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Abstract

Image processing is a very fundamental technique in the
field of low-level vision. However, with the development of
deep learning over the past five years, most low-level vi-
sion methods tend to ignore this technique. Recent dehazing
methods also refrain from using conventional image pro-
cessing techniques, whereas only focusing on the develop-
ment of new deep neural network (DNN) architectures. Un-
like this recent trend, we show that image processing tech-
niques are still competitive, if they are incorporated into
DNNs. In this paper, we utilize conventional image pro-
cessing techniques (i.e. curve adjustment, retinex decompo-
sition, and multiple image fusion) for accurate dehazing.
Moreover, we employ direct learning for stable dehazing
performance. The proposed method can perform with low
computational cost and easy to learn. The experimental re-
sults demonstrate that the proposed method produces accu-
rate dehazing results compared to recent algorithms.

1. Introduction
Image processing is a common technique of processing

images. By applying this image processing technique, most
low-level vision methods that deal with pixel values directly
(e.g. deraining, dehazing and low-light enhancement) can
achieve high performance. Nevertheless, due to the devel-
opment of deep learning, image processing techniques have
been easily ignored in the computer vision community and
the corresponding researches have decreased gradually.

Dehazing is a representative task using image processing
and one of fundamental problems in computer vision, which
aims to recover haze-free images from haze images. While
it has been actively researched with various approaches, re-
cent dehazing methods have achieved a great success in
terms of accuracy with the aid of deep learning. The haze
model is typically described as follows.

I(x) = J(x)t(x) +A (1− t(x)) , (1)

where the haze image I is described as an weighted linear
combination of the haze-free image J and the atmosphere

A at each pixel coordinate x. The weight is determined us-
ing the transmission t. Due to the lack of training data, deep
learning-based dehazing methods typically synthesize haze
regions using the aforementioned haze model in (1). In par-
ticular, transformer and flow model-based dehazing meth-
ods with sophisticated deep neural architectures [20, 27]
enable to extract representative haze features and produce
accurate dehazing results. Thus, image processing-based
[15, 41] or prior-based haze methods [9, 16, 21]) have been
rarely studied in these days, because they have difficulty in
outperforming deep learning-based methods. Recent dehaz-
ing methods refrain from using conventional image process-
ing techniques, whereas only focusing on the development
of new deep neural network (DNN) architectures. Although
image processing techniques are helpful for improving the
performance, few studies apply these techniques to DNNs.

In this paper, we argue that image processing can be used
as a prior for DNNs to maintain proper characteristics of the
dehazing task. We complete the aforementioned argument
through several experiments, in which each image process-
ing technique differently contributes the improvement of the
dehazing accuracy and their combination induces the best
accuracy. For this, we adopt conventional image process-
ing techniques, which are curve adjustment, retinex decom-
position, and image fusion modules. Each image process-
ing module can be designed using simple layers, while still
showing high performance.

In particular, the curve adjustment is an image process-
ing technique that is widely used in commercial photo edit-
ing applications (e.g. Adobe Lightroom and Photoshop)
to adjust the brightness and tone of an image to generate
differently stylized images. Moran et al. [34] and Guo et
al. [19] solved image enhancement and low-light enhance-
ment problems using this curve adjustment technique, re-
spectively. The retinex decomposition is an image process-
ing technique that is widely used in low-light enhance-
ment [28, 38, 43, 45] to describe an image using reflectance
and illumination components. The image fusion is an im-
age processing technique to combine multiple images with
different properties [50]. Fig.1 shows the whole pipeline of
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Figure 1. Overview of the proposed method. For dehazing, the proposed method extracts features using the feature extraction module
(FEM). Subsequently, it conducts direct learning, pixel-wise curve adjustment, and retinex decomposition, which produce three intermedi-
ate dehazing results. By fusing these results, the proposed method obtains final dehazing results.

our method. Our contributions are as follows.
• We demonstrate that incorporating simple image process-
ing techniques, such as curve adjustment, retinex decom-
position, and image fusion, into the network yields com-
petitive results compared to recent complex networks for
dehazing.
• The aforementioned techniques have complementary
properties and their advantages are combined by the image
fusion method to improve the dehazing accuracy.
• The experimental results demonstrate that our method
outperforms recent algorithms in real-world haze datasets.

