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Abstract

Face restoration models that mitigate low light, mixed
lighting, poor camera quality conditions can benefit vari-
ous applications, including video conferencing, image cap-
ture apps, among other uses. Many different models exist
to address this problem. Although recent models generate
impressive and high-fidelity faces, several important chal-
lenges remain, such as model efficiency, realistic texture and
facial components, low-light environments, and screen illu-
mination on the face. To tackle these challenges, we pro-
pose a simple, yet effective model called Face Restoration
and Relighting Network (FRR-Net). The FRR-Net architec-
ture includes an encoder-decoder model with a parallel dis-
tortion classifier which predicts the distortion types during
training. This model is systematically scaled to balance net-
work depth and width for better performance and efficiency
trade-off. In addition, to generate the enhanced facial re-
gion, FRR-Net also utilizes a facial segmentation mask dur-
ing the training, which not only helps the model perfor-
mance but can also be used for further post-production
uses. Furthermore, this work integrates a wide range of
data degradation techniques to generate data for training
to tackle both face enhancement and relighting. We demon-
strate the effectiveness of our method by comparing it with
several recent face restoration models. FRR-Net is compu-
tationally efficient and can perform inference at 13ms per
frame on a low-powered Neural Processing Unit making it
suitable for real-time face restoration applications.

1. Introduction
Enhancing the quality of faces in videos and images sig-

nificantly improves the user experience in different appli-
cations (e.g., video conferencing and mobile apps). There
are different conditions that may affect the image quality of
the facial region including light/exposure (e.g., dark rooms,
windows, lamps, etc.), camera focus blur, distance from the
camera, screen illumination on the face, etc. This is further
impacted by the quality of the attached camera hardware,

(a) Low Light

(b) Blur

(c) Screen Illumination

(d) Low Light+Screen Illumination

Figure 1. Example input images captured under varying illumi-
nation conditions using a custom webcam and the corresponding
enhanced version obtained by FRR-Net

resulting in a poor experience during video communication.
The goal of blind face restoration techniques is to re-

cover face quality from unknown distortions. There are
many studies on image super resolutions [24, 27, 28, 31, 45,
53,55,57] and face restoration [10,13,43,44,48]. However,
there exist several challenges including: 1) How realistic the
generated images are and/or the number of artifacts added
to the face? 2) Are these models real-time and applicable to
video applications? 3) How do these models work in differ-
ent lighting environments (low light, high exposure, screen
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illumination)? In this paper, we address these challenges
by developing an efficient full-refiner model that provides a
great trade-off between accuracy (face quality) and compu-
tational efficiency.

Some work attempts to recover images from a specific
single degradation (e.g., noise [8, 35, 58], blur [7, 23, 34],
low-light [9, 11, 50], etc.), while more recent work focuses
on multi-degradation [10, 32, 43, 44, 48]. The latter mainly
utilizes some kind of priors to enhance the quality and fi-
delity of faces. These priors can be classified as facial or
geometric priors [4, 5, 54], reference priors [6, 25, 26], and
more recently generative priors [3,32,43,49] or a combina-
tion of different priors [63].

One way to simulate real-world image degradation is to
synthetically and randomly apply multi-degradation tech-
niques to High-Quality (HQ) images during the training and
try to recover the degraded Low-Quality (LQ) images as
close as possible to the corresponding HQ images. Recent
studies have followed [25,26,43] and adopted a degradation
model as follows:

LQ = [(HQ⊛ kσ) ↓r +Nδ]JPEGq
(1)

Where k, ↓, N , and JPEG are blur kernel, down-
sampling, noise, and JPEG compression respectively.

The above degradation model is designed to recover very
low-quality images and therefore applies large-scale noise
and down-sampling which sometimes completely destroys
the image. This may not be applicable in many real-world
scenarios such as video conferencing where the user is usu-
ally close to the camera, but there might be some noise,
movement, or light conditions that affect the overall quality
of the face. Therefore, we modified the current degradation
model to generate more real-world scenarios. Specifically,
we incorporate light/exposure and screen illumination dis-
tortion together with other common image degradation op-
erations. In addition, we utilize the face region mask during
training and also predict the mask as one of the outputs of
the model. This helps the model to only focus on the facial
region and achieve better performance.

