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Figure 1. The video is colored by our method. First row: original video frames. Second row: the colored frames by DeOldify (baseline).
Third row: the colored frames by our RTTLC.

Abstract

Video colorization is a highly challenging and ill-posed
problem that suffers from severe flickering artifacts and
color distribution inconsistency. To resolve these issues,
we propose a Restored Transformer and Test-time Local
Converter network(RTTLC). Firstly, we introduce a Bi-
directional Recurrent Block and a Learnable Guided Mask
to our network. This leverages hidden knowledge from ad-
jacent frames that include rich information about occlu-
sion, resulting in significant enhancements in visual qual-
ity. Secondly, we integrate a Restored Transformer that
enables the network to utilize more spatial contextual in-
formation and capture multi-scale information more accu-
rately. Thirdly, during inference, we utilize the Test-time
Local Converter(TLC) strategy to alleviate distribution shift
and enhance the performance of the model. Experimental
results show good performance of FID and CDC. Notably,
RTTLC achieves second prize in both tracks of the NTIRE23
video colorization challenges.
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1. Introduction

The rapid advancement of digital technology increases
demand for high quality video materials [30]. Many legacy
videos in grayscale cannot meet the demands of contempo-
rary audiences, due to the low resolution [21] and distract-
ing artifacts. To address this issue, video colorization [25]
has emerged as a novel technique that seeks to transform
grayscale videos into fully colored ones. This process has
great potential to enhance the visual quality of legacy videos
and provide an immersive experience for audiences. Fur-
thermore, colorization can also facilitate other computer vi-
sion tasks such as detection [3], tracking [32], and action
recognition [14] in videos.

Manual colorization is an expensive and meticulous
work, which requires lots of effort. Hence, automatic
colorization methods are necessary. Recently, learning-
based methods have been explored and shown remarkable
progress. For instance, Richard Zhang et al. [31] propose
a convolutional neural network-based video colorization al-
gorithm that utilizes the temporal continuity between adja-
cent frames in a video. However, it is limited by the dataset
used during training and may introduce color artifacts. Ja-
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son Antic et al. [1] propose the DeOldify, which employs
generative adversarial networks and recurrent neural net-
works to perform automatic colorization. Liu et al. [18]
propose a Temporally Consistent Video Colorization frame-
work(TCVC) that combines deep feature propagation and
self-regularization learning to overcome the temporal in-
consistency issue. BiSTNet [27] capitalizes on the semantic
image prior to facilitating bidirectional temporal feature fu-
sion. However, some researchers argue that classic optical
flow algorithms could lead to considerable misalignment er-
rors [20]. Meanwhile, the RTN [23] model employs a dual-
stream architecture for deep learning. Despite these ad-
vancements, existing methods are still suffered from severe
flickering artifacts and color distribution inconsistency [13].

In this paper, we propose a Restored Transformer and
Test-time Local Converter network(RTTLC) for video col-
orization. Our approach evolved from RTN [23], and inno-
vated on: (1) a Restored Transformer, and (2) a Test-time
Local Converter(TLC).

The Restored Transformer is inspired by Restormer [28],
which is originally used for image super-resolution. Our
Restored Transformer presents a noteworthy innovation in
its ability to capture a greater amount of multi-scale infor-
mation during training. This is achieved through the utiliza-
tion of the multiDconv head transposed attention (MDTA)
module, which implicitly models global context by apply-
ing self-attention across channels instead of the spatial di-
mension. This results in linear complexity, as opposed to
quadratic, enabling more efficient and effective processing.

The TLC is inspired by [8], which uses a method called
local aggregation during testing to replace the information
aggregation region from the entire spatial dimension to a
local window. The input image is cropped into patches and
fed into the model in the training phase. Conversely, most
methods use the full-resolution image in inference [29], re-
sulting in a train-test inconsistency problem. To better con-
sider the potential distribution shift between the input im-
ages during model training and testing, we use TLC strategy
to minimize this discrepancy during the inference phase.
Additionally, we utilize a multi-model ensemble approach
during inference to improve the model’s performance on
complex video clips.