2. Related Work
Dehazing. Dehazing has been widely studied based on
the haze model [35], because high-level vision systems re-
quires an ideal environment such as clean weather to per-
form properly. Conventional dehazing methods were mainly
based on image processing and implemented by directly
processing pixels or using hand-crafted priors [4, 9, 15, 16,
21,41]. Various smoothing filters [16,41] have been also re-
searched because the transmission map in the haze model
should be smooth. Tarel et al. [41] presented a representa-
tive method on smoothing filters. Ancuti et al. [4] proposed
a semi-inverse method that can deal with pixel intensities of
haze regions. For prior-based approaches, DCP [21], color-
line prior [16], and haze-line prior [9] have been studied.
After dehazing using random forest [51] has been intro-
duced, learning-based methods have been researched. An-
cuti et al. [2] proposed a multi-scale fusion method using
laplacian pyramid. 3C [3] presented a color compensation
approach that has some strong points for nighttime dehaz-
ing and underwater image enhancement.

While deep learning-based dehazing methods have not
been easily proposed due to the lack of datasets, De-
hazeNet [10] synthesized haze regions using the haze
model, estimated the transmission map based on the syn-

thesized dataset, and succeeded in recovering haze-free im-
ages through the atmosphere scattering model. This is the
firstly proposed end-to-end model for dehazing. Similarly,
MSCNN [39] proposed a coarse-to-fine dehazing method
by constructing a multi-scale convolution network. AOD-
Net [25] estimated transmission and atmospheric light by
reformulating the atmosphere scattering model, and directly
produced haze-free images without recovering through the
haze model. GDN [32] showed high performance by ap-
plying an attention-based grid network. FFANet [36] im-
proved the performance without using priors or haze mod-
els. DM2F-Net [12] conducted multi-model fusion of multi-
ple results obtained by various layer separation techniques.
Dehazing methods in [13, 17, 22, 30, 37] utilized genera-
tive adversarial networks. DehazeFlow [27] was the first
study to apply the flow model. AECR-Net [44] showed
good performance by introducing contrastive learning. De-
Hamer [20] proposed a transformer-based method that can
consider the dark channel. [24] proposed unified model for
multi-weather visibility restoration. In contrast to recent
methods that are mainly based on deep learning, we ar-
gue that traditional image processing-based approaches can
help improve the performance of these deep learning-based
methods.
Retinex and Curve Adjustment. Curve adjustment and
retinex-based methods are typically used for low-light en-
hancement and image enhancement [19, 28, 34, 38, 43, 45].
Single-scale retinex (SSR), multi-scale retinex with color
restoration [38], and structure-based methods [28, 45] have
been proposed. The methods in [18, 29] considered the
relationship between retinex and dehazing. Owing to the
representation power of deep learning, RetinexNet [43]
has shown good performance with the fact that the re-
flectance component of the low-light image and the normal
light image are the same. The curve adjustment has been
used from gamma curves to commercial photo editing pro-
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(a) Simple process of dehazing using curve adjustment (b) Retinex decomposition
Figure 2. Examples of estimated curve maps and reflectance components. For visualization, we combine three curve maps of the RGB
channels into one image in (a). The first curve map recognizes the fog area that needs to be adjusted. As the adjustment is repeated, it
becomes closer to the clean image. Reflectance in (b) shows the intrinsic content behind the haze.