Instead of facial and GAN priors which sometimes add
artifacts and make the face/texture unrealistic (as shown in
our experiments and also mentioned by [10]), we used a
classifier to learn the distortion types applied to each im-
age which is later integrated to the encoder features. This
classifier is trained in parallel with the autoencoder model
to further guide the decoder on how to recover from each
specific distortion.

Another big challenge of face restoration is having a
reasonable low-compute model that works in real-time on
many devices. Many existing works are very large and only
applicable for single image restoration and may not be suit-
able for real-time video applications [10, 44, 55]. There are
also image enhancement models developed for mobile and

low-computational cases but they are not designed to handle
multi-degradation scenarios [9]. For this purpose, we pro-
pose a light yet effective model to enhance different types
of distortions such as light, illumination, down-sampling,
noise, etc. in real-time. Figure 1 shows a few real-world
sample images enhanced by our model. The main contribu-
tions of this paper are as follows:

• We propose a computationally efficient model based
on depth to space and dense blocks, which is capable
of handling various distortions effectively. This model
is carefully designed by examining different depth and
width scaling factors controlling output channels and
inner dense layers in each dense block, respectively,
achieving 13ms inference times on a low-power Neural
Processing Unit (NPU) [1], making it feasible for real-
time applications and low-power devices.

• Our model includes a distortion-guided classifier that
predicts the degradation type and uses that class infor-
mation as a prior in the autoencoder

• We also incorporate a face segmentation mask and
dice loss during training to only focus on the face re-
gion (limit the restoration region) and avoid the back-
ground.

• We propose a new degradation model that not only
combines previous degradation techniques but also use
light/exposure and illuminations distortions. To the
best of our knowledge, this is the first work that com-
bines all these degradation into one single model.

2. Related Work
Face Restoration. Face restoration methods learn a

mapping from the input low-quality image to a high-quality
one for the various sub-tasks (deblurring, denoising, artifact
removal, etc.). These methods use natural images for train-
ing and can accurately improve images that closely match
the training instance used [4, 25, 48]. Blind face distortion
methods use artificial perturbations to introduce degrada-
tion into the training data [4, 10, 43]. They ease the need
for costly data collection effort by allowing many different
degradations to be applied to images.

With the increasing use of Generative Adversarial Net-
works (GANs) for generating synthetic faces, GANs can
be used to create face restoration models. These meth-
ods involve using pre-trained GAN models such as Style-
GAN2 [21] and fine-tuning it into an autoencoder model [3,
32, 49]. These methods struggle to create realistic-looking
faces with fine-grained details. Panini-Net [44] addresses
this issue by forcing the model to learn a degradation-aware
feature representation that encodes features from the de-
graded image into the GAN representation [44]. It trains
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the model on a set of different degradations to learn fea-
tures specific to each. GFP-GAN uses a two-step process,
first using an autoencoder to remove the degradation, then
using the features from the decoder along with the GAN
to produce a high-quality face [43]. The combination al-
lows spatial features from the decoder and GAN features
to contribute to the output independently. Our method uses
a degradation prior to augmenting the latent representation
going into the decoder.

Geometric priors can be added to the latent information
passed into the decoder [4,5,54]. VQFR [10] is a blind face
restoration technique that uses a VQ code-book along with
a parallel decoder model [10]. The VQ codebook works to
remove the degradation and the parallel decoders create an
accurate restoration.

