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Figure 1. Visual results of applying our Refusion to various synthetic and real-world restoration tasks, including (1) Shadow Removal, (2)
Stereo Super-Resolution, (3) Bokeh Effect Transform, and (4) HR Non-Homogeneous Dehazing. Note that all tasks require processing of
large-size images (2K-6K resolution) with complex degradations, which is far beyond the capabilities of existing diffusion models.

Abstract

This work aims to improve the applicability of diffusion
models in realistic image restoration. Specifically, we en-
hance the diffusion model in several aspects such as net-
work architecture, noise level, denoising steps, training im-
age size, and optimizer/scheduler. We show that tuning
these hyperparameters allows us to achieve better perfor-
mance on both distortion and perceptual scores. We also
propose a U-Net based latent diffusion model which per-
forms diffusion in a low-resolution latent space while pre-
serving high-resolution information from the original input
for the decoding process. Compared to the previous latent-
diffusion model which trains a VAE-GAN to compress the
image, our proposed U-Net compression strategy is signif-
icantly more stable and can recover highly accurate im-
ages without relying on adversarial optimization. Impor-
tantly, these modifications allow us to apply diffusion mod-
els to various image restoration tasks, including real-world
shadow removal, HR non-homogeneous dehazing, stereo
super-resolution, and bokeh effect transformation. By sim-

ply replacing the datasets and slightly changing the noise
network, our model, named Refusion, is able to deal with
large-size images (e.g., 6000 × 4000 × 3 in HR dehazing)
and produces good results on all the above restoration prob-
lems. Our Refusion achieves the best perceptual perfor-
mance in the NTIRE 2023 Image Shadow Removal Chal-
lenge and wins 2nd place overall.

1. Introduction

Image restoration is a long-standing problem in com-
puter vision due to its ill-posed nature and extensive de-
mands in industry. Broadly speaking the challenge is to
restore the high-quality (HQ) image from the low-quality
(LQ) counterpart subject to various degradation factors
(e.g., noising, downsampling, and hazing). Over the past
decade, methods based on deep learning have achieved im-
pressive performance in image restoration. However, most
of these methods are prone to produce over-smooth images
due to their pixel-based reconstruction loss functions, i.e.,

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1680



L1/L2 [20, 50, 51, 58, 76].
Recently, the diffusion model has shown a strong ca-

pability in producing high-quality results by sampling im-
ages consisting of pure noise and then iteratively denoising
them with Langevin dynamics [19, 28, 56] or reverse-time
stochastic differential equations (SDEs) [57, 60]. However,
many common image restoration tasks (e.g., deraining, de-
hazing, and deblurring) are still challenging for diffusion
models, due to the complex degradations and the large and
arbitrary image sizes in real-world datasets. There has been
interesting developments when it comes to the use of pre-
trained diffusion models. Two drawbacks with the existing
approaches are that; 1) they rely on carefully curating the
datasets (e.g., ImageNet [18] and FFHQ [31]), 2) they re-
quire the degradation parameters to be known. These draw-
backs limit their applicability when it comes to real-world
tasks [4, 12, 14, 17, 32, 33].

In order to handle intricate real-world distortions, recent
developments [47, 54, 69] have utilized a combination of a
pure noise image and a low-quality image as an intermedi-
ary input for the noise network. This approach avoids the
need for degradation parameters and enforces the reverse
process to convert the noise into the desired high-quality im-
age. However, these approaches are somewhat heuristic and
are difficult to apply to general tasks. A more general im-
age restoration method is IR-SDE [41], which proposes to
recover HQ images based on a mean-reverting SDE, which
implicitly models the degradation and is applicable to vari-
ous tasks by changing the datasets only. A drawback with
IR-SDE is that it is computationally demanding at test time
since it requires multi-step denoising on the full image to
restore the final output. This can be problematic for real-
world applications, in particular for high-resolution images.

The purpose of this paper is to improve the diffusion
model is a way that enhance its effectiveness in tackling
diverse real-world image restoration tasks. The result is
Refusion (image Restoration with diffusion models). Due
to its simplicity and flexibility in accommodating different
problems, the IR-SDE serves as the foundation for Refu-
sion. By exploring different noise network architectures,
we show that using the nonlinear-activation-free network
(NAFNet) [7] can achieve good performance in noise/score
prediction while at the same time being more computation-
ally efficient. Moreover, we also illustrate the efficacy of
different noise levels, denoising steps, training image sizes,
and optimizer/scheduler selections. To further deal with
large images, we propose a U-Net based latent diffusion
strategy. This allows us to perform image restoration in a
compressed and low-resolution latent space, which speeds
up both the training and the inference. In the experiments,
we demonstrate our improved diffusion model on the tasks
of real-world shadow removal, HR non-homogeneous de-
hazing (with images of size 6000×4000×3), stereo super-

resolution, and the bokeh effect transformation. The exper-
iments show that the proposed Refusion is effective on all
the image restoration tasks mentioned above.