grams. CURL [34] directly applied the curve adjustment to
deep neural networks. Zero-DCE [19] estimated pixel-wise
curves and applied them to low-light image enhancement.
In contrast, we improve the dehazing performance using
simplified retinex and curve adjustment models.
Other Image Processing Techniques. Before deep learn-
ing, most dehazing methods used image processing tech-
niques. The dark channel prior [21] had a block effect prob-
lem because the transmission map was estimated using lo-
cal patches. To solve this problem, image matting tech-
niques have been proposed. In addition, classical median
filter was improved and the median of median along lines
filter was applied to dehazing by [41]. Color-line [16] and
haze-line [9] added smoothing terms to refine the trans-
mission map obtained by the prior. Kim et al. [23] intro-
duced low-light enhancement techniques for dehazing to
solve the darkening problem of dehazing. The aforemen-
tioned methods commonly adopted conventional image pro-
cessing techniques to solve several problems occurred in the
process of dehazing. In this paper, we show that image pro-
cessing is also competitive to recent deep learning methods.

3. Proposed Methods
We explain each module of the proposed method. Sup-

plementary materials include the detailed network.

3.1. Feature Extraction Module
The feature extraction module (FEM) is used for extract-

ing features of hazy images. For precise feature extraction,
we adopt a key component that shows high performance
in dehazing (FFANet) and super-resolution (RCAN). This
module consists of feature attention blocks which use dual
residual connection, channel attention of layers, and pixel
attention sequentially. Fig.1 depicts the FEM, in which the
residual group consists of five feature attention blocks. Un-
like FFANet and RCAN, the proposed FEM has an encoder-
decoder architecture:

FE(x) = FEM(I(x)), (2)

where the extracted feature FE is obtained by passing the
hazy image I(x) through the FEM module. The extracted
feature map FE in (2) is used as an input for the follow-
ing direct learning, curve adjustment, retinex decomposi-
tion, and fusion modules.

3.2. Direct Learning
Direct learning uses the network output without applying

additional image processing techniques. For this, we pass
the extracted feature map FE through simple convolution
layers (conv-relu-conv-tanh in Fig.1) and adapt the global
skip connection, as follows.

Jd(x) = D(FE(x)) + I(x), (3)

where D(·) is a direct learning function and Jd(x) is the
dehazing result produced by direct learning. Direct learning
prevents curve adjustment and retinex decomposition from
changing dehazing results significantly, thus inducing stable
performance.

3.3. Curve Adjustment
Based on the success of curve control for image en-

hancement and low-light enhancement, we propose a curve
adjustment method for dehazing. Zero-DCE [19] illus-
trates important elements of image adjustment using curve
maps. This can be applied to deep learning-based curve ad-
justment algorithms, while the proposed method also fol-
lows this method. The curve is designed as a very simple
quadratic curve, considering that the distribution of data
should be differentiable, as follows.

Jc(x) = I(x) + C(FE(x))I(x)(1− I(x)), (4)

where the dehazing result Jc(x) is obtained using the curve
map C with values between -1 and 1, the input image I(x)
has values between 0 and 1, and x is the pixel coordinate.

We can apply curves globally to all pixels to prevent
loss of data. However, if the curve is adjusted globally, a
specific area becomes excessively dark or the brightness of
the surrounding area becomes similar, which induces sat-
uration problems. Similarly, adjusting only one curve for
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(a) Haze image (b) Direct learning (c) Curve (d) Retinex (e) J(x)
Figure 3. Areas activated by the fusion method for each dehazing component. (b), (c), and (d) represent individual terms of Eq. (8).

three RGB channels can cause color distortion and make
the ratio of pixel color to collapse. In contrast, the pro-
posed curve map C is separately estimated for each channel
and each pixel. Since curve maps are learned by compar-
ing the recovered image J with ground-truth, we can obtain
curve functions per pixel where saturation and distortion
are suppressed. Thus, the curve map is suitable for non-
homogeneous dehazing, where the distribution of haze is
not uniform. Similar to the direct learning method, the esti-
mated feature from the FEM passes through a simple convo-
lution layer to obtain three curve maps with three channels.
The layers consist of Conv-ReLU-Conv-Tanh, as shown in
Fig.1. We perform the aforementioned process in an itera-
tive manner, as follows.

