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Abstract

Stereo image Super-Resolution (SR) has made signifi-
cant progress since binocular systems are widely accepted
in recent years. Most stereo SR methods focus on im-
proving the PSNR performance, while their visual quality
is over-smoothing and lack of detail. Perceptual-oriented
SR methods are mainly designed for single-view images,
thereby their performance decreases on stereo SR due to
stereo inconsistency. We propose a perceptual-oriented
stereo SR framework that considers both single-view and
cross-view information, noted as SC-NAFSSR. With NAF-
SSR [3] as our backbone, we combine LPIPS-based per-
ceptual loss and VGG-based perceptual loss for perceptual
training. To improve stereo consistency, we perform su-
pervision on each Stereo Cross-Attention Module (SCAM)
with stereo consistency loss [27], which calculates photo-
metric loss, smoothness loss, and cycle loss using the cycle-
attention maps and valid masks of SCAM. Furthermore, we
propose training strategies to fully exploit the performance
on perceptual-oriented stereo SR. Both extensive experi-
ments and ablation studies demonstrate the effectiveness of
our proposed method. In particular, SC-NAFSSR outper-
forms the SOTA methods on Flickr1024 dataset [30]. In
the NTIRE 2023 Stereo Image Super-Resolution Challenge
Track 2 Perceptual & Bicubic [26], SC-NAFSSR ranked 2nd
place on the leaderboard. Our source code is available at
https://github.com/FVL2020/SC-NAFSSR.

1. Introduction
Stereo images are a pair of images that are taken from

slightly different viewpoints and have been extensively used
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Figure 1. Visual results achieved by NAFSSR [3], our GAN-
free method, and our GAN-based method on the Flickr1024 [30]
dataset.

in various fields. Stereo image Super-Resolution aims to en-
hance the visual quality of these stereo images by improv-
ing their resolution and preserving the cross-view informa-
tion. Deep learning-based Single Image Super-Resolution
(SISR) methods have shown significant improvement in
generating high-quality images compared to traditional in-
terpolation methods. However, applying SISR methods di-
rectly to stereo images is not feasible as it neglects the im-
age consistency which is critical in stereo SR tasks, result-
ing in inferior performance.

SSRDE-FNet [4] has solved the issue of the correla-
tion between stereo images and achieved good results, but
the complexity of the network structure has become a dis-
advantage. As the improved version of PASSRnet [27],
iPASSR [31] develops a symmetric and bi-directional Par-
allax Attention Module (biPAM) that achieves performance
improvements over PASSRnet with similar model size. Re-
cent method NAFSSR [3] has proposed a model that is
both simple and effective, which consists of a Nonlinear
Activation-Free Network (NAFNet) [1] and a Stereo Cross-
Attention Module (SCAM) for fusing features from the left
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and right images. Although current stereo SR works have
addressed many of the issues related to inter-image correla-
tion, their perceptual quality still falls short of expectations.

In the field of SR, there has been a continuous search for
effective solutions to improve perceptual quality. Pixel-wise
losses (e.g. Mean Absolute Error (MAE) Loss and Mean
Square Error (MSE) Loss) have been widely used, but they
often result in over-smoothing results with insufficient de-
tails. The introduction of perception-oriented losses, such
as perceptual loss [10] and adversarial loss [7], has pro-
vided a satisfactory solution for improving perceptual per-
formance in the SISR field. Using specifically designed loss
functions [23], and additional network branches [18] are
some of the methods used to improve the perceptual quality
of SISR results. However, directly applying these percep-
tual optimization techniques in the stereo SR task would
lead to redundant network structures and a lack of correla-
tion between the stereo images.

To address these issues, we propose an elegant frame-
work for perceptual-oriented stereo SR, noted as SC-
NAFSSR. We use NAFSSR as the backbone and com-
bine LPIPS-based perceptual loss and VGG-based percep-
tual loss for perceptual training. To improve stereo consis-
tency, we perform supervision on each SCAM module with
stereo consistency loss [27], which first calculates the cycle-
attention maps and valid masks of SCAM, and then cal-
culates photometric loss, smoothness loss, and cycle loss.
Also, the application of EMA improves the stability of the
model and contributes to its convergence. SC-NAFSSR
outperforms the state-of-the-art (SOTA) stereo SR methods
with a focus on perceptual quality. SC-NAFSSR ranked 2nd
in the NTIRE 2023 Stereo Image Super-Resolution Chal-
lenge Track 2 Perceptual & Bicubic [26].

Our main contributions are summarized as follows:

• We analyze the drawbacks of existing SR methods
on perceptual-oriented stereo SR. With NAFSSR [3]
as our backbone, we propose a perceptual-oriented
stereo SR framework by combining LPIPS-based per-
ceptual loss and VGG-based perceptual loss for train-
ing, noted as SC-NAFSSR. Furthermore, we propose
training strategies to fully exploit the perceptual per-
formance on stereo SR.

• To mitigate the stereo inconsistency suffered by other
methods, we perform supervision on each SCAM with
stereo consistency loss [27], which calculates the pho-
tometric loss, smoothness loss, and cycle loss using the
cycle-attention maps and valid masks of SCAM.

• Extensive experiments demonstrate that SC-NAFSSR
outperforms the SOTA stereo SR methods on vari-
ous evaluations. In particular, SC-NAFSSR ranked
2nd place in the NTIRE 2023 Stereo Image Super-
Resolution Challenge Track 2 Perceptual & Bicubic.

2. Related Work

2.1. Single Image SR

SISR is an enduring challenge that has been thoroughly
investigated for several decades. As a pioneering work in
deep learning-based SR, Dong et al. [5,6] proposed the first
Convolutional Neural Network (CNN)-based SR method,
known as SRCNN. Over time, more elaborate convolution
module designs have been implemented in SISR. For in-
stance, Kim et al. [11] proposed VDSR, which consists of
20 convolutional layers. Lim et al. [15] proposed EDSR,
which uses both local and residual connections. Zhang
et al. [35] combined residual connections and dense con-
nections to propose RDN, which facilitates effective fea-
ture learning through a contiguous memory mechanism. By
incorporating the Channel Attention mechanism, Zhang et
al. [34] proposed RCAN that adaptively rescales features of
each channel by modeling the interdependencies between
feature channels. Recently, the Transformer models have
demonstrated outstanding performance in SISR due to their
superior ability to model remote dependencies. Liang et
al. [14] proposed SwinIR, an image restoration Transformer
based on [17]. Chen et al. [2] proposed HAT, which jointly
utilizes channel attention and self-attention schemes, along
with an overlapping cross-attention module.

Early deep learning-based SISR methods commonly
adopt the MSE loss as the optimization target, which tends
to produce over-smoothing results with insufficient high-
frequency details. To address this issue, Ledig et al. [12]
proposed SRGAN, which pioneeringly utilizes perceptual
loss [10] and adversarial loss [7] to generate images that
are well-correlated with human visual perception. Sajjadi
et al. [21] explored the local texture matching loss, which
further achieves a significant boost in perceptual quality.
Wang et al. [29] proposed ESRGAN, which improves SR-
GAN by introducing the Residual-in-Residual Dense Block
(RRDB) and relative realness. Wang et al. [28] further con-
ducted training with pure synthetic data to extend the pow-
erful ESRGAN to a practical restoration application called
Real-ESRGAN. Furthermore, Real-ESRGAN replaces the
VGG-Net type discriminator in the original ESRGAN with
a U-Net type discriminator.

2.2. Stereo Image SR

Unlike the SISR task which extracts information from
one LR image, the stereo Image SR task leverages paral-
lax information from stereo images. For instance, Jeon et
al. [8] proposed the StereoSR network, which enhances the
spatial resolution of stereo images using a parallax prior.
To address large disparity variations in stereo images, Wang
et al. [27] proposed a Parallax Attention Module (PAM) to
capture stereo correspondence, which was integrated into
the proposed PASSRnet. