropped values to the decoder,
we must change the bitrate calculator to consider this drop-
ping during training. As shown in the Algorithm 1, we
remove the effect of dropped values by setting Plat[K :
C,Mh,Mh] and Php[K : C,Mh,Mh] to one.

Then we can rewrite Eq. 9 as:

1134

0.0 0.2 0.4 0.6 0.8 1.0
bpp

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
S-

SS
IM

 (d
B

sc
al

e)

non-prog Ballé
Ballé 0.01
Ballé 0.05
ProgDTD 0.01 U(0,1)
ProgDTD 0.05 U(0,1)
ProgDTD 0.05 U(0.3,1)
Torderici
DPICT
JPEG2000
Jhonston

(a) RD curves (MS-SSIM)

0.0 0.2 0.4 0.6 0.8 1.0
bpp

15

20

25

30

35

PS
NR

non-prog Ballé
Ballé 0.01
Ballé 0.05
ProgDTD 0.01 U(0,1)
ProgDTD 0.05 U(0,1)
ProgDTD 0.05 U(0.3,1)
Torderici
DPICT
JPEG2000
Jhonston

(b) RD curves (PSNR)

Figure 4. RD performance (MS-SSIM and PSNR) comparison of the proposed ProgDTD (trained with λ = 0.01, 0.05 and also with
U(0, 1) and U(0.3, 1) as the random number generator), non-progressive-Ballé (trained with λ = 0.0001, 0.001, 0.005, 0.01, 0.05) and
standard-Ballé (trained with λ = 0.01, 0.05), DPICT (2022) [24], JPEG2000 [32], Johnston (2018) et al. [16] and Torderici (2015) et
al. [36] on the KODAK dataset. Note that the non-progressive-Ballé (dashed line) is a collection of Ballé models which have been trained
with different λ, and it is not progressive.

0.0 0.5 1.0 1.5 2.0 2.5
bpp

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

M
S-

SS
IM

 (d
B

sc
al

e)

ProgDTD 0.01 U(0,1)
ProgDTD 0.05 U(0,1)
ProgDTD 0.05 U(0.3,1)
ProgDTD 0.1 U(0,1)
ProgDTD 0.1 U(0.3,1)
ProgDTD 1.0 U(0,1)

(a) RD curves (MS-SSIM) of ProgDTD

0.0 0.5 1.0 1.5 2.0 2.5
bpp

22

24

26

28

30

32

34

36

PS
NR

 (d
B

sc
al

e)

ProgDTD 0.01 U(0,1)
ProgDTD 0.05 U(0,1)
ProgDTD 0.05 U(0.3,1)
ProgDTD 0.1 U(0,1)
ProgDTD 0.1 U(0.3,1)
ProgDTD 1.0 U(0,1)

(b) RD curves (PSNR) of ProgDTD

Figure 5. RD performance (MS-SSIM and PSNR) comparison of the proposed ProgDTD (trained with λ = 0.01, 0.05, 0.1, 1.0 and also
with U(0, 1) and U(0.3, 1) as the random number generator) on the KODAK dataset.

R+ λ ·D =Ex∼px [− log2 p′ŷ(ŷ)]
+Ex∼px [− log2 p′ẑ(ẑ)]
+λ · Ex∼px∥x− x̂∥22

(13)

where p′ẑ(ẑ) and p′ŷ(ŷ) are a modified version of pẑ(ẑ)
and pŷ(ŷ).

4. Evaluation
In this section, we evaluate the performance of

ProgDTD. We begin with a brief discussion of implemen-
tation details and datasets. Next, we present parameters be-
fore focusing on the performance evaluation. We conclude
this section with a discussion of the results.