We participate in both tracks in the NTIRE23 video col-
orization challenges, including color diversity evaluation
and color distribution consistency evaluation. RTTLC is
awarded second prize in both tracks, indicating its effec-
tiveness and generalizability. In addition, we conduct com-
parative experiments on existing video colorization bench-
marks and found that RTTLC outperforms state-of-the-art
methods in various video restoration tasks.

Our main contribution can be summarized as follows:

1) We propose a new video colorization method named
RTTLC to reduce color artifacts and flickering artifacts

effectively. As shown in Fig. 1, our method achieves
an even better visual performance than baseline.

2) We introduce the Restored Transformer which con-
tains a multi-Dconv head transposed attention(MDTA)
module that is capable of aggregating local and non-
local pixel interactions.

3) We adopt the TLC which uses local aggregation dur-
ing testing to handle spatial information. This not only
leads to improvements in test-time performance but
also enhances the consistency of reasoning during both
training and testing.

4) Experimental results demonstrate that our method
achieves good performance in terms of FID [9] and
CDC [18], while also exhibits significant improve-
ments in visual quality.

2. Related Work
Video Colorization. Recently, researchers have been

using diverse neural network architectures based on deep
learning for colorization [31]. Lei et al. [16] propose a fully
automatic method of FAVC based on a self-regularization
technique and a diversity-promoting term. Jason Antic et
al. [1] propose DeOldify, using GAN and RNN to auto-
matically colorization. Liu et al. [18] propose a temporally
consistent video colorization framework(TCVC) with deep
feature propagation and self-regularization learning. Wan
et al. [23] present a Recurrent Transformer Network(RTN)
to solve the mixed degradations of video by leveraging the
temporal modeling of recurrent neural networks. However,
some models may fail to differentiate between contaminants
and actual frame content, resulting in undesirable flickering
artifacts.

Vision Transformers. In video colorization, ViTs [22]
are effective in video colorization due to their ability to cap-
ture long-range dependencies. However, the self-attention
mechanism in Transformers can increase computational
complexity [24]. To address this issue, Cao et al. [2] pro-
pose VSR-Transformer that uses the self-attention mech-
anism for better feature fusion in video SR. Swin Trans-
former [19] applies self-attention within local image re-
gions. Furthermore, Liang et al. [17] design a Swin
Transformer-based image restoration model SwinIR. How-
ever, these methods confine context aggregation to the lo-
cal neighborhood, undermining the main advantage of using
self-attention over convolutions.

Global Information Aggregation. Inconsistency
between the input image distribution during model training
and testing could be a potential issue for poor performance
in real world [15]. Chen et al. [7] propose a Half Instance
Normalization Block(HIN), which can divide the input
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Figure 2. The Framework of Restored Transformer and Test-time Local Converter Network.

image into fixed-size patches. Chen et al. [6] employ
an Image Processing Transformer(IPT) with multi-heads
and multi-tails. The Test-time Local Converter(TLC) [8]
can be employed to replace the information aggregation
region from the entire spatial dimension to a local window.
Overall, these methods give encouraging outcomes in
tackling the aforementioned problems.

3. Method
3.1. Overview

Our algorithm consists of three modules: Bi-directional
Recurrent Block, Learnable Guided Mask, and Re-
stored Transformer. Assuming a video sequence X =
{x1, x2, · · · , xT }, where T represents the length of a video.
Firstly, the input video is processed by a Bi-directional Re-
current Block. It extracts features while obtaining sufficient
temporal and spatial contextual information. Secondly, we
use a soft mask guided by the optical flow method to lo-
cate spatial color change areas to suppress color artifacts.
Finally, in order to improve the quality of video detail col-
oring, we utilize a Restored Transformer. Additionally, we
adopt several strategies. Test-time Local Converter(TLC)
can ensure training-test consistency. Multi-Model Ensem-
ble Testing can improve the model’s FID and CDC scores
significantly. The overall system pipeline is shown in Fig. 2.

