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Abstract

Light Field (LF) cameras capture rich information in 4D
LF images by recording both intensity and angular direc-
tions, making it crucial to learn the inherent spatial-angular
correlation in low-resolution (LR) images for superior re-
sults. Despite impressive progress made by several CNN-
based deep methods and pioneering Transformer-based
methods for LF image super resolution (SR), most of them
fail to fully leverage the LF spatial-angular correlation and
tend to perform poorly in scenes with varying disparities.
In this paper, we propose a hybrid method called DistgEPIT
that implements an enhanced disparity learning mechanism
with both convolution-based and transformer-based mod-
ules. It enables the capture of angular correlation, refine-
ment of adjacent disparities, and extraction of essential spa-
tial features. Additionally, we introduce a Position-Sensitive
Windowing (PSW) strategy to maintain consistency of dis-
parity between the training and inference stages, which
yields an average PSNR gain of 0.2 dB by replacing the
traditional padding and windowing method. Extensive ex-
periments with ablation studies demonstrate the effective-
ness of our proposed method, which ranked 1st place in the
NITRE2023 LF image SR challenge. The code is available
at https://github.com/OpenMeow/NTIRE23_LFSR_
DistgEPIT.

1. Introduction
Light Field cameras [2] capture light rays from a scene

in multiple directions, resulting in a more realistic 4D rep-
resentation than traditional 2D images. This technology
has a wide range of applications, such as post-capture re-
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Figure 1. Super-resolved sample visualization. The red arrow
highlights the major difference among DistgSSR [38], EPIT [27]
and DistgEPIT (proposed), where our method produces clearer de-
tails and sharper textures.

focusing [41], [2], [60], 3D reconstruction [3], [53], depth
estimation [59], [17], [20], [23], de-occlusion [40], [56]
and virtual reality [9], [51]. However, due to sensor lim-
itations, there is a trade-off between spatial and angular
resolution, making high-resolution LF images essential for
many applications. LF images suffer from low spatial res-
olution, necessitating LF image super-resolution (SR) to
leverage additional angular information and produce high-
resolution SAIs with more details. Several CNN-based
and Transformer-based LF methods have been proposed,
achieving impressive progress. However, most of them fail
to fully leverage the LF spatial-angular correlation and en-
counter performance bottlenecks in scenes with varying dis-
parities.

In general, neighboring regions of the same pixel posi-
tion in different sub-aperture images exhibit similar struc-
tural relationships. Therefore, a large number of CNN-
based methods have been used, benefiting from their excel-
lent local representation capability. For instance, [50] pro-
posed LFCNN as the first CNN-based LF image SR method
in the deep learning era. Subsequently, different works have
further improved the SR performance through various CNN
architectures. For example, [52] adopted a combined CNN
to enhance Epipolar Plane Images (EPIs), [46] fused a set
of sheared EPIs with CNN, [6] introduced a spatial-angular
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separable convolution, and [55] used a residual CNN archi-
tecture. Recently, learning angular information has received
more attention in performance improvement. For instance,
[38] proposed a generic mechanism to disentangle 4D LF
data into a subspace and fully addressed the varying dispar-
ities caused by the angular dimension. In addition, [36]
integrated such a disentangling mechanism and extended it
to multiple degradations.

However, the position over boundaries presents a large
disparity in light field images, which requires the method
to aggregate remote features among different SAIs. There-
fore, transformer-based methods are proposed to effectively
model long-range information. Referring to prior works,
LFT [26] successfully adapted Transformer into LF image
processing, [27] proposed EPIT to learn better spatial-
angular correlation through re-organized EPIs. Regarding
the different advantages existed in both CNN-based and
transformer-based network, we managed to incorporate the
two kinds of architectures to address both adjacent and
long-ranged disparities.

In addition, we found that the general padding method
used in most SISR task can destroy the disparity relation-
ship and produce worse predictions, since the sub-aperture
views from LF cameras have strict optical disparity con-
straints. Therefore, we propose a Position-Sensitive Win-
dowing (PSW) operation that maintains disparity structural
consistency in the SAI subspace during windowing, without
additional padding and disparity variations.