4.1. Implementation and Datasets

For the model architecture, we build on the Ballé model
[4] and integrate ProgDTD into the implementation of the

1135

0.0 0.2 0.4 0.6 0.8
bpp

0.0

0.2

0.4

0.6

0.8

TO
P-

5
AC

C

non-prog Ballé
Ballé 0.01
Ballé 0.05
ProgDTD 0.01 U(0,1)
ProgDTD 0.05 U(0,1)
ProgDTD 0.05 U(0.3,1)

(a) RD curves (ACC)

0.0 0.5 1.0 1.5 2.0 2.5
bpp

0.2

0.4

0.6

0.8

TO
P-

5
AC

C

ProgDTD 0.01 U(0,1)
ProgDTD 0.05 U(0,1)
ProgDTD 0.05 U(0.3,1)
ProgDTD 0.1 U(0,1)
ProgDTD 0.1 U(0.3,1)
ProgDTD 1.0 U(0,1)

(b) RD curves (ACC) of ProgDTD

Figure 6. RA (Rate-Accuracy) performance of ProgDTD with same configuration like 4a, 4b, 5b, 5a. Note that the non-progressive-Ballé
(dashed line) is a collection of Ballé models which have been trained with different λ, and it is not progressive.

Ballé model by Facebook Research [27]. As datasets, we
use the Vimeo90k dataset [44] for training, and both the
KODAK [19] and ImageNet [11] datasets for evaluation.
For training, we extract 30,000 images with 256 × 256
patches from the Vimeo dataset, and we use the Adam [17]
optimizer with a batch size of 4 and a learning rate of
0.0001. We train the model for 150 epochs using MSE
as the loss function. As typical, we evaluate ProgDTD on
the KODAK dataset, which consists of 24 images of res-
olution 512 × 768. We resize the images to 512 × 512
and then extract four patches with a size of 256 × 256
each. Finally, we calculate the bitrates by bits per pixel
and evaluate our model using PSNR and MS-SSIM as met-
rics. As image compression is often combined with other
tasks such as classification, we – in addition – evaluate the
classification accuracy of EfficientNet-B0 [34] on the Im-
ageNet [11] dataset, which gets the reconstructed images
from ProgDTD as inputs.

4.2. Evaluation Setup

To evaluate our approach, we train our model with
λ = 0.01, 0.05 and the Ballé model with λ =
0.0001, 0.001, 0.005, 0.01, 0.05 and utilize U(0, 1) and
U(0.3, 1) as the ranges for random number generation in our
filters. First, we compare ProgDTD with non-progressive-
Ballé, trained for different lambdas, to show that ProgDTD
achieves comparable performance across different bitrates.
Second, since ProgDTD provides progressive image com-
pression, we compare our model and the standard Ballé
model with the same scenario of sending each filter by its
index. We call this standard-Ballé and show that it fails to
achieve good performance when reducing the bitrate.

4.3. RD-curves with MS-SSIM and PSNR

As discussed in the design section, ProgDTD has a trade-
off that needs to be evaluated: Prioritizing a broader range
of progressiveness will come at the cost of losing some per-
formance. Conversely, if we limit the range of progressive-
ness, we achieve better performance. Figure 4a presents
MS-SSIM and shows that ProgDTDλ=0.05

U(0,1) , which has
been trained with λ = 0.05 and U(0, 1), has a perfor-
mance closed to non-progressive-Ballé. In other words,
ProgDTDλ=0.05

U(0,1) provides progressive compression and
achieves a compression quality with a slight drop in MS-
SSIM when compared to the standard Ballé which has been
trained separately for different λ. We can compensate for
this decline in performance by limiting the range of the ran-
dom number generator U(u1, u2) and thereby limiting the
degree of progressiveness. For example, Figure 4a shows
that ProgDTDλ=0.05

U(0.3,1) reaches the same performance as
non-progressive-Ballé.

Next, we evaluate PSNR. Figure 4b shows that ProgDTD
can not reach the performance of non-progressive-Ballé in
terms of PSNR. This is due to the following reason: As
ProgDTD utilizes the tail-drop approach for training, the
last filters of the bottleneck are less involved in the training
and therefore receive less gradient to optimize. This leads
to the consequence that we can not use the full capacity of
the bottleneck. Since PSNR focuses on the actual values,
and we do not use the full capacity of the bottleneck, this
explains the decline in PSNR when compared to the perfor-
mance non-progressive-Ballé,

As discussed in Section 3, ProgDTD achieves progres-
sive compression by sending filters based on their index. In
Figures 4a and 4b we compare our model with standard-

1136

Ballé (trained separately for λ = 0.01, 0.05), which shows
the result of the standard Ballé model when we drop fil-
ters based on their index. Our results show that – unlike
standard-Ballé – our model has a graceful decrease in terms
of MS-SSIM and PSNR and outperforms standard-Ballé,
showing the effect of double-tail-drop training. To appro-
priately evaluate the performance of ProgDTD, we compare
it further to selected state-of-the-art models like DPICT
(2022) [24], JPEG2000 [32], Johnston (2018) et al. [16] and
Torderici (2015) et al. [36]. Figure 4a shows that our results
are comparable to or better than those of the aforementioned
models.