3.2. Network Structure

3.2.1 Bi-directional Recurrent Block

In order to suppress the flickering artifacts and fully uti-
lize temporal information, we refer to [23] and introduce

the Bi-directional Recurrent Block into our approach, which
contains a forward hidden state and a backward hidden
state. We estimate the optical flows ft−1→t between xt−1

and xt. The previous state st−1 is aligned to time t by a
warping function W(·). xt is extracted by the encoder E(·),
and F merge the states between history and current feature.

The forward hidden state st↑ and backward hidden state
st↓ are obtained as Eqs. (1) and (2), respectively.

st↑ = F ↑ (E(xt),W(st−1, ft−1→t)) (1)

st↓ = F ↓ (E(xt),W(st+1, ft+1→t)) (2)

Finally, we input bidirectional temporal states to the Re-
stored Transformer R(·), and incorporate through the de-
coder D(·).

yt = D(R(st↑),R(st↓)) (3)

3.2.2 Learnable Guided Mask

To ensure temporal consistency, we refer to [23] and in-
troduce the Learnable Guided Mask. This is originally de-
signed for scratch removal, which utilizes a learnable soft
mask to locate scratch areas. However, we find that this
module can position color changes well according to the
motion of adjacent frames, thereby suppressing flickering
artifacts. The mask M can be expressed as Eq. (4).

M = M(E(xt),W(st−1, ft−1→t)) (4)

Where M(·) is a shallow convolutional neural network.
We aggregate the temporal priors and current frames as
Eq. (5).

F = E (xt) ·M +W(st−1, ft−1→t) · (1−M) (5)

1724



3.2.3 Restored Transformer

In order to leverage more spatial contextual information
and capture more multi-scale information, we introduce the
Restored Transformer [28]. Compared with the original
Swin Transformer [19], Restored Transformer has stronger
spatial pixel learning ability and a larger receptive field.
This is attributed to its proposed Multi-Dconv Head Trans-
posed Attention(MDTA), which has linear complexity.

MDTA uses a depthwise separable convolution [10] to
aggregate pixel-level cross-channel context information for
Query(Q), Key(K), and Value(V) vectors. Then, Q and
K are reshaped into a transposed attention map of size
RC ×RC , instead of the huge regular attention map of size
RH×W ×RH×W , where C represents the number of chan-
nels. This approach reduces computational complexity sig-
nificantly. The above process can be defined as Eqs. (6)
and (7).

X̂ = WpAttention(Q̂, K̂, V̂ ) +X (6)

Attention(Q̂, K̂, V̂ ) = V̂ × softmax(
K̂ × Q̂

α
) (7)

In these formulas, Wp(·) is the 1 × 1 point-wise convo-
lution of depthwise separable convolution. X and X̂ rep-
resent the input and output feature maps. Q̂, K̂, and V̂
are obtained by reshaping tensors from the original size
RĤ×Ŵ×Ĉ . The parameter α is a scaling factor.

After several transformer blocks, Restored Transformer
can effectively perceive global context information and by
taking advantage of its large receptive field.

Figure 3. The process of TLC in attention, the green part indicates
overlapping areas.

3.3. Tips and Tricks

3.3.1 Test-time Local Converter

In order to ensure model train-test consistency, we intro-
duce Test-time Local Converter(TLC) [8], which converts
global operations to local ones during testing. Researchers
usually divide images into patches during training, but input
the entire image during testing. This inconsistency between
training and testing can greatly reduce the model’s perfor-
mance. To address this issue, We use TLC in the attention
layer of Restored Transformer, and the process is shown in
Fig. 3.

Firstly, TLC uses a sliding window to crop the feature
map and get n patches. The size of the window depends on
the patch size during training. Then, the attention layer is
calculated on each patch. Finally, the output of each patch
is merged into an entire feature map. Because the computa-
tion is independent in each window, unnatural dividing lines
may appear at the window’s boundaries. To mitigate this sit-
uation, there is a partial overlap between each window, and
the overlapped areas are averaged when output. The pro-
cess of local information aggregation can be formulated as
Eq. (8).