Our main contribution can be summarized as:

• We combine a convolution-based local correlation
module and a transformer-based non-local correlation
module to model adjacent and long-range disparity
variations, resulting in finer details and textures;

• We introduce the Position-Sensitive Windowing
(PSW) operation to address the issue of the disparity
structure breaking caused by general padding methods,
achieving a gain of 0.2 dB in average PSNR;

• Our method obtains state-of-the-art results with an av-
erage PSNR of 30.66 dB across real and synthetic
datasets, and ranked first place in NTIRE 2023 Light
Field Super Resolution Challenge [37].

2. Related Work
LF image SR is a long term research topic, the ear-

lier works followed different formulation theories yet tra-
ditional paradigm to resolve the task: [2, 44] conducted
variational analysis to reconstruct super-resolved texture,
[1, 12, 31] chose to focus on patches while [31] adopted
a Gaussian mixture model (GMM), [12] learned linear pro-
jections from patch-volumes, [1] used BM3D and extended
it into the proposed LFBM5D as a patches filter, [14] pro-
posed a graph-based strategy. All above earlier works ad-

vanced the LF image SR research but their performance
were also limited due to the hand-crafted image priors were
incapable of extracting spatial features effectively.

Therefore CNN-based LR image SR approaches became
dominant in deep learning era. [50], [15] became the earli-
est works that adopted CNNs. Then [52] used a combined
network where a SISR CNN designed for SAIs spatial res-
olution enhancing and another designed for Epipolar Plane
Images (EPIs) learning. [55] used residual convolutional
neural networks to further improve spatial feature extraction
and [13] used to restore LF low-rank prior. [18] contin-
ued spatial SR learning via an All-to-One network including
combinatorial geometry embedding and structural consis-
tency regularization module for parallax preservation. [35]
introduced novel bidirectional recurrent CNN, [6] utilized
spatial-angular separable (SAS) convolutions as approxi-
mating 4D convolution and [8] used CNN to aggregate
warped SAIs, [42] proposed deformable convolution net-
work LF-DFnet. More recently, [47] and [7] continued im-
proving this task with zero-shot learning, [36] expanded the
capability of handling various degradations among LF im-
ages in their proposed LF-DANet, [38] proposed DistgSSR
network and introduced a generic yet effective disentan-
gling mechanism through Spatial/Angular/Epipolar Plane
Feature Extractors.

Recently, due to the long-range modeling ability,
transformer-based model is widely applied on varied vision
tasks. Vision Transformers such as ViT [10] for image
classification, DETR [4] for object detection, SETR [58]
for semantic segmentation, had achieved impressive perfor-
mance in basic computer vision tasks. For low-level vision
task, transformer-based methods also achieved an excellent
performance [5,19,24,25,30,43,48]. Benefit from the long-
range modeling ability for large disparity variations, Liang
etc [26] pointed out the deficiency of CNN and designed
two Transformers, one for incorporating angular informa-
tion among different views and another for capturing spatial
information. Most recent EPIT [27] expanded deeper into
the large disparity variations existed in LF image, modeled
the long-range dependencies over EPIs.

3. Method

3.1. Network Design

Inspired by prior works [27, 38], we propose the Dist-
gEPIT network, which incorporates a correlation module
to learn correspondence relationships between sub-views in
both horizontal and vertical directions, a local correlation
module to model precise spatial-angular information, plus
a hierarchical fusion strategy to optimize performance. The
overall architecture is presented in Figure 2.

In general, a light field image is expressed as a 4D ten-
sor I(u, v, h, w) ∈ RU×V×H×W , where H and W denote
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Figure 2. Architecture for our proposed DistgEPIT. Given SAIs as inputs, we adopt Bicubic Upsampling to restore the low-frequency
content of the original images. For feature acquisition, we design a Transformer block-based Correlation Module to capture long-range
disparity information. Meanwhile, we transform SAIs into Macro-Pixel Image (MacPI) views and leverage multiple CNN feature extractors
to further refine high-frequency details and textures. During the final stage, we combine upsampled SAIs through Hierarchical Fusion to
obtain ultimate super-resolved SAI results.

the spatial dimensions, and U and V denote the horizon-
tal and vertical angular dimensions. Given a LR SAI ar-
ray ISAI

LR ∈ RUH×VW , the network finally outputs a HR
SAI array ISAI

HR ∈ RαAH×αAW , where α denotes an up-
sampled factor.