To visually evaluate the reconstruction performance of
ProgDTD and compare it to state of the art, we feed
one sample from the KODAK dataset to ProgDTD, non-
progressive-Ballé and standard-Ballé. Figure 1 plots the re-
constructed image for multiple compression levels. It shows
that ProgDTD and non-progressive-Ballé have a similar re-
construction result, meanwhile, the standard-Ballé model
does not have any good reconstruction as soon as we drop
from the bottleneck.

4.4. RD-curve with accuracy

One of the use cases of image and video compression is
for AI tasks. For example, suppose we have an edge device
that does not have the required hardware capability to run a
classification task but can compress and send data to a pow-
erful server over a network connection with variable band-
width [18, 25, 47, 48]. In such a case of variable bandwidth
(e.g., cellular connectivity) and especially when classifica-
tion tasks have a deadline, we argue that progressive image
compression provides substantial benefits.

In this scenario, we care about classification accuracy in-
stead of reconstruction metrics like PSNR and MS-SSIM,
which we discussed before. We feed the reconstructed im-
age to EfficientNet-B0 [34] and calculate the top-5 accuracy
to evaluate this. Figure 6a shows that ProgDTDλ=0.01

U(0,1)

and ProgDTDλ=0.05
U(0.3,1) with the smaller scalability ranges

outperform non-progressive-Ballé, while ProgDTDλ=0.05
U(0,1)

with the larger scalability range from 0 bpp to 1 bpp, has on
par performance compared to non-progressive-Ballé. More-
over, ProgDTD outperforms standard-Ballé since standard-
Ballé does not deal well with dropping parts of the bottle-
neck.

4.5. Discussion

Overall, our evaluation results show that ProgDTD
achieves a good and often even a comparable performance
compared to its non-progressive counterpart. However, de-
spite its benefits, the design of ProgDTD is limited. We
train the model by utilizing tail-drop, and by dropping from
the tail of the bottleneck, we are forcing the model to put
the most important information in the first filters. Because

of this, the last filters in the bottleneck are less involved in
the model training, and they will get less gradient to opti-
mize. In other words, with ProgDTD, we do not use the
full capacity of the bottleneck, as shown in Figures 5b, 5a,
and 6b. If we train our model with a high λ, we will get an
increased range of scalability, but at the same time, we lose
some performance in the smaller bitrates. In contrast, if we
train with a smaller λ, we achieve better performance at the
same bpp, but we have limited our progressiveness.

4.6. Efficiency of ProgDTD

As we mentioned, ProgDTD is a training method that
transforms non-progressive compression models to progres-
sive ones and does not add any parameters or complexity
to the base model. Therefore, the encoding and decoding
times remain the same. Like other learned progressive com-
pression models [24, 36], we only add decoding time by
iterating the decoder when we want to load an image pro-
gressively. However, when receiving incomplete data due to
time-critical constraints, by running the decoder only once
after the cut-off time, we can have a preview of the image
even with a small portion of the data, which would not work
for a non-progressive model, as shown in Figures 4a, 4b,6a.

5. Conclusions

This paper presents ProgDTD, a training approach that
transforms non-progressive image compression methods
into progressive ones. The idea behind ProgDTD is based
on the fact that information stored within the bottleneck of a
compression model can have varying levels of importance.
ProgDTD modifies the training steps to prioritize data stor-
age in the bottleneck based on its importance and transmits
the data based on their level of importance to achieve pro-
gressive compression. This technique is designed for CNN-
based learned image compression models and requires no
additional parameters. We use the hyperprior model, a fun-
damental structure of learned image compression methods,
to evaluate the effectiveness of ProgDTD. Our experimental
results show that ProgDTD performs comparably to its non-
progressive counterparts and other state-of-the-art progres-
sive models in terms of MS-SSIM and accuracy. For our fu-
ture work, we will explore the performance of ProgDTD on
other learned compression models to verify that ProgDTD
works with any CNN-based model.