Our contributions are summarized as follows:

• Compared to existing diffusion-based approaches, our
method can gracefully handle high-resolution images
by performing image restoration in the U-Net com-
pressed latent space, while preserving high-resolution
information from the original input for the decoding
process. Importantly, our U-Net compression strategy
offers significantly improved stability compared to ex-
isting latent diffusion models and can recover high-
accuracy images without requiring adversarial opti-
mization.

• We perform a comprehensive empirical study of sev-
eral factors that have a major impact on the perfor-
mance of diffusion models for image restoration.

• We propose to change the diffusion base network from
U-Net to NAFNet. The latter achieves better image
restoration performance across all tasks while requir-
ing fewer model parameters and being computation-
ally more efficient.

• We evaluate our approach on extensive real-world and
synthetic datasets, further showing strong versatility to
a variety of image restoration problems.

2. Related Work
Image restoration aims to restore a high-quality image

from a degraded low-quality version. When it comes to
approaches based on deep learning, two early and influen-
tial contributions are SRCNN [20] and DnCNN [76]. They
made use of convolution neural networks (CNNs) for im-
age super-resolution and denoising, which significantly im-
proved the performance in each application. This develop-
ment spurred a lot of activity when it comes to making use
of CNNs for various image restoration tasks [8, 11, 21, 34,
35, 42, 44, 65, 73–75, 77, 80, 81]. Many of these approaches
can be viewed as variations of [20, 76] trained with pixel
reconstruction losses such as L1 and GAN .

Recently, transformer-based architectures [63] have
shown impressive performance and hence received a lot
of attention when it comes to high-level computer vision
tasks [22, 24, 38]. These architectures have also been em-
ployed for image restoration [6, 36, 43, 68, 70, 72]. For
example, IPT [6] is the first work to propose the use
of pre-trained transformers for image processing. Subse-
quently, SwinIR [36] modifies the Swin Transformer [38]
with additional convolution layers and residual connections
to achieve state-of-the-art performance on various image
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Figure 2. (a) Illustrations of various image restoration tasks based on our proposed Refusion method. We use the mean-reverting SDE to
recover HQ images from LQ images, adopting the IR-SDE approach [41]. (b) The NAFBlock with an additional time processing branch
which is depicted in purple color. Here “SCA” is the simple channel attention, and “SimpleGate” is an element-wise operation that splits
feature channels into two parts and then multiplies them as output.

restoration tasks such as image super-resolution and denois-
ing. Restormer [72] and Uformer [68] combine the trans-
former with U-shape structures to achieve more efficient
image restoration. In addition, there are also attempts to
make use of the MLP [59] and the nonlinear activation free
networks [7] to restore images.

3. Preliminaries: Mean-Reverting SDE
Our method leverages a diffusion model for realistic im-

age restoration. Specifically, we use IR-SDE [41] as the
base diffusion framework, which can naturally transform
the high-quality image to its degraded low-quality coun-
terpart, irrespective of how complicated the degradation is
(even for real-world degradations, see Figure 2). The for-
ward process of the IR-SDE is defined as:

dx = θt (µ− x)dt+ σtdw, (1)

where θt and σt are time-dependent positive parameters
characterizing the mean-reversion speed and the stochastic
volatility, respectively. If we set the SDE coefficients in (1)
to satisfy σ2

t / θt = 2λ2 for all times t, the marginal distri-
bution pt(x) can be computed according to [41]

pt(x) = N
(
x(t) | mt, vt

)
, (2a)

mt := µ+ (x(0)− µ) e−θ̄t , (2b)

vt := λ2
(
1− e−2 θ̄t

)
, (2c)

where θ̄t :=
∫ t

0
θz dz. Note that as t increases, the mean

value mt and the variance vt converges to µ and λ2, respec-
tively. Hence, the initial state x(0) is iteratively transformed
into µ with additional noise, where the noise level is fixed
to λ.