Model Shrinking. Developing computationally afford-
able neural networks for use cases with limited resources
has been rising in recent research. These efforts can be cat-
egorized mainly into model compression methods and small
model architectures. The model compression techniques in-
cluding quantization [37, 47, 56], model pruning [12, 29],
and knowledge distillation [15, 37] mainly focus on pre-
trained models to achieve sparse or reduced versions of
the trained model before deploying to the production en-
vironment. Designing a small model, on the other hand,
addresses the accuracy and efficiency trade-off by introduc-
ing efficient building blocks and high-level architectural pa-
rameters to shrink/expand the model based on target envi-
ronment restrictions and requirements. Depthwise convo-
lution layers [19, 60, 61], Fire Module [17], neural archi-
tecture search [42, 46, 51], and layer dimensions multipli-
ers [16, 38, 41] mainly focus on the architectural design of
neural networks. In this work, we extend the idea of model
shrinking/scaling [16,41] and carefully design a network to
balance the network’s depth and width which leads to better
performance and speed.

3. Methodology
The architecture of the proposed FRR-NET framework is

illustrated in Figure 2. First, we extract a video input frame.
In this example, the face is not very clear and the room is
dark. The facial region to be enhanced is determined us-
ing an existing facial landmark estimation method. The de-
tected face area as well as the generated facial mask (us-
ing Mask-RCNN [14]) is used as the input of the FRR-Net
model. This model consists of an autoencoder, distortion
classifier, and mask generation. Pre-trained features from
VGGFace model [36] are extracted and used as the classi-
fier input. The output of the model includes an enhanced
face and the corresponding face segmentation mask. Thus,
the model discards the background and only focuses on en-
hancing the face area while learning how to improve seg-
menting the face area. These two outputs are blended with

the original image (combining the enhanced face area and
the original background) to generate the final output frame.

3.1. Degradation Model

Existing face restoration models can restore the face
from moderately to extremely noisy or poor-quality photos.
Our observations, however, demonstrate that some mod-
els produce artifacts, identity shifts, inconsistent eye col-
oration, or unnatural facial textures in real-world faces. A
few examples are shown in the experimental section and
supplementary material. This may not be acceptable in ap-
plications where the intent is to overcome difficult environ-
mental lighting, camera limitations, and other distortions
while preserving the individual’s appearance. Thus, we pro-
pose a modified version of the degradation model in this pa-
per. Figure 3 depicts a few samples from existing degrada-
tion models compared to our degradation model. The pre-
vious model usually contains highly down-scaled or very
noisy images while we used a smoother, but more diverse,
type of distortion to train our model. Similar to Equation 2,
the proposed degradation model can be formalized as:

LQ = [(((HQ) ↓r ξeηjCγ) +Nδ)⊛ kσ]JPEGq
(2)

Where ↓, ξ, η, C, N , k, and JPEG are down-sampling,
exposure, color jitter (brightness, contrast, saturation, hue),
chromatic, noise, blur, and JPEG compression, respectively.
We randomly sample r, e, j, γ, δ, σ, and q.

Algorithm 1 shows the detailed steps of our degradation
model. The input of our degradation model includes the list
of HQ images for each batch, the Percentdist which is the
percentage of images that will be distorted per batch, and
distortion ranges (r, e, j, γ, δ, σ, and q) for each distortion
type. For each image, we first check if we reach the distor-
tion percentage limit for that batch, if not we randomly ap-
ply one or more distortions to the image, such as downscal-
ing, exposure change per RGB channel, color jitters, chro-
matic, additive white Gaussian noise, and Gaussian blur
convolution. Lastly, we apply JPEG compression artifacts.
If the percentage of images exceeds the Percentdist limit,
we simply use the same image without any distortion as
the target image. The goal is to let the model see both
LQ and HQ images during training and add some robust-
ness to the system, where we can ensure that a good image
is not over-enhanced, avoiding unnecessary overcompen-
sated, unnatural artifacts. While we apply each degrada-
tion on HQ images, we also generate the ground truth class
labels for the distortion classifier depending on what types
of distortion are presented. We categorize the distortions
into three general classes: noise (Gaussian noise, JPEG, and
chromatic), blur (Gaussian blur and downscale), and relight
(exposure or color/illumination). In our multi-label classifi-
cation method, each of the three class labels has a value of 0
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Figure 2. Overview of the FRR-NET framework.

(a) SOTA degradation model.

(b) Our degradation model.

Figure 3. Sample comparisons between an existing degradation
model [43] vs ours.

or 1, so an image with poor exposure and noise is labeled as
101, while an image with noise and blur is labeled as 110.