Ψ(X, f) =
n
∪
i,j
f(Xi,j) (8)

Where Xi,j indicates the (i, j)th patch. f indicates the

calculation of the attention layer.
n
∪
i,j

indicates the operation.

The size of Ψ(X, f) is the same as the output of attention
layer without TLC.

We find that the artifacts of edge splicing are reduced
with little additional computational. Meanwhile, TLC can
enable the model to generate more color textures with no
additional computational cost.

3.3.2 Multi-Model Ensemble Testing

Since the learning ability of the model is different on
different data, we finetune them using different training sets.
During testing, we select the best-performing model on the
specific category of the test set. In the competition, we use
six models in total, which significantly improve the model’s
score in testing.

3.4. Loss Function

The entire loss function Ltotal contains L1 loss, per-
ceptual loss, and Spatial-Temporal Adversarial Loss. The
Spatial-Temporal Adversarial Loss refers to the Temporal-
PatchGAN [5]. It can enhance perceptual quality and
spatial-temporal coherence. The discriminator D is aimed
to distinguish between real and fake spatial-temporal fea-
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Figure 4. Qualitative comparison on LDV(NTIRE23 Video Colorization Challenge validation set) for video coloring.
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Figure 5. Qualitative comparison on the Videvo20 dataset for video coloring.

tures, using hinge loss as shown in Eqs. (9) and (10).

LD = Ey ∼ Y [ReLU(1−D(y))]+Eŷ ∼ Ŷ [ReLU(1+D(ŷ))]
(9)

LG = −Ey∼Y [D(y)] (10)

Here, Y and Ŷ are the output video and ground truth
video, respectively. The expression is as Eq. (11).

Ltotal = λ1L1 + λperLper + λadvLadv (11)
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4. Experiments

4.1. Training Datasets and Details

Training datasets. Our dataset is obtained from the
Large-scale Diverse Video(LDV) dataset [26], which is the
official dataset of NTIRE23 Video Colorization Challenge
[11]. The dataset contains 240 high-quality videos and ex-
hibits a high degree of diversity. Specifically, we select 200
color videos with a resolution of 960×536 as the training
set. The validation set contains 15 videos. Additionally,
we select 5 videos from the internet that are similar to the
dataset as extra training data. The video frames are con-
verted to grayscale using ‘cv2.cvtColor()’.

Training details. In our joint loss function,
(λ1, λper, λadv) = (1.0, 1.0, 0.01). We use Adam
optimizer [12] with (β1, β2) = (0.9, 0.99). To facilitate
convergence, we use Cosine Annealing. The learning rate
for both the generator and discriminator are set to 1× 10−4

for the first 10 epochs, and then linearly decays to zero. We
train our model on the 200 videos of LDV for 8 epochs.
The patch size is 192×192, and the number of input frames
is 8. Subsequently, we finetune our model with 60 videos
from the training set that is similar to the validation set
and 5 extra dataset. During finetuning, the patch size is
256×256 and the number of input frames is 5, with a total
of 50,000 iterations. Our model is implemented using
PyTorch and trained for 4 days on four NVIDIA GeForce
RTX 3090 GPUs.

4.2. Comparison with Other Methods

We compare our proposed method with several state-of-
the-art approaches, including DeOldify [1], RTN [23] and
BasicVSR++ [4]. For a fair comparison, all approaches are
evaluated on the LDV validation set and Videvo20 [18].
Qualitative results on the validation set and Videvo20 are
presented in Fig. 4 and Fig. 5, respectively. We use FID [9]
and CDC [18] as evaluation metrics. The FID measures the
similarity between the colorized videos and ground truth
videos. The CDC evaluates the temporal consistency of
the colorization results over time. In addition, we compare
the number of parameters and FLOPs. It can be seen from
Tab. 1 that the proposed method is almost optimal in both
evaluation indexes, which is slightly worse than DeOldify
at FID of Videvo20.