Non-Local Correlation Learning. In scenes with large
disparity variations, unsatisfactory correlation learning can
leads to a significant performance gap. To overcome this,
we leverage the long-range modeling ability of the Trans-
former structure and adopt Epipolar Plane Images (EPIs)
views in the first-stage feature learning, as previously pro-
posed by methods like [27]. In EPI views, features are rep-
resented using oriented lines, which can encode disparity
values effectively.

Initially, the low-resolution 4D light field (LF) image is
upsampled using bicubic interpolation to a size of αH ×
αW . Meanwhile, it is converted to Fin ∈ R1×UV×H×W

format and passed through a series of 1 × 3 × 3 spatial
convolutional layers with Leaky ReLU activation to ob-
tain a high-dimensional feature representation as Finit ∈
RC×UV×H×W . The number of channels in all convolu-
tional layers is set to C for stable learning in restoration
tasks.

Then the initial feature Finit is fed into a module to cap-
ture long-range information from the epipolar line. We fol-
low the approach of EPIT [27] and define a series of cas-
cading blocks as follows:

FEPI
trans = MC,Bt,U,V

trans (FEPI
init ) (1)

Where, C denotes the number of channels, Bt denotes the

number of blocks, and U and V denote the angular reso-
lution. Each cascading block consists of ordered horizon-
tal and vertical feature extractors, requiring the input fea-
ture in the form of FEPI

h ∈ RC×UH×V×H or FEPI
v ∈

RC×VW×U×H in EPI format.

Additionally, the initial feature is converted to the
Macro-Pixel Image (MacPI) view and passed through a lo-
cal correlation module built with convolutional blocks to
learn strict correspondences. It is worth noting that plac-
ing the transformer-based blocks at the initial position is
crucial, as CNN feature extractors based on local receptive
field learning can easily destroy long-range information. In
our experiments, we found that the paradigm of convolution
block before transformer-based block is unable to converge.
Further discussion in Section 4.3.

Local Correlation Learning. Although EPI views
are suitable for learning long-range information using
transformer-based blocks, they are not effective in model-
ing compact neighboring features and incorporating spatial
context prior. To overcome this limitation, we use disen-
tangling blocks proposed in [38] to extract fine-grained fea-
tures with domain-specific convolutions.

After the correlation module aggregates the features with
distinct information of large disparity variations, they would
have been converted into a MacPI view with FMacPI ∈
RC×UH×VW , where the spatial and angular features are
evenly mixed, making which more effective to convolve
structured details. Then MacPI features would pass through
a series of disentangling blocks. The convolution-based re-
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Figure 3. Feature fusion illustration. In our processing flow, Bicu-
bic Upsampling simply provides rough super-resolved content, the
use of correlation branch obtains clear boundaries and local corre-
lation branch captures the high-frequency details.

finement operation follows:

FMacPI
conv = MC,Gc,Bc,U,V

conv (FMacPI
init ,FMacPI

trans ) (2)

Here, C is the number of channels, Gc is the number of
groups, Bc is the number of blocks, and U and V are the
angular resolutions. Each block comprises four parallel
branches in the spatial, angular, horizontal, and vertical EPI
domain-specific convolutions. Assuming an angular resolu-
tion U = V = A, the spatial convolution has a kernel size
of 3 × 3 with dilation of A, the angular convolution has a
kernel size of A × A with a stride of A, and the horizontal
and vertical EPI convolutions have a kernel size of 1 × A2

with a stride of A, using identical weight parameters.
Hierarchical Fusion. Due to the feature model-

ing discrepancy between transformer-based extractors and
convolution-based extractors, we use three super-resolved
SAI formatted images to combine the information from
above two types of extractors. As shown in Figure 3, it al-
lows the optimizer to guide the transformer-based extractor
on modeling long-range information and convolution-based
extractor on modeling compact local spatial information in-
dependently. The fused output is given as:

ISAI
out = αUb(ISAI

in )+βUt(FEPI
trans)+γUc(FMacPI

conv ) (3)

where Ub represents Bicubic Upsampling of the original
low-resolution image, Ut applies upsampling to the feature
from the transformer-based blocks using a convolution layer
with a 3 × 3 kernel size, and Uc applies upsampling to the
feature from the convolution-based disentangling blocks us-
ing a convolution layer with a 1× 1 kernel size. The coeffi-
cients α, β, and γ are set to 1.0, 0.5, and 0.5 respectively.

3.2. Position-Sensitive Windowing Operation

While the proposed method using Transformer-based
blocks and convolution-based blocks can effectively learn
disparity features, the post-processing method based on
center padding breaks the disparity structural correlation in

the SAI subspaces. For SISR task, center padding and win-
dowing methods are typically used for seamlessly stitching
results obtained by sliding windows, then generate the final
super-resolved image. Center padding ensures the correct-
ness of edge pixels and avoids edge artifacts caused by slid-
ing windows. Windowing methods can also reduce the ex-
tra computation required for each block and corresponding
memory usage, thereby improve computational efficiency
and lead to faster generation of super-resolved images.

However, the sub-aperture views captured by LF cam-
eras have strict optical disparity constraints. Each subspace
in the light field image exhibits significant spatial-angular
correlation, while the disparity values gradually decrease
from the outermost layer to the center. Due to introduction
of artifact padding values with unfaithful disparity struc-
ture, center padding clearly destroys the disparity relation-
ship in subspace, which makes position-sensitive learning-
based networks produce worse predictions. Therefore, we
propose a Position-Sensitive Windowing (PSW) operation
that ensures the disparity structural consistency in the SAI
subspace maintained during windowing without additional
computation.

Assuming the SAI image forms I ∈ RC×U×V×H×W ,
the stride and window size of the PSW operation are set to
S and K, respectively. Without introducing any padding
operations, the operation adopts a sliding window approach
to crop the block in an overlapping manner, and for border
values, it backtracks to fill in the entire block. The total
number of blocks can be formulated as:

N = ⌊H + S − 1

S
⌋ · ⌊W + S − 1

S
⌋ (4)

The proposed PSW operation does not introduce extra com-
putational cost. Detailed padding fashions are discussed in
Section 4.3.

4. Experiments

In this section, we firstly describe our experimental de-
tails, then we elaborate our comprehensive ablation studies
and thorough performance comparison with other methods.

4.1. Datasets and Implementation Details

We used the five public LF datasets: EPFL [32],
HCInew [16], HCIold [45], INRIA [22], and STF-
gantry [33], following the same training and testing parti-
tion as in [42]. All datasets have the same angular resolution
of 9× 9. During training, we selected a 5× 5 SAI view and
extracted patches with a stride of 32. Then we performed
bicubic downsampling to generate low-resolution light field
patches as input samples. Additionally, data augmentation
techniques such as horizontal flipping, vertical flipping, and
90-degree rotation were applied.
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Table 1. Overall PSNR/SSIM metrics comparison among the other prestigious approaches for 4× SR. We have obtained state-of-the-art
results among all 5 datasets. The best averaged results are achieved by our DistgEPIT†-TTA method(highlighted in bold fonts).

Methods EPFL HCInew HCIold INRIA STFganry Average

Bicubic 25.14 / 0.8324 27.61 / 0.8517 32.42 / 0.9344 26.82 / 0.8867 25.93 / 0.8452 27.58 / 0.8701
VDSR [21] 27.25 / 0.8777 29.31 / 0.8823 34.81 / 0.9515 29.19 / 0.9204 28.51 / 0.9009 29.81 / 0.9066
EDSR [28] 27.84 / 0.8854 29.60 / 0.8869 35.18 / 0.9536 29.66 / 0.9257 28.70 / 0.9072 30.20 / 0.9118
RCAN [57] 27.88 / 0.8863 29.63 / 0.8886 35.20 / 0.9548 29.76 / 0.9276 28.90 / 0.9131 30.27 / 0.9141

resLF [55] 28.27 / 0.9035 30.73 / 0.9107 36.71 / 0.9682 30.34 / 0.9412 30.19 / 0.9372 31.25 / 0.9322
LFSSR [49] 28.27 / 0.9118 30.72 / 0.9145 36.70 / 0.9696 30.31 / 0.9467 30.15 / 0.9426 31.23 / 0.9370
LF-ATO [18] 28.52 / 0.9115 30.88 / 0.9135 37.00 / 0.9699 30.71 / 0.9484 30.61 / 0.9430 31.54 / 0.9373