3.2. Model Architecture

Auto Encoder Network: As shown in Figure 2, FRR-
Net consists of an encoder and decoder (generator). The en-
coder gets the output from the degradation model (LQ im-
ages) and goes through several Conv layers followed with
dense blocks [62]. Each dense block includes several resid-
ual connections as shown in Figure 2 and extracts rich local
features via dense residual connections.

To help the decoder correctly restore the image, a dis-
tortion classifier predicts the types of degradation present
in the input image. For this, we first take the LQ im-
age features from the pre-trained VGGFace model [36] and
pass them along with the label produced by the degrada-
tion model to the classifier. We defined three main classes
(noise, blur, and exposure) as presented in Algorithm 1 to
train the classifier to anticipate these primary types of dis-
tortions in the image. The autoencoder model and the clas-
sifier are both being trained simultaneously. The classifier’s
output is combined with the encoder’s final output.

The generator gets the encoder output and applies a se-
ries of depth-to-space transformations, rearranging the data
from depth (channel) to space (weight and height), followed
by dense blocks (Figure 2). Finally, we apply two CNN lay-
ers with channel sizes three and one to generate enhanced
output and facial mask, respectively. Facial segmentation is
used to let the model only focus on enhancing the facial re-
gion while predicting the face boundary. These output lay-
ers integrate the original input to generate the final frame
with an enhanced face.

Model Shrinking: Convolution layers, as the basic
building blocks of image-processing neural networks, can
be represented as a function of channels (Ci), height (Hi),
and width (Wi). The Encoder/Generator components (N )
of the FRR-Net shown in (Figure 2) are presented as lists
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Algorithm 1: Degradation algorithm
Data: HQ, Percentdist, r, e, γ, δ, σ, q
Result: LQ
Percentaccum ← 0;
Countdist ← 0;
N ← len(HQ);
LQ← ∅ ;
for X ∈ HQ do

L← {0, 0, 0} ;
Percentaccum ← Countdist/N ;
if Percentaccum ≤Percentdist then

Y, is downsacle← DownScale(X, r);
Y, is exposure← RGBExposure(Y, e);
Y, is chromatic← Chromatic(Y, γ);
Y, is noisy ← Y +Noise(Y, δ);
Y, is blurry ← Y ⊛Blur(Y, σ);
Y, is jpeg ← JPEG(Y, q);
Y, is color ← ColorJitter(Y, fb, fs, fh);
Countdist ← Countdist + 1;
if is noisy or is jpeg or is chromatic

then
L{0} ← 1;

end
if is blurry or is downsacle then

L{1} ← 1;
end
if is exposure or is color then

L{2} ← 1;
end

else
Y ← X;

end
LQ← LQ+ {Y } ;
Label← Label + {L} ;

end

(Li) of dense blocks (D) composed of multiple residual
layers. Our focus is to adjust the input/output channels of
the convolution layers as well as the number of residual lay-
ers in each dense block expressed as the width and depth of
the model correspondingly. We use the width (w) and depth
(d) parameters to generate various lightweight versions of
the base model as shown in (Figure 4). Following the nota-
tion from [41], this can be formulated as:

N (d,w) =
⊙

i=1,2,...

Dd.Li
i (Conv(w.Ci, Hi,Wi)) (3)

We use the same width and depth values for both the
encoder and generator. We apply the width values w ∈
[8, 12, 16] to the first dense block, and as all the blocks
are connected sequentially, it will thin all the blocks uni-
formly. The maximum number of residual layers in each

Figure 4. Using Depth and Width parameters to build various
smaller versions of the base model

dense block is 3 and we use the depth values of d ∈ [1, 2, 3]
to generate dense blocks with shorter depths. Using the
depth and width parameter, we can control the computa-
tional cost of each convolution layer (and dense blocks)
expressed by the Multiply-Add Cumulation (MAC), which
has a direct impact on the inference time of the model. Our
experiments using various versions of our baseline model
are shown in the experimental section.