Acknowledgements

This project has received funding from the Federal Min-
istry for Digital and Transport under the CAPTN-Förde 5G
project grant no. 45FGU139 H and Federal Ministry for
Economic Affairs and Climate Action under the Marispace-
X project grant no. 68GX21002E.

1137

References
[1] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative adversar-
ial networks for extreme learned image compression. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 221–231, 2019. 2

[2] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Den-
sity modeling of images using a generalized normalization
transformation. arXiv preprint arXiv:1511.06281, 2015. 3

[3] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.
End-to-end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016. 1, 2, 4

[4] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 1, 2, 3, 4, 5, 6

[5] Bpg image format. https://bellard.org/bpg/. Ac-
cessed: 2023-02-14. 1

[6] Chunlei Cai, Li Chen, Xiaoyun Zhang, and Zhiyong Gao.
Efficient variable rate image compression with multi-scale
decomposition network. IEEE Transactions on Circuits and
Systems for Video Technology, 29(12):3687–3700, 2018. 1,
2

[7] Chunlei Cai, Li Chen, Xiaoyun Zhang, Guo Lu, and Zhiyong
Gao. A novel deep progressive image compression frame-
work. In 2019 Picture Coding Symposium (PCS), pages 1–5.
IEEE, 2019. 3, 5

[8] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7939–7948, 2020. 1, 2, 3

[9] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable
rate deep image compression with a conditional autoencoder.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3146–3154, 2019. 2, 3

[10] Ze Cui, Jing Wang, Shangyin Gao, Tiansheng Guo, Yihui
Feng, and Bo Bai. Asymmetric gained deep image com-
pression with continuous rate adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10532–10541, 2021. 2

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 7

[12] Enmao Diao, Jie Ding, and Vahid Tarokh. Drasic: Dis-
tributed recurrent autoencoder for scalable image compres-
sion. In 2020 Data Compression Conference (DCC), pages
3–12. IEEE, 2020. 1

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[14] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo
Danihelka, and Daan Wierstra. Towards conceptual com-
pression. Advances In Neural Information Processing Sys-
tems, 29, 2016. 1, 3

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 3

[16] Nick Johnston, Damien Vincent, David Minnen, Michele
Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel
Shor, and George Toderici. Improved lossy image com-
pression with priming and spatially adaptive bit rates for re-
current networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4385–
4393, 2018. 1, 6, 8

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 7

[18] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and
Saibal Mukhopadhyay. Edge-host partitioning of deep
neural networks with feature space encoding for resource-
constrained internet-of-things platforms. In 2018 15th IEEE
International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pages 1–6. IEEE, 2018. 8

[19] Eastman kodak (1993). kodak lossless true color image suite
(photocd pcd0992). https://r0k.us/graphics/
kodak. 7

[20] Toshiaki Koike-Akino and Ye Wang. Stochastic bottleneck:
Rateless auto-encoder for flexible dimensionality reduction.
In 2020 IEEE International Symposium on Information The-
ory (ISIT), pages 2735–2740. IEEE, 2020. 2, 3, 4

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 1

[22] Glen Langdon and Jorma Rissanen. Compression of black-
white images with arithmetic coding. IEEE Transactions on
Communications, 29(6):858–867, 1981. 2

[23] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.
Context-adaptive entropy model for end-to-end optimized
image compression. arXiv preprint arXiv:1809.10452, 2018.
1

[24] Jae-Han Lee, Seungmin Jeon, Kwang Pyo Choi, Youngo
Park, and Chang-Su Kim. Dpict: Deep progressive im-
age compression using trit-planes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16113–16122, 2022. 1, 3, 6, 8

[25] Hongshan Li, Chenghao Hu, Jingyan Jiang, Zhi Wang,
Yonggang Wen, and Wenwu Zhu. Jalad: Joint accuracy-
and latency-aware deep structure decoupling for edge-cloud
execution. In 2018 IEEE 24th international conference on
parallel and distributed systems (ICPADS), pages 671–678.
IEEE, 2018. 8