LF-InterNet [39] 28.67 / 0.9162 30.98 / 0.9161 37.11 / 0.9716 30.61 / 0.9491 30.53 / 0.9409 31.58 / 0.9388
LF-DFnet [42] 28.77 / 0.9165 31.23 / 0.9196 37.32 / 0.9718 30.83 / 0.9503 31.15 / 0.9494 31.86 / 0.9415
MEG-Net [54] 28.74 / 0.9160 31.10 / 0.9177 37.27 / 0.9716 30.66 / 0.9490 30.77 / 0.9453 31.71 / 0.9399
LF-IINet [29] 29.11 / 0.9188 31.36 / 0.9208 37.62 / 0.9734 31.08 / 0.9515 31.21 / 0.9502 32.08 / 0.9429

DPT [34] 28.93 / 0.9170 31.19 / 0.9188 37.39 / 0.9721 30.96 / 0.9503 31.14 / 0.9488 31.92 / 0.9414
LFT [26] 29.25 / 0.9210 31.46 / 0.9218 37.63 / 0.9735 31.20 / 0.9524 31.86 / 0.9548 32.28 / 0.9447

DistgSSR [38] 28.99 / 0.9195 31.38 / 0.9217 37.56 / 0.9732 30.99 / 0.9519 31.65 / 0.9535 32.11 / 0.9440
EPIT [27] 29.34 / 0.9197 31.51 / 0.9231 37.68 / 0.9737 31.27 / 0.9526 32.18 / 0.9571 32.40 / 0.9452

DistgEPIT 30.09 / 0.9224 31.61 / 0.9252 37.96 / 0.9742 32.35 / 0.9535 32.45 / 0.9589 32.90 / 0.9468
DistgEPIT† 30.17 / 0.9232 31.71 / 0.9263 38.03 / 0.9744 32.39 / 0.9535 32.74 / 0.9604 33.01 / 0.9476

DistgEPIT†-TTA 30.41 / 0.9260 31.91 / 0.9283 38.24 / 0.9753 32.60 / 0.9551 33.06 / 0.9626 33.25 / 0.9495

Figure 4. Sampling Strategy illustration. Central Selection(CS) is
most commonly used by selecting center part, while our additional
Interval Selection(IS) and Uneven Selection (US) methods sample
those near boundaries to enlarge disparities.

To further enhance large disparity learning, we intro-
duced two additional sampling methods, as shown in Fig-
ure 4. The Central Selection (CS) applied the same as most
previous works. The Interval Selection (IS) and the Un-
even Selection (US) tended to sample Sub-Aperture Images
(SAI) closer to the borders, resulting in larger disparity vari-
ations than those selecting from center. Noticeably, in the
rest of this paper, we use the symbol † to denote the pro-
posed method trained with a combination of CS, IS, and
US, whose result brought a three-fold increase in training
time due to the enlarged size of the dataset.

For optimization, we adopted the L1 loss function and
Adam optimizer with a learning rate of 2e-4, β1 = 0.9, and
β2 = 0.999. Then we distributed four samples equally on
four NVIDIA RTX 2080Ti GPUs to train. At 80 epochs,
we decayed the learning rate to half of the former value and
stop training at 100 epochs.

As conventional usage in related works [28, 29, 42, 57] ,
we use the PSNR and SSIM computed only on the Y chan-

nel of images as quantitative metrics for performance eval-
uation. To compute the metric scores for a dataset con-
taining M scenes, we firstly compute the average score of
each scene by separately averaging the scores over all SAIs.
Then metric score for the dataset is determined by averaging
the scores over the M scenes.

4.2. Comparison to state-of-the-art methods

We compared DistgEPIT to several state-of-the-art
methods, including three SISR methods: VDSR [21],
EDSR [28], and RCAN [57] and other eleven recent LF im-
age SR methods: resLF [55], LFSSR [49], LF-ATO [18],
LF-InterNet [39], LF-DFnet [42], MEG-Net [54], LF-
IINet [29], DPT [34], LFT [26], DistgSSR [38], and
EPIT [27]. Additionally, a Bicubic Upsampling method
is introduced as baseline. DistgEPIT† is trained on an ex-
tended selection strategy, and DistgEPIT†-TTA employs the
test-time-augmentation technique(TTA) by using seven dif-
ferent affine transformations.