3.3. Model Objectives

Reconstruction Losses: We employed the reconstruction
loss (Lrec = LL1 + Lhub) using the widely-used L1 loss
LL1 = ||y − ŷ||1 and Channel-wise Huber loss to mea-
sure how far the enhanced images (ŷ) are from the ground
truth (y). Channel-wise Huber loss is more robust than the
L1 and not as sensitive to outliers as L2. This enables the
Huber loss to be effective in reducing the “averaging prob-
lem” [2] and generating higher quality images in cases of
noise degradation [30].

Lhub =

{
1
2 (y − ŷ)2 |(y − ŷ)| < α

α(|(y − ŷ)| − 1
2α) otherwise

(4)

Color Enhancement Loss: Similar to [39, 52], to preserve
the color constancy between the enhanced image and the
ground truth we applied the Angular loss as well.

Lang = arccos
y.ŷ

||y|| ||ŷ||
(5)

Perceptual Loss: Similar to [18,43], we used the MSE loss
Lper = ||θ(y) − θ(ŷ)||2 where Θ is the features extracted
from the information distilled in layers 3, 8, and 15 of a
pre-trained VGGFace model [36] immediately before the
average and max pooling layers.
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Style Loss: We also applied style loss to generate a more re-
alistic image texture with a style similar to the ground truth.

Lstyle = ||Gram(θ(y))−Gram(θ(ŷ))||2 (6)

here Gram is the Gram matrix which estimates the feature
of style across all layers.
Dice Loss: We used Dice loss as a soft approximation of
the Dice metric to penalize the overlapping between the pre-
dicted and ground truth images [33, 40]:

Ldice(m, m̂) = 1−
2 ∗ (

∑
m ∗ m̂)∑

m2 +
∑

m̂2 + ϵ
(7)

here m and m̂ are mask and predicted mask, respectively,
and ϵ is added to avoid dividing by zero and to provide more
computing stability.

The overall model objective is a weighted summation of
the above losses:

Ltotal = λrec.Lrec + λang.Lang + λper.Lper+

λstyle.Lstyle + λdice.Ldice

(8)

4. Experiments
4.1. Datasets and Implementations

For training, we used FFHQ [20] and synthetic data gen-
erated by StyleGAN2 [21]1. In total, around 65,000 HQ
images are used for training. All images are resized to
336x336. We applied our degradation model with the fol-
lowing factors: r = {2 : 4}, e = {0.4 : 1.5}, j = {0.1 :
0.2}, γ = {1 : 1.5}, δ = {0.01 : 0.11}, σ = {0.2 : 5},
q = {0 : 100}. Percentdist is also assigned to 0.85 (85%
of the time degradation is applied, while 15% of the time
the original image is used during the training). We used two
datasets to evaluate the performance of the FRR-Net. 1) A
new dataset generated from StyleGAN2 (there is no overlap
between training and testing data) consisting of 4,000 im-
ages. For this data, we applied our degradation model with
the same factors as training. 2) We also evaluated our model
on 3,000 CelebA-HQ test data following the previous work
in face restoration [43]. Although our model is not trained
on the same level of image degradation as CelebA-Test, we
still want to validate how our model works in those scenar-
ios compared to the most recent state-of-the-art models.

The training batch size is set to 8. Layers 3, 8, and 15
of the pre-trained VGGFace [36] are utilized for face fea-
ture extraction and used for Lper and Lstyle. We trained
FRRNet for a total of 500k iterations with the Adam opti-
mizer [22], learning rate is set to 2e − 4, and loss hyper-
parameters are set as follows: λrec = 1, λang = 1,
λper = 0.04, λstyle = 4e − 5, λdice = 1. Our model

1Collected from https://thispersondoesnotexist.com/

Width Depth PSNR
↑

LPIPS
↓

MAC
(GFlops)

NPU
(ms) ↓

16 3 30.19 0.22 40.42 18.50
12 2 30.00 0.23 16.20 13.70
8 1 26.91 0.30 11.26 10.70

Table 1. Inference time on NPU for various Width-Depth versions.

is implemented in both TensorFlow and PyTorch. We used
Azure Machine Learning for hyper-parameter tuning and an
NVIDIA TITAN RTX 24 GB RAM for training.