Jc
n(x) = Jc

n−1(x) + Cn(x)J
c
n−1(x)(1− Jc

n−1(x)), (5)

where the n-th dehazing result Jc
n(x) is obtained using

the n-th curve map Cn and the previous dehazing result
Jc
n−1(x). Fig.2(a) shows estimated curve maps and the pro-

posed dehazing process.

3.4. Retinex Decomposition
Retinex decomposition has been typically used in low-

light enhancement, where an clean image is divided into
illumination and reflectance components. Like the retinex
theory, we assume that the dehazing (clean) image Jr(x)
can be divided into the input haze (illumination) image I(x)
and reflectance components R(FE(x)), as follows.

Jr(x) = I(x)×R(FE(x)), (6)

where haze regions can be considered as bright regions in
an image, as illumination indicates the brightness of the
image. The reflectance component contains intrinsic char-
acteristics of the image regardless of different illumination
conditions. Similar to direct learning and curve adjustment,
the extracted feature is passed through layers consisting of
conv-relu-conv-tanh in Fig.1. Fig.2(b) shows the decompo-
sition results according to the retinex theory, where we can
identify the intrinsic content that exists behind the haze re-
gion through the reflectance image. This helps remove haze
regions and restores content details.

3.5. Multi-Dehazed Image Fusion
The multi-focus image fusion methods [48–50] aim to

achieve the proper focus on all subjects in the scene by com-
bining differently focused images. Our method produces

three intermediate dehazing results using direct learning,
curve adjustment, and retinex decomposition, which are ex-
plained in the previous sections. Each result is obtained by
each individual network and has different but complemen-
tary properties. The proposed method combines these com-
plementary results using multi-focus image fusion for more
accurate dehazing. For this, we adopt a simple but powerful
multi-focus image fusion method in [50] and generate the
fusion map F (x), as follows.

F (x) = Softmax(Conv(ReLU(Conv(FE(x))))). (7)

Unlike gradient-based or segmentation-based methods, the
fusion map can be easily estimated through Conv-ReLU-
Conv-2D Softmax. The 2D Softmax function makes our
method easy to determine the regions that should be com-
bined. Then, the proposed method combines three dehaz-
ing results, Jd(x) in (3), Jc(x) in (5), and Jr(x) in (6)
using the corresponding fusion maps, F1, F2, and F3, re-
spectively. F (x) has n channels as many as the number of
multi-dehazed images that require fusion.

J(x) = F1 × Jd(x) + F2 × Jc(x) + F3 × Jr(x), (8)

where the final accurate dehazing result J(x) is obtained
by the image fusion. Fig.3 shows the dehazing results ac-
tivated by fusion maps F1, F2, and F3 for each dehazing
component. Using this multi-dehazed image fusion method,
a more accurate dehazing result, J(x), can be obtained.

3.6. Loss Function
The integrated loss function of the proposed method is

formulated as follows.

Ltotal = λ1(Ld + Lc + Lr) + λ2Lp + λ3Lssim, (9)

where λ1, λ2, and λ3 balance reconstruction, perceptual,
and structural similarity loss terms, respectively. Ld, Lc,
and Lr are L1 losses between the dehazing output of each
module of the proposed method and the ground-truth im-
age, respectively. λ1 and λ3 were set to 0.5 and λ2 was set
to 1. The perceptual loss learns the similarity between the
final dehazing result after the fusion process, DIP (I), and
ground-truth, Jgt, in the feature domain:

Lp = ∥ϕ(DIP (I))− ϕ(Jgt)∥1, (10)

where ϕ(·) extracts the 16-th feature map obtained by VGG-
16 [40] pretrained using ImageNet [11]. Lssim measures the
structural similarity between DIP (I) and Jgt [42].
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Table 1. Quantitative comparison using the SOTS-indoor, SOTS-outdoor, Dense-Haze, and NH-HAZE datasets in terms of PSNR
and SSIM. Red and blue numbers denote the best and second-best results, respectively.