Quantitative Results. As shown in Table 1, regarding
quantitative performance, the proposed DistgEPIT achieves
state-of-the-art 32.90 PSNR and 0.9468 SSIM scores for the
4× LFSR task. Compared to the second best performing
method EPIT, our DistgEPIT gains additional 0.75 dB, 0.1
dB, 0.28 dB, 1.08 dB, and 0.27 dB over five datasets re-
spectively. Benefits from the non-correlation and local cor-
relation module, plus Position-Sensitive Windowing (PSW)
operation, our average PSNR achieves a significant 0.50dB
improvement.

Qualitative Results. As shown in Figure 5, for quali-
tative results, the proposed DistgEPIT demonstrates a well-
reconstruction ability to generate faithful details and sharp
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Figure 5. Qualitative results for 4×SR. The super-resolved center view images are presented for detailed texture comparison. The corre-
sponding PSNR/SSIM scores of different methods on the presented scenes are also reported below.

structures with hardly any artifacts. For SISR methods,
VDSR, EDSR and RCAN tend to generate flat images
with little detail. For recent LFSR methods, the proposed
DistgEPIT could distinguish more dense detail information
(e.g., clearer strip lines of ISO Chart).

4.3. Ablation Study

In this section, we further consolidate the effectiveness
of every key component within our DistgEPIT via ablation
study experimental results.

Particularly, our method combines a transformer-based
correlation module and a convolution-based local correla-
tion module with channel size of 128, and a single sample
will occupy the entire NVIDIA RTX 2080Ti GPU memory
space. To ensure fair comparison, we increased the chan-
nel number of DistgSSR from 64 to 160 to match similar
parameter volume and computational complexity of Dist-
gEPIT. Moreover, the channel size of EPIT was modified

to 180 to fit in a single GPU memory block due to GPU
memory constraints.

Model Scale. The increase in network channel num-
bers significantly improves the accuracy of the model on
the LFSR dataset. Compared to their baseline models,
DistgSSR-C160 and EPIT-C180 improve the PSNR met-
ric by 0.29 dB and 0.18 dB respectively. Despite of the
similar parameter and computation cost, DistgEPIT outper-
forms DistgSSR-C160 with a 0.13 dB PSNR improvement,
demonstrating the efficiency of the proposed archietecture.

Convolution-First. An intuitive question can arises: In
what order shall we combine the two modules? We de-
signed DistgEPIT-Inv with the same computational com-
plexity as DistgEPIT’s comparison, utilizing sub-modules
similar to the DistgEPIT structure. In DistgEPIT-Inv, the in-
put image is firstly processed by the convolution-based local
correlation module to extract features, which are then fed
into the transformer-based correlation module to be refined.
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Table 2. A comparison of PSNR/SSIM metrics among different model volumes and model orders for 4x super-resolution, with the best
results highlighted in bold. Note that all methods are retrained with same settings of DistgEPIT with PSW strategy.

Methods #Param. FLOPs EPFL HCInew HCIold INRIA STFganry Average

DistgSSR-C64 3.58 M 65.41 G 29.78 31.41 37.69 32.00 31.52 32.48
DistgSSR-C128 14.33 M 261.25 G 30.01 31.52 37.77 32.25 31.81 32.67
DistgSSR-C160 22.37 M 408.09 G 30.04 31.63 37.94 32.26 32.01 32.77

EPIT-C64 1.13 M 33.36 G 29.81 31.45 37.73 32.05 32.07 32.62
EPIT-C128 4.55 M 132.20 G 29.97 31.57 37.83 32.21 32.25 32.77
EPIT-C180 9.01 M 260.84 G 30.02 31.63 37.86 32.20 32.30 32.80

DistgEPIT-Inv 19.02 M 397.23 G 29.95 31.55 37.90 32.19 32.31 32.78
DistgEPIT 19.02 M 397.20 G 30.09 31.61 37.96 32.35 32.45 32.90

Table 3. Quantitative PSNR comparison among different padding strategies shows that PSW (Position-Sensitive Windowing) brings per-
formance gain across all three methods. Note that all methods are retrained with same settings of DistgEPIT with PSW strategy. Center
offset pads both upper left and bottom right area, zero offset pads bottom right area, while PSW does not pad any areas.