Our evaluation metrics include Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity (SSIM) as pixel-wise
metrics as well as Learned Perceptual Image Patch Similar-
ity (LPIPS [59]) as a perceptual metric.

4.2. Evaluating Model Shrinking

We evaluated different versions of the baseline model to
find the most efficient model architecture satisfying the in-
ference time budget. We deployed these model versions on
commodity hardware to obtain the amount of speedup in
different environments. We used the SNPE toolkit [1] to
convert a PyTorch/ONNX model to an intermediate repre-
sentation called DLC, which is then deployed to the Qual-
comm Snapdragon processor, which has an NPU optimized
for running 8-bit quantized convolutional neural networks.
Table 1 shows the quality metrics and inference time of var-
ious versions of the baseline model generated from different
combinations of depth ∈ {1, 2, 3} and width ∈ {16, 12, 8}.
The baseline model has a width of 16 and a depth of 3
(W16, D3). While the trained model with (W8, D1) has the
best inference time, its low-quality LPIPS and PSNR met-
rics values prevent it from being selected as the optimum
model. The model with (W12, D2) depicts accuracy similar
to the baseline and simultaneously has a reduced 13.7ms in-
ference time. This accuracy and efficiency trade-off makes
this lightweight version a candidate model we selected as
the primary model for all of our experiments in this work.

4.3. Comparison with State-of-the-art Models

We compared FRR-Net with several state-of-the-art
multi-degradation face restoration models including GFP-
GAN [43], Panini-Net [44], and VQFR [10] as the bench-
mark. To the best of our knowledge, there is no work that in-
tegrates both relighting and face restoration; however, GFP-
GAN applies jitter color distortion and uses color prior from
generative facial prior to color/light enhancement.

StyleGAN Data: As mentioned in Section 3.1, the pro-
posed degradation model not only generates noisy, blurry,
down-scaled faces but also incorporates different exposures
and screen illuminations to adjust the light on the face. For
this purpose, we apply our degradation model to the new
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Model PSNR ↑ LPIPS ↓ SSIM ↑
GFP-GAN 27.36 0.32 0.85
VQFR 27.45 0.32 0.83
Panini-Net 26.65 0.49 0.80

FRR-Net 30.00 0.23 0.87

Table 2. Comparison results on StyleGAN validation data.

synthetic data generated from StyleGAN2. Table 2 shows
the quantitative results of this experiment. From these re-
sults, we can see FRR-Net obtained the best performance
regarding all three metrics, compared to the other mod-
els, by a large margin. More specifically, our model im-
proves both pixel-wise and human perceptual metrics on
this dataset. GFP-GAN and VQFR perform very close to
each other on this dataset and Panini-Net has the lowest
performance on all three metrics. Figure 5 shows several
samples from the StyleGAN data. Although all models re-
move the blur/noise, we can see some models change the
eye color (e.g., VQFR in the first sample), add artifacts
(e.g., Panini-Net results in first row), or generate a different
face texture (e.g., GFPGAN in the first row) as compared to
the ground truth. Overall, our model generates competitive
results compared to these top models while enhancing the
light and color.

CelebA-Test: Although our degradation model is de-
signed to generate various distortions such as noise, blur,
exposure, screen illumination, etc., FRR-Net is not trained
on extremely degraded faces such as CelebA-Test data.
However, to have a fair comparison with the existing work,
we evaluated this data and compared it with the benchmark
models. The quantitative results are presented in Table 3.
From this, GFP-GAN achieves the best performance re-
garding PSNR and SSIM, while VQFR has a slightly better
LPIPS value than GFP-GAN and our FRR-Net. The per-
formance results of FRR-Net on this dataset are still very
competitive compared to the state-of-the-art models. FRR-
Net performs better than Panini-Net regarding all three met-
rics and has very close PSNR and LPIPS values to GFP-
GAN. These results demonstrate that the proposed model
achieves competitive performance on extremely distorted
images while addressing other challenges such as speed,
low to zero artifact, realistic texture, etc.