Methods SOTS-indoor SOTS-outdoor Dense-Haze NH-HAZE
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DCP [21] 16.61 0.855 19.14 0.861 11.01 0.416 12.72 0.442
DehazeNet [10] 19.82 0.821 27.75 0.927 9.48 0.438 11.76 0.399
AODNet [25] 20.51 0.816 24.14 0.920 12.82 0.468 15.69 0.573
GDN [32] 32.16 0.984 30.86 0.982 14.96 0.533 18.33 0.667
FFANet [36] 36.39 0.988 33.57 0.984 12.22 0.444 18.13 0.647
AECR-Net [44] 37.17 0.990 - - 15.80 0.466 19.88 0.717
DeHamer [20] 36.63 0.988 35.18 0.986 16.62 0.560 20.66 0.684
Ours 39.31 0.994 34.72 0.989 17.08 0.601 19.91 0.679

Table 2. Quantitative comparison with NTIRE challenge win-
ners using SOTS-indoor and NH-HAZE21 datasets in terms of
PSNR and SSIM. The best results are written in boldface.

Methods SOTS-indoor NH-HAZE21
PSNR SSIM PSNR SSIM

TDN [31] 34.59 0.975 20.23 0.763
TBD [46] 37.61 0.991 21.66 0.843
DW-GAN [17] 35.94 0.986 21.99 0.856
Ours 39.31 0.994 23.15 0.865

4. Experiments

The proposed method was implemented by Pytorch and
experimented on the NVIDIA RTX 3090 GPU. The initial
learning rate was set to 0.0001 and the learning rate was re-
duced through the cosine annealing strategy. We randomly
cropped and used patches with the size of 240×240, thus the
original image size did not affect the training procedure. We
performed additional data augmentation via horizontal and
vertical flips. We used Dense-Haze, NH-HAZE, and NH-
HAZE21 datasets for training, while the NTIRE challenge
allowed external data.

RESIDE [26] is a synthetic haze dataset that is widely
used for dehazing, which can be divided into SOTS-indoor
(ITS) and SOTS-outdoor (OTS) datasets. The test set of
SOTS had 500 images for both the interior and exte-
rior. The NTIRE challenge dataset contained O-HAZE [8],
I-HAZE [1], Dense-Haze [5], NH-HAZE [6], and NH-
HAZE21 [7]. We experimented with the Dense-Haze, NH-
HAZE, and NH-HAZE21 datasets. Other datasets were too
high-resolution to be inferred in a single GPU. In many im-
ages, even humans could not recognize contents due to the
heavy haze regions. Dense-Haze and NH-HAZE datasets
have 45 training images, 5 validation images, and 5 test
images. For fair evaluation about NH-HAZE21, we set ex-
perimental environments to be similar to the challenge en-
vironment. Because the test set was not disclosed at that
time, the 21-th to 25-th images out of 25 pair images
were tested as the validation set, as in DW-GAN [17] and
TBD [46]. Because external data can be used, remaining
NTIRE challenge datasets except for O-HAZE and I-HAZE
were learned together.