4.3. Ablation Study

4.3.1 Restored Transformer

We retrain on our training set using the original train-
ing setup of RTN [23], which uses Swin Transformer as the
coloring module. As shown in Fig. 6, the Restored Trans-

Method
LDC validation set

FID↓ CDC↓
Videvo20

FID↓ CDC↓ Params FLOPs

DeOldify 47.1719 0.003475 37.1743 0.002584 218.22M 140.82G
BasicVSR++ 54.4334 0.005795 53.6191 0.005224 6.98M 243.10G

RTN 54.7994 0.003018 48.9520 0.002113 6.17M 162.61G
RTTLC(ours) 43.3332 0.002594 48.4203 0.002092 17.80M 164.50G

Table 1. Comparison with SOTA methods. Red and blue indicate
the best and the second best performance, respectively. The input
size is (3, 256, 256) when calculating Params and FLOPs.

(A) (B) RTTLC

Restored Transformer ✕ ! !

TLC ✕ ✕ !

FID↓ 54.7994 43.6007 43.3332
CDC↓ 0.003018 0.002921 0.002594

Table 2. Ablation experiment for the Restored Transformer and
TLC.

former produces more vibrant colors in the colored videos.
Swin Transformer struggles to accurately color the contents
of the images. The FID and CDC scores are shown in Tab. 2,
where Restored Transformer’s score increased.

4.3.2 Test-time Local Converter

We conduct a comparative experiment on whether to use
TLC. As shown in Fig. 6, TLC makes the colored videos
more realistic and closer to the ground-truth(GT) videos.
The FID and CDC scores are shown in Tab. 2. This indi-
cates the importance of consistent data distribution between
training and testing.

4.3.3 Result of NTIRE23 Video Colorization Chal-
lenge

We participated in NTIRE23 Video Colorization Compe-
tition which contains Track 1 of FID and Track 2 of CDC,
and got the second prize on both tracks. The results of our
competition are shown in Tabs. 3 and 4.

Team Author FID↓ CDC↓
NJUSTer Yixin Yang 21.5372 0.001717

CUCPLUS(ours) Jinjing Li 26.7915 0.000963
MiAlgo Shuai Liu 41.9539 0.001450
vectoria Siqi Chen 55.9904 0.001714

ppzz Hanning Xu 56.8085 0.001122

Table 3. Results of the top5 methods in the NTIRE 2023 Video
Colorization Challenge Track 1.
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Figure 6. The result of ablation experiments(FID/CDC). Red and blue indicates the best and the second best performance, respectively.
First column: input frames. Second column: the output without TLC and Restored Transformer. Third column: the output without TLC.
Fourth column: the output of the complete network. Fifth column: the Ground Truth frames.

Team Author FID↓ CDC↓
MiAlgo Shuai Liu 54.7238 0.000819

CUCPLUS(ours) Jinjing Li 26.7934 0.000962
vectoria Siqi Chen 63.7640 0.001017

NJUSTer Yixin Yang 62.4467 0.001066
ppzz Hanning Xu 56.8085 0.001122

Table 4. Results of the top5 methods in the NTIRE 2023 Video
Colorization Challenge Track 2.

5. Conclusion

In conclusion, video colorization is a complex task
that has the potential to enhance the quality of legacy
videos. While learning-based methods have made remark-
able progress, they still suffer from flickering artifacts and
temporal inconsistency. To address these issues, we pro-
pose RTTLC that uses both spatial and temporal informa-
tion to achieve accurate and high quality colorization re-
sults. Our method incorporates a Restored Transformer to
aggregate local and nonlocal pixel interactions. In addi-
tion, we introduce the TLC to address the potential distri-
bution shift between the input images during model training
and testing. We also participate in the NTIRE23 video col-
orization challenges and conduct comparative experiments,
which demonstrate the effectiveness and generalizability of
our method. Overall, our RTTLC reduces color artifacts and
represents a significant advancement in video colorization.
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