[26] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 1, 2, 3, 4

[27] Matthew Muckley, Jordan Juravsky, Daniel Severo, Mannat
Singh, Quentin Duval, and Karen Ullrich. Neuralcompres-
sion. https://github.com/facebookresearch/
NeuralCompression, 2021. 7

[28] Ken M Nakanishi, Shin-ichi Maeda, Takeru Miyato, and
Daisuke Okanohara. Neural multi-scale image compression.
In Computer Vision–ACCV 2018: 14th Asian Conference on

1138

Computer Vision, Perth, Australia, December 2–6, 2018, Re-
vised Selected Papers, Part VI 14, pages 718–732. Springer,
2019. 2

[29] J-R Ohm. Advances in scalable video coding. Proceedings
of the IEEE, 93(1):42–56, 2005. 1

[30] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-
age compression. In International Conference on Machine
Learning, pages 2922–2930. PMLR, 2017. 2

[31] Matthias Scholz, Martin Fraunholz, and Joachim Selbig.
Nonlinear principal component analysis: neural network
models and applications. In Principal manifolds for data vi-
sualization and dimension reduction, pages 44–67. Springer,
2008. 2

[32] Athanassios Skodras, Charilaos Christopoulos, and Touradj
Ebrahimi. The jpeg 2000 still image compression standard.
IEEE Signal processing magazine, 18(5):36–58, 2001. 1, 6,
8

[33] Rige Su, Zhengxue Cheng, Heming Sun, and Jiro Katto.
Scalable learned image compression with a recurrent neu-
ral networks-based hyperprior. In 2020 IEEE International
Conference on Image Processing (ICIP), pages 3369–3373.
IEEE, 2020. 1

[34] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 7, 8

[35] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc
Huszár. Lossy image compression with compressive autoen-
coders. arXiv preprint arXiv:1703.00395, 2017. 2

[36] George Toderici, Sean M O’Malley, Sung Jin Hwang,
Damien Vincent, David Minnen, Shumeet Baluja, Michele
Covell, and Rahul Sukthankar. Variable rate image com-
pression with recurrent neural networks. arXiv preprint
arXiv:1511.06085, 2015. 1, 2, 3, 5, 6, 8

[37] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Covell.
Full resolution image compression with recurrent neural net-
works. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 5306–5314, 2017. 1,
3, 5

[38] Michael Tschannen, Eirikur Agustsson, and Mario Lucic.
Deep generative models for distribution-preserving lossy
compression. Advances in neural information processing
systems, 31, 2018. 2

[39] Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In Interna-
tional conference on machine learning, pages 1747–1756.
PMLR, 2016. 3

[40] Gregory K Wallace. The jpeg still picture compression stan-
dard. Communications of the ACM, 34(4):30–44, 1991. 5

[41] Gregory K Wallace. The jpeg still picture compression
standard. IEEE transactions on consumer electronics,
38(1):xviii–xxxiv, 1992. 1

[42] Webp. https : / / developers . google . com /
speed/webp/docs/compression. Accessed: 2023-
02-14. 1

[43] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent labora-
tory systems, 2(1-3):37–52, 1987. 2

[44] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision, 127:1106–
1125, 2019. 7

[45] Fei Yang, Luis Herranz, Yongmei Cheng, and Mikhail G
Mozerov. Slimmable compressive autoencoders for practical
neural image compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4998–5007, 2021. 2

[46] Fei Yang, Luis Herranz, Joost Van De Weijer, José A Iglesias
Guitián, Antonio M López, and Mikhail G Mozerov. Vari-
able rate deep image compression with modulated autoen-
coder. IEEE Signal Processing Letters, 27:331–335, 2020.
2

[47] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang,
Shengzhong Liu, Huajie Shao, and Tarek Abdelzaher. Deep
compressive offloading: Speeding up neural network in-
ference by trading edge computation for network latency.
In Proceedings of the 18th Conference on Embedded Net-
worked Sensor Systems, pages 476–488, 2020. 8

[48] Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu,
Dongxin Liu, Lu Su, and Tarek Abdelzaher. Fastdeepiot:
Towards understanding and optimizing neural network exe-
cution time on mobile and embedded devices. In Proceed-
ings of the 16th ACM Conference on Embedded Networked
Sensor Systems, pages 278–291, 2018. 8

1139