4.1. Comparison with Other Methods

Table 1 quantitatively compared the proposed method
with state-of-the-art dehazing methods, DehazeNet [10],
AODNet [25], GridDehazeNet [32], FFANet [36], AECR-
Net [44], and DeHamer [20]. We used dehazing results re-
ported in the original papers for compared methods. As
shown in the table, the proposed method considerably out-
performed other methods in the SOTS dataset. Our method
significantly improved the dehazing accuracy in terms of
SSIM from 0.988 to 0.994. In terms of the PSNR, the pro-
posed method achieved 3 dB improvement compared to
DeHamer [20], which is the most recent dehazing method
based on the transformer architecture. FFANet [36] pro-
duced comparable dehazing results. In SOTS-outdoor, the
proposed method produced the highest SSIM scores, while
DeHamer produced the highest PSNR scores. However, the
transformer network of DeHamer needed to be modified for
dehazing, which could induce cropping issues during the
test process. Thus, there may be some differences in actual
performance. Figs.4 and 5 show qualitative dehazing results
on the SOTS-outdoor and indoor datasets, respectively. Be-
cause the qualitative performance of compared methods has
been already saturated, there is no significant difference in
visual quality. Nevertheless, as shown in the red and yellow
boxes, our method removed haze regions accurately.

Table 1 and Fig.6 show the results of the NTIRE chal-
lenge dataset, Dense-HAZE and NH-HAZE. Dense-HAZE
has the heaviest haze density of all existing datasets, and
it is difficult to recognize the content behind the haze even
by humans. Therefore, the compared methods in Table 1
typically have very low PSNR and SSIM values. Never-
theless, the proposed method exceeds 17 dB in terms of
PSNR and 0.6 in terms of SSIM. DeHamer [20] showed
the second-best performance because it is the latest method
using the transformer architecture. We qualitatively com-
pared the proposed method with the second-best method,
DeHamer in Fig.6. As shown in the first row of Fig.6(c),
the proposed method produced a more colorful result in the
Dense-HAZE dataset. DeHamer could consider long-range
dependency and qualitatively showed the best performance
in the NH-HAZE dataset with non-homogeneous haze. The
proposed method also exhibited high performance.
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(a) Haze image (b) DehazeNet [10] (c) AOD-Net [25] (d) GDN [32]

(e) FFANet [36] (f) DeHamer [20] (g) Ours (h) GT
Figure 4. Qualitative comparison using the SOTS-outdoor dataset [26].

(a) Haze image (d) GDN [32] (e) FFANet [36]

(f) DeHamer [20] (g) Ours (h) GT
Figure 5. Qualitative comparison using the SOTS-indoor dataset [26].

Table 3. Quantitative comparison using the real-world dataset [16] in terms of NIQE [33]. The bold numbers denote the best result.
Color-line [16] DehazeNet [10] MSCNN [39] AOD-Net [25] GridDehazeNet [32] FFANet [36] DeHamer [20] Ours

NIQE 3.33 3.33 3.32 3.44 3.27 3.29 3.27 3.23

Table 2 and Fig.7 show quantitative and qualitative de-
hazing results on the NH-HAZE21 dataset, respectively.
TBD [46], DW-GAN [17], and TDN [31] are NTIRE 2020,
NTIRE 2021 winners, and NTIRE 2021 runner-up, respec-
tively. These algorithms produced good results especially
for non-homogeneous haze images. Furthermore, the over-
all performance using other datasets was also good. In
particular, TBD [46] showed very high performance on

the SOTS-indoor dataset. As shown in Table 2, the pro-
posed method considerably outperformed other state-of-
the-art methods. To the best of our knowledge, our method
firstly exceeded 23dB in terms of PSNR in the NH-HAZE21
dataset. In Fig.7, DW-GAN restored the block portion of
the floor accurately via adversarial learning. The proposed
method also produced clear and detailed results. More re-
sults can be found in the supplementary materials.
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(a) Haze image (b) DeHamer [20] (c) Ours (d) GT

Figure 6. Qualitative comparison using the NTIRE challenge datasets. First row: Dense-HAZE [5], Second row: NH-HAZE [6].

(a) Haze image (b) DW-GAN [17] (c) Ours (d) GT

Figure 7. Qualitative comparison using the NH-HAZE21 dataset [7].