The IR-SDE forward process (1) is a forward-time Itô
SDE, which has a reverse-time representation as [57]

dx =
[
θt (µ− x)− σ2

t ∇x log pt(x)
]
dt+ σtdŵ. (3)

Note that during training we have access to HQ images
which means that we can employ (2) to compute the ground
truth score function

∇x log pt(x) = −x(t)−mt

vt
. (4)

The reparameterization trick now allows us to sample x(t)
according to x(t) = mt(x) +

√
vt ϵt, where ϵt ∼ N (0, I)

is a standard Gaussian noise. Then we can rewrite (4) as
∇x log pt(x) = − ϵt

vt
. A CNN network is usually trained

to estimate the noise, and at test time we then simulate the
backward SDE to transform low-quality images into high-
quality versions, similar to other diffusion-based models.

4. Improving the Diffusion Model
We will in Sec. 4.1 introduce the U-Net based latent dif-

fusion model that allows us to perform diffusion in the low-
resolution space to significantly improve the sample effi-
ciency. After that, we introduce the nonlinear activation
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Figure 3. Overview of our U-Net based latent diffusion model.
The restoration is performed in a low-resolution latent space.

free blocks (NAFBlocks) [7] to IR-SDE in Sec. 4.2, and out-
line several training strategies that can improve the restora-
tion performance in Sec. 4.3. As an overview, Figure 2 il-
lustrates the tasks and networks of the proposed Refusion
method.

4.1. Latent Diffusion under U-Net

Iteratively running the diffusion model (even with just a
few denoising steps) on tasks with high-resolution images
is notoriously time-consuming. Especially for HR dehaz-
ing, where all images are captured with 6000 × 4000 × 3
pixels, which is far beyond the input size of any existing
diffusion model. To handle large input sizes we propose
to perform the restoration in a low-resolution latent space,
by incorporating a pretrained U-Net network. The overall
architecture of the proposed U-Net based latent diffusion
model is shown in Figure 3. An encoder compresses the LQ
image into a latent representation, which is transformed into
an HQ latent representation via the IR-SDE backward pro-
cess. From this, a decoder then reconstructs an HQ image.
An important difference compared to latent-diffusion [52],
which uses VAE-GAN as the compressing model, is that the
proposed U-Net maintains multi-scale details flowing from
the encoder to the decoder through skip-connections. This
better captures the input image’s information and provides
the decoder with additional details to reconstruct more ac-
curate HQ images.

When training the U-Net model, we need to make sure
that the compressed latent representation is discriminative
and contains the main degradation information. The U-Net
decoder must also be able to reconstruct HQ images from
transformed LQ latent representations. We therefore adopt
a latent-replacing training strategy, as shown in Figure 4.
Each LQ image is first encoded and decoded by the U-Net,
and a reconstruction L1 loss is applied. The U-Net is then
also trained to reconstruct the corresponding HQ image, by
replacing the LQ latent representation with that of the HQ
image and running the decoder again. Importantly, our pro-
posed training strategy does not involve any adversarial op-
timization. The model training is thus more stable than for
latent-diffusion [52].

LQ Latent

LQ image

Encoder Decoder

HQ image

Encoder

LQ Hidden

HQ Hidden

HQ Latent

Decoder

HQ Latent + LQ Hidden

LQ Latent + LQ Hidden

𝐿! Loss

𝐿! Loss

Figure 4. Our proposed latent-replacing pretraining strategy for
the U-Net model, utilizing two reconstruction L1 loss terms.

4.2. Modified NAFBlocks for Noise Prediction

A commonly used architecture for noise/score predic-
tion is the U-Net [53] with residual blocks [25] and at-
tention mechanisms such as channel-attention and self-
attention [28, 57]. The recently proposed DiT [49] makes
use of a transformer-based structure and simulates diffusion
in a lower-resolution latent space, which sets a new state-of-
the-art on the class-conditional ImageNet 512× 512 gener-
ation in terms of FID. But even under the latent-diffusion
framework [52], pure transformer architectures still incur a
larger computational cost than affordable in traditional im-
age restoration applications.

To address the aforementioned model efficiency prob-
lem, we explore a new architecture for noise prediction.
Specifically, our noise network is based on slightly modified
nonlinear activation free blocks (NAFBlocks) [7]. Nonlin-
ear activation free means that we replace all nonlinear acti-
vation functions with the “SimpleGate”, an element-wise
operation that splits feature channels into two parts and
then multiplies them together to produce the output. As
illustrated in Figure 2(b), we add an additional multilayer
perceptron to process the time embedding to channel-wise
scale and shift parameters γ and β, for both the attention
layer and feed-forward layer. To adapt to different tasks, we
also slightly modify the network with task-specific architec-
tures, such as the lens information in Bokeh Effect Trans-
form and dual inputs in Stereo Image Super-Resolution. The
learning curves of U-Net and NAFNet based diffusion are
illustrated in Figure 6. Note that the modified NAFNet sig-
nificantly outperforms the U-Net backbone on the shadow
removal task.

4.3. Improved Training Strategies

In this section, we discuss the main factors that affect the
training process of diffusion-based restoration. The analysis
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Figure 5. Validation PSNR curves of different training strategies on the real-world shadow removal task. All models use the same modified
NAFNet backbone. We show that slightly changing these parameters can lead to significant performance improvements.
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Figure 6. Comparison of learning curves between U-Net and the
modified NAFNet backbone on the shadow removal dataset.

is performed using the real-world shadow removal task.

Noise levels. The noise level (i.e., the stationary variance λ
from Section 3) can play an important role when it comes
to the performance of diffusion models [41, 46]. In image
restoration we often recover an HQ image directly from the
LQ image rather than from pure noise, which means that
a standard Gaussian for the terminal state is not necessary.
As shown in Figure 5a, we compare four different noise
levels σ = {10, 30, 50, 70} on the shadow removal task.
The training curves show that setting σ = 50 or σ = 70 is
more stable than that with a small noise level, i.e. σ = 10.

Denoising steps. Several works propose to use long-
step pretrained weights but generating images using fewer
steps [5, 40, 56], which indeed improves the sample effi-
ciency but however also at the cost of decreasing the image
quality. In image restoration, we have to re-train diffusion
models from scratch for all tasks. Since IR-SDE has a stable
and robust learning process, we consider to directly adjust
the denoising steps in training while maintaining the perfor-
mance. Figure 5b compares the training curves of IR-SDE
with 100 and 1000 denoising steps. We find that using fewer
denoising steps can result in comparable—and sometimes
even better—restoration performance.

Training patch sizes. A common practice is that training
with large patches can improve the image restoration perfor-
mance [36,37]. But none of the existing works discussed the
effect of patch sizes in training diffusion models. Here we
present the comparison of training IR-SDE with patch size
128 × 128 and 256 × 256, as shown in Figure 5c. As can
be observed, training with large patches performs much bet-
ter, which is consistent with other CNN/Transformer based
image restoration approaches.

Optimizer/scheduler. A good optimizer with a proper
learning rate scheduler is also important to the performance.
As an example, simply adding a cosine decay scheduler
can improve the accuracy by 0.5% for ResNet-50 on the
ImageNet classification task [26]. To find out which op-
timizer better matches the diffusion model, we provide
three comparisons including 1) Adam + multi-step decay,
2) AdamW [39] + cosine decay, 3) Lion [9] + cosine de-
cay. The results in Figure 5d show that both AdamW and
Lion perform slightly better then the Adam optimizer with
multi-step learning rate decay.

5. Experiments
We evaluate Refusion on various image restoration tasks.

In this section, we first briefly introduce several restoration
tasks and their datasets, and then show the comparisons
and results of our proposed method with other baselines.
Our method achieves the best perceptual performance in the
NTIRE 2023 Image Shadow Removal Challenge [62] and
wins 2nd place in terms of overall performance.

5.1. Tasks and Datasets

Image Shadow Removal is the task of mapping shadow re-
gions of an image to their shadow-free counterparts, which
can enhance the image quality and benefit downstream com-
puter vision tasks [45, 55, 79]. For the dataset, we follow
the instructions in the NTIRE 2023 Shadow Removal Chal-
lenge [61,62] to use 1 000 pairs of shadow and shadow-free
images for training and 100 shadow images for validation.

Stereo Image Super-Resolution is a problem stemming from
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the growing popularity of dual cameras in modern mo-
bile phones, and aims to recover high-quality images from
paired low-quality left and right images with stereo cor-
respondences [67, 71]. To train and evaluate our model,
we use the dataset provided by the NTIRE 2023 Stereo
Image Super-Resolution Challenge [64], which consists of
800 training stereo images and 112 validation stereo images
from the Flickr1024 [66] dataset. All low-resolution images
are generated by bicubic downsampling.