Method Offset Padding EPFL HCInew HCIold INRIA STFganry Average

DistgSSR-C64

Center Mirror 27.74 31.37 37.51 29.56 31.07 31.45
Replicate 28.45 31.38 37.44 30.41 31.16 31.77

Zero Mirror 29.57 31.41 37.67 31.78 31.43 32.37
Replicate 29.64 31.40 37.69 31.87 31.45 32.41

- PSW 29.78 31.41 37.69 32.00 31.52 32.48

EPIT-C64

Center Mirror 27.67 31.37 37.28 29.49 31.42 31.45
Replicate 28.32 31.40 37.30 30.32 31.68 31.81

Zero Mirror 29.50 31.44 37.69 31.80 31.95 32.48
Replicate 29.60 31.44 37.69 31.90 31.98 32.52

- PSW 29.81 31.45 37.73 32.05 32.07 32.62

DistgEPIT

Center Mirror 27.97 31.55 37.71 29.79 31.81 31.77
Replicate 28.59 31.56 37.63 30.62 31.97 32.07

Zero Mirror 29.87 31.61 37.93 32.13 32.34 32.78
Replicate 29.88 31.60 37.93 32.20 32.36 32.79

- PSW 30.09 31.61 37.96 32.35 32.45 32.90

Besides DistgEPIT-Inv and DistgEPIT employ identical hi-
erarchical fusion strategy and loss function. As revealed
in Table 2, after the module order swapping, DistgEPIT-
Inv’s performance drops by an average of 0.12 dB compared
to DistgEPIT and typically drops by 0.14 dB on the STF-
ganry dataset with larger disparities. Which suggests that
the convolution-based module may lose long-range dispar-
ity information in the initial stage, making it difficult to re-
fine the features in the subsequent correlation learning.

Windowing Operation. The effectiveness of different
padding methods with zero offset is presented in Table 3.
Zero offset padding methods outperform center padding
methods, primarily due to the preservation of the disparity
relationship in the top-left corner. Among the zero offset
methods, replicate padding is superior to mirror padding as
it preserves the increasing disparity structure from the cen-
ter to the edge by copying the last boundary element dur-
ing padding. However, the disparity structure introduced

by padding is still an artificially designed one. Hence,
the proposed Position-Sensitive Windowing (PSW) strat-
egy strictly enforces the natural disparity structure on the
last row or column of the partitioned window, leading to
better performance than replicate padding of zero offset by
0.07 dB, 0.10 dB, and 0.11 dB on the DistgSSR, EPIT, and
DistgEPIT models respectively. It is noteworthy that the
PSW strategy is particularly effective in transformer-based
networks as it relies on the strict disparity structure rela-
tionship among SAIs to learn long-range information. Any
unrealistically introduced disparity information may result
in querying incorrect features, which can introduce noise to
the feature representation in subsequent modules.

SAIs Selection. Table 4 demonstrates that the proposed
DistgEPIT method achieves a significant improvement of
0.20 dB on the STFganry dataset with large disparities by
incorporating the Interval Selection (IS) strategy, with an
average improvement of 0.09 dB. Additionally, the Uneven
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Table 4. Quantitative results show that each additional sampling strategy can lead to further performance increment. (CS: Central Selection,
IS: Interval Selection, US: Uneven Selection).

CS IS US EPFL HCInew HCIold INRIA STFganry Average
√

30.09 31.61 37.96 32.35 32.46 32.90√ √
30.16 (+0.07) 31.70 (+0.09) 38.05 (+0.09) 32.36 (+0.01) 32.66 (+0.20) 32.99 (+0.09)√ √ √
30.17 (+0.08) 31.71 (+0.10) 38.03 (+0.07) 32.39 (+0.04) 32.74 (+0.28) 33.01 (+0.11)

Table 5. Our team achieved 1st place on the leader board (last three rows) in the NTIRE-2023 test dataset, with quantitative results of
30.6640 dB PSNR (average) and 0.9314 SSIM (average). For a single model comparison, the proposed DistgEPIT achieves an average
PSNR of 30.275 dB and an average SSIM of 0.9273 with using central selection only.