(a) Input (b) GDN [32] (c) FFANet [36] (d) DeHamer [20] (e) Ours
Figure 8. Qualitative comparison using the Fattal dataset [16].

4.2. Experiments on Real-World Haze Images
Characteristics of real-world haze images are very dif-

ferent from those of synthesized haze images. Thus, it is

difficult to achieve high-quality results for these images
using RESIDE or NTIRE challenge datasets. The existing
real-world haze dataset does not have ground-truth and the
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(a) Haze image (b) Curve1 (c) Curve3 (d) Curve5
Figure 9. Ablation study: Dehazing results according to the number of output channels of curve adjustment.

Table 4. Ablation study: component-wise evaluation using the
NH-HAZE21 dataset. C, R, and D indicate curve adjustment,
retinex decomposition, and direct learning, respectively. The best
results are written in boldface.

C R + D C + D C + R Full model
PSNR 19.69 22.23 21.84 22.34 23.15

(a) Input (b) Curve adjustment
Figure 10. Limitations of curve adjustment on heavy haze.

characteristics of haze regions are very different for dif-
ferent image data. The RESIDE dataset has various land-
scapes. However, it was captured by a single camera and
had limited areas. Thus, image data have a similar tone.
The NTIRE challenge datasets include very dense and non-
homogeneous haze regions. In addition, the number of data
is less than 50 and the average color is biased toward blush.
Thus, this dataset does not represent a common haze sit-
uation. Therefore, for real-world haze removal, we used
a dataset synthesized by the haze model in the VOC2007
dataset [14], which contains various colors and diverse ob-
jects. However, the dehazing methods in [10, 25, 39] using
haze datasets synthesized by the haze model have a darken-
ing problem after haze removal. To solve this problem, we
introduce a cutHaze method based on cutMix [47], in which
a part of the clean image is pasted into the haze image as
training data. Table 3 shows quantitative dehazing results in
terms of the no-reference image quality metric, NIQE [33].
The proposed method produced the most accurate results.
Fig.8 shows the corresponding qualitative results. FFANet
and DeHamer, which showed high performance on other
datasets, showed inaccurately removed haze regions in the
real-world dataset. In contrast, our method produced clear
and high-quality results compared to other algorithms.

4.3. Ablation Study
Table 4 analyzed the contribution of each module of

the proposed method. If only the curve adjustment is used,

curve mapping is performed for each pixel, and haze ar-
eas are inferred roughly. However, due to the nature of the
NH-HAZE dataset, it is difficult to process dense areas. By
employing direct learning (i.e. R + D and C + D), the pro-
posed method could produce more accurate dehazing re-
sults, demonstrating the effectiveness of direct learning. C
+ R also exhibited high performance, indicating that two
image processing modules help each other to enhance the
dehazing accuracy. When using the full modules, the pro-
posed method could achieve state-of-the-art performance.

Fig.9 shows the dehazing results Jc(x) obtained by the
curve adjustment module. Curve1, Curve3, and Curve5
have 3, 9, and 15 output channels for the curve adjust-
ment, respectively. By using Curve5, the proposed method
could remove most hazy areas, as shown in Fig.9(d), which
demonstrates the contribution of the proposed curve ad-
justment. However, except for heavy haze areas, there was
no significant difference in non-haze areas and in dehaz-
ing results when considering the overall combination. Thus,
we experimentally used Curve3 for our dehazing method.
Fig.10 shows limitations of curve adjustment with heavy
haze regions. Despite this limitation, the proposed method
could produce accurate dehazing results by fusing interme-
diate dehazing results based on the multi-fusion method.

5. Conclusion

We proposed a dehazing method that can demonstrate
high performance using incorporating a network with im-
age processing techniques. We introduced the direct learn-
ing method, mainly used in deep learning, curve adjustment,
retinex theory, and image fusion method. The experimen-
tal results demonstrated that the proposed method quantita-
tively and qualitatively produced accurate dehazing results
compared to recent algorithms.
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