Bokeh Effect Transformation is an important task to compu-
tational photography, aiming to convert the image’s Bokeh
effect from the source lens to that of a target lens without
harming the sharp foreground regions in the image [29,30].
For this purpose, we consider the new dataset proposed in
NTIRE 2023 Bokeh Effect Transformation challenge [15],
in which 10 000 pairs of synthetic images with different
lens information are used for training, and 500 images with
source and target lens information are used for validation.

HR Non-Homogeneous Dehazing aims to perform defog-
ging on extremely high-resolution images with heavy non-
homogeneous fog, which is challenging to current dehaz-
ing approaches. Here we use a new dataset proposed in
the NTIRE 2023 HR NonHomogeneous Dehazing compe-
tition [3]. This dataset has a large diversity of contents and
is collected similar to NH-HAZE [1, 2], but with all images
having 6000× 4000× 3 pixels. In addition, it only contains
40 hazy/haze-free image pairs for training and 10 images
for validation and testing. Since the clean images of the
validation and test datasets are not accessible, we choose to
only evaluate our method qualitatively on this task.

5.2. Implementation Details

For all experiments, we use the same setting as NAFNet.
The batch sizes are set to 8 and the training patches are 256
× 256 pixels. We use the Lion optimizer [9] with β1 = 0.9
and β2 = 0.99. The initial learning rate is set to 3 × 10−5

and decayed to 1e-7 by the Cosine scheduler. The noise
level is fixed to 50 and the number of diffusion denoising
steps is set to 100 for all tasks. We also augment the training
data with random horizontal flips and 90 degree rotations.
All models are implemented with PyTorch [48] and trained
on a single A100 GPU for about 3 days.

For shadow removal and stereo super-resolution, we use
the normal diffusion strategy and set the training iterations
to 500 000. For HR dehazing and the Bokeh effect transfor-
mation, on the other hand, we incorporate the latent diffu-
sion strategy. Specifically, we first train the U-Net on each
dataset for 300 000 iterations, and then train the Refusion
model based on the U-Net for 400 000 iterations. Here, all
input patches are cropped to 1024 × 1024, while using U-
Net to compress them to 128× 128 pixels.

Table 1. Comparison of the proposed Refusion with IR-SDE [41]
and NAFSSR [13] on the stereo super-resolution validation
dataset. The proposed Refusion achieves significantly better per-
formance than IR-SDE across all metrics, and outperforms NAF-
SSR in terms of perceptual scores.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ Runtime↓

NAFSSR [13] 23.81 0.7247 0.335 34.86 5.2s
IR-SDE [41] 20.34 0.5841 0.197 25.57 91.3s
Refusion 21.21 0.6336 0.155 22.43 64.1s

Table 2. Comparison of the proposed Refusion with IR-SDE [41],
DHAN [16] and an L1 loss trained U-Net baseline on the shadow
removal dataset. Our proposed Refusion achieves the best restora-
tion performance overall.

Method PSNR↑ SSIM↑ RMSE↓ LPIPS↓ FID↓ Runtime↓

DHAN [16] 20.42 0.6986 24.29 0.247 109.35 0.4s
IR-SDE [41] 20.30 0.6639 24.63 0.152 74.35 175.8s
U-Net baseline 20.69 0.7172 23.55 0.236 102.1 1.62s
Refusion 21.88 0.6977 20.53 0.121 56.22 38.4s

Table 3. Comparison of our methods with Restormer [72] on the
Bokeh Effect Transformation dataset. Our Refusion with latent
strategy can also achieve good performance.

Method PSNR↑ SSIM↑ LPIPS↓ FID↓ Runtime↓

Restormer [72] 41.12 0.9779 0.067 46.72 2.0s
Refusion 39.81 0.9615 0.053 20.38 36.0s
Latent Refusion 40.24 0.9721 0.047 24.25 6.9s

5.3. Experimental Results

Since our Refusion method is proposed for realistic
image restoration, we use the Learned Perceptual Image
Patch Similarity (LPIPS) [78] and Fréchet inception dis-
tance (FID) score [27] as the main evaluation metrics, but
we also report PSNR and SSIM for reference. For shadow
removal, we further report the RMSE metric as previous
approaches [10, 16, 23]. Moreover, for each task, we also
provide the runtime comparison to show the computational
efficiency of our method against other baselines.

Stereo Image Super-Resolution. The quantitative compar-
ison of our model with NAFSSR [13] and IR-SDE [41] is
shown in Table 1. NAFSSR achieves the best PSNR and
SSIM scores, but performs inferior to IR-SDE and our Re-
fusion in terms of LPIPS and FID. The proposed Refusion
significantly improves the performance of IR-SDE across
all metrics, demonstrating the effectiveness of our improved
training strategies. Our method runs slower than NAFSSR,
which directly predicts HQ images from LQ images, but
clearly improves the runtime of our main baseline IR-SDE.
The visual results are illustrated in Figure 8. Our Refusion
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Figure 7. Visual results of our method and the U-Net baseline on the shadow removal task. Top row shows the input images and second
row shows the results produced by the U-Net baseline. Bottom row shows the shadow-free results generated by our method.

LR Image NAFSSR Refusion

Figure 8. Visual results of our method and NAFSSR [13] on the
stereo super-resolution dataset.

produces sharper and clearer images than NAFSSR.

Image Shadow Removal. For this task, we compare our
method with IR-SDE and a U-Net baseline model which
uses the same network architecture as IR-SDE but is trained
to directly predict HQ images via an L1 loss. We also
compare our method with DHAN [16], a well-established
shadow removal model. The quantitative results are shown
in Table 2. The proposed Refusion clearly achieves the best
restoration performance overall. Moreover, Refusion runs
significantly faster than IR-SDE. In the experiment, we find
that all training image pairs have slight position shifts and
that the luminance of each input and ground truth image
is different, which may cause the L1 loss trained model to
learn the shift and luminance rather than shadow removal.

Table 4. Comparison of the parameters and flops. Flops are cal-
culated on an image with size 256× 256. Note that the additional
U-Net for latent Refusion also has 6M parameters and 70G Flops,
but it will be only run once for an image at test time.

Method IR-SDE [41] Refusion Latent Refusion

#Params 135.3M 131.4 M 131.4M
Flops 119.1G 63.4G 4.0G

Thus its performance is lower than our Refusion even in
terms of PSNR. The qualitative comparison in Figure 7 also
demonstrates superior performance of Refusion.

Bokeh Effect Transformation. We apply our latent Refu-
sion model to this task, with an image downscale factor set
to 4. As shown in Table 3, both of our methods achieve bet-
ter perceptual performance than Restormer [72]. The latent
Refusion achieves a better LPIPS score but slightly worse
FID than Refusion. It also runs much faster than Refusion,
getting close to the runtime of Restormer. The visual com-
parison is shown in Figure 9. As one can see, our method
produces sharper results than Restormer when transform-
ing the bokeh effect from blurry to clear. We also provide
a comparison of model complexities in Table 4. As can
be observed, the latent strategy reduces computation flops
about 15× compared to the original Refusion model, which
significantly improves the applicability.

HR Non-Homogeneous Dehazing. The visual results of
dehazing are shown in Figure 10. As can be observed,
most fog is successfully removed by our latent Refusion
model. Note that all images in the HR dehazing dataset have
6000 × 4000 × 3 pixels. With such large image sizes, IR-
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Figure 9. Visual results of our method and Restormer [72] on the Bokeh effect transformation task. Top row shows the input images and
second row shows the Restormer’s results. Last row shows the transformed results generated by our method. In addition, lens transform
information is shown in the bottom. ‘S. f/1.8 → C. f/16’ means the image is transformed from Sony50mmf1.8BS to Canon50mmf16.0BS.

Figure 10. Visual results of our method on the HR Non-Homogeneous Dehazing task. Top and bottom row are inputs and outputs.

SDE and Refusion are not even able to process a complete
image at test time, and other diffusion models which use
additional self-attention mechanisms would be even more
computationally expensive. By performing the restoration
in a low-resolution latent space, our latent Refusion model
can be applied also in this highly challenging setting.

6. Conclusion

In this paper, we present several techniques to improve
the applicability of diffusion-based image restoration. The
resulting model, named Refusion, is successfully applied to
various image restoration tasks and it achieves the best per-
ceptual performance in the NTIRE 2023 Shadow Removal
Challenge. To process large-size images, we further pro-
pose a U-Net based latent Refusion model that compresses
the input image to a low-resolution latent space in which it

performs diffusion to improve the model efficiency. Since
input image information is also captured in the hidden vec-
tors connected to the decoder, we are able to recover images
with more accurate details. Our latent Refusion model can
even run on images of size 6000× 4000× 3 pixels.
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