Methods #Params. Lytro Synthetic Average

Bicubic – 25.109 / 0.8404 26.461 / 0.8352 25.785 / 0.8378
VDSR [21] 0.665 M 27.052 / 0.8888 27.936 / 0.8703 27.494 / 0.8795
EDSR [28] 38.89 M 27.540 / 0.8981 28.206 / 0.8757 27.873 / 0.8869
RCAN [57] 15.36 M 27.606 / 0.9001 28.308 / 0.8773 27.957 / 0.8887

resLF [55] 8.646 M 28.657 / 0.9260 29.245 / 0.8968 28.951 / 0.9114
LFSSR [49] 1.774 M 29.029 / 0.9337 29.399 / 0.9008 29.214 / 0.9173
LF-ATO [18] 1.364 M 29.087 / 0.9354 29.401 / 0.9012 29.244 / 0.9183

LF InterNet [39] 5.483 M 29.233 / 0.9369 29.446 / 0.9028 29.340 / 0.9198
MEG-Net [54] 1.775 M 29.203 / 0.9369 29.539 / 0.9036 29.371 / 0.9203
LF-IINet [29] 4.886 M 29.487 / 0.9403 29.786 / 0.9071 29.636 / 0.9237

DPT [34] 3.778 M 29.360 / 0.9388 29.771 / 0.9064 29.566 / 0.9226
LFT [26] 1.163 M 29.657 / 0.9420 29.881 / 0.9084 29.769 / 0.9252

DistgSSR [38] 3.582 M 29.389 / 0.9403 29.884 / 0.9084 29.637 / 0.9244
LFSSR SAV [49] 1.543 M 29.713 / 0.9425 29.850 / 0.9075 29.782 / 0.9250

EPIT [27] 1.470 M 29.718 / 0.9420 30.030 / 0.9097 29.874 / 0.9259
HLFSR-SSR [11] 13.87 M 29.714 / 0.9429 29.945 / 0.9097 29.830 / 0.9263

DistgEPIT 19.02 M 30.408 / 0.9436 30.141 / 0.9109 30.275 / 0.9273
DistgEPIT† 19.02 M 30.485 / 0.9443 30.299 / 0.9127 30.392 / 0.9285

DistgEPIT†-TTA 19.02 M 30.746 / 0.9468 30.460 / 0.9146 30.603 / 0.9307

OpenMeow / 30.82 / 0.9475 30.51 / 0.9152 30.66 / 0.9314
DMLab / 30.92 / 0.9489 30.35 / 0.9146 30.64 / 0.9318
VIDAR / 30.67 / 0.9491 30.45 / 0.9154 30.56 / 0.9323

Selection (US) strategy further enhances the performance
on STFganry by 0.08 dB and the average improvement by
0.02 dB. The minor gain observed from the US strategy in-
dicates an underlying issue related to the strict optical dis-
parity constraints causing damage.

4.4. NTIRE 2023 LFSR Challenge Results

The NTIRE 2023 LFSR challenge develop a new dataset,
named NTIRE-2023 [37], where the 16 synthetic LFs and
16 real-world LFs captured by Lytro camera for test subset.
During the challenge, all participants were strictly prohib-
ited from using any external model or data, including pre-
trained backbones and optical flow networks. For the fi-
nal results reporting, we used the average ensemble method
to combine the outputs generated by the DistgEPIT with
different configurations and the DistgSSR with different
scales. As shown in Table 5, proposed method ranked the
1st place with 30.6640 dB PSNR on the LFSR test dataset.

5. Conclusion and Future Work

In this paper, we investigated the task of Light Field
image Super Resolution (LF image SR), in which we ad-
dressed the issue of large disparities not being fully uti-
lized during the super-resolving process. To that end,
we proposed a CNN-Transformer hybrid network called
DistgEPIT. The proposed network could learn better long-
range angular correlation with the help of transformer-based
correlation module, while maintaining robust spatial fea-
tures and adjacent correlation via convolution-based local
correlation module. Additionally, we introduced a novel
Position-Sensitive windowing (PSW) operation to main-
tain the disparity correspondence. Our proposed method
achieved leading performance with a PSNR of 30.6640 dB,
and it won the 1st place in the NTIRE 2023 Light Field
Super Resolution contest track.

In our future work, we will explore the disparity problem
and further improve the performance of the current hybrid
framework.
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