Real-world Data: Figure 6 demonstrates the qualitative
results on a few real-world datasets2. According to these
results, GFP-GAN generates the most high-fidelity faces
compared to all other models, however, it adds artifacts and
makeup such as lashes (third row) or eye color change (sec-
ond row), and also generates unrealistic textures. Panini-

2These samples are collected internally following CVPR ethics guide-
lines, and all users agree

Model PSNR ↑ LPIPS ↓ SSIM ↑
GFP-GAN 26.12 0.43 0.78
VQFR 25.75 0.42 0.75
Panini-Net 24.87 0.50 0.67

FRR-Net 25.96 0.43 0.70

Table 3. Comparison results on CelebA validation data.

Model CPU
(ms)

GPU
(ms)

parameters
(M)

size
(MB)

GFP-GAN 840 50 76.2 587
VQFR 14000 250 76.3 293
Panini-Net NA 104 131 1500

FRR-Net 220 15 7.2 29

Table 4. Comparison of inference time and computational cost of
FRR-Net compared to top selected face restoration models.

Net and VQFR did not perform well on real-world data and
destroyed eyes or lips along with adding many artifacts. Our
FRR-Net smoothly enhances the face quality while improv-
ing the low-light or screen illumination conditions and does
not change the identity nor add any artifacts to the face.
Thus, it is a better candidate for real-world applications with
moderate distortion such as video conferencing.

Inference Time Comparison: FRR-Net is specifically
designed to enhance faces for video applications. There-
fore, it is important that it performs fast enough on different
devices. Table 4 shows the comparison of speed and size be-
tween the benchmark models and our proposed model. We
tested the results on the NVidia GeForce RTX 2080 GPU
and Intel Xeon Gold 5218 CPU @ 2.30GHz. Our model is
almost 20 times smaller than GFP-GAN and is 3 to 4 times
faster than GFP-GAN on GPU and CPU. Panini-Net is the
largest model (1.5GB) and VQFR is the slowest on both
CPU and GPU devices. FFR-Net is small and efficient and
can recover faces in real-time (about 50 fps on GPU).

As previously shown in Table 1, we also evaluate our
model on low power Qualcomm NPU devices (8cx gen3)
by quantizing the model using the Snapdragon SDK and
computed inference times for DSP execution. For both va-
riety of GPU and NPU hardware accelerators, the proposed
model has potential of being used for real-time video con-
ferencing applications.

For more details on ablation studies regrading the impor-
tance of classifier, losses, segmentation, and image size, as
well as more visualization results, please refer to the sup-
plementary materials.
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(a) Input (b) GPFGAN (c) VQFR (d) Panini-Net (e) FRR-Net (Ours) (f) Ground Truth

Figure 5. Comparisons with SOTA face restoration models: GFP-GAN, VQFR, Panini-Net on real-world images on StyleGAN data.

(a) Input (b) GPFGAN (c) VQFR (d) Panini-Net (e) FRR-Net (Ours)

Figure 6. Comparisons with SOTA face restoration models: GFP-GAN, VQFR, Panini-Net on real-world images (zoom for better view).

5. Conclusion

In this paper, we propose FRR-Net for face restoration
and relighting. The novelty of the FRR-Net model includes:
1) a new autoencoder utilizing Depth to Space following
with Dense layers, with a parallel distortion classification
and facial segmentation mask, 2) a comprehensive distor-
tion model containing noise, blur, exposure, and screen il-
lumination 3) an efficient network design with significantly
reduced parameters that achieves real-time performance on

various battery-powered devices. The experimental results
show that FRR-Net is competitive compared to the state-
of-the-art models in face restoration and provides an ex-
cellent balance of accuracy and latency, making it suitable
for real-time image/video face restoration/relighting across
CPU, GPU, and NPU hardware. In the future, we will look
at expanding our model’s operating range by incorporating
more extreme and realistic distortions to improve handling
of problems such as very low illumination and motion com-
pression, just to name a few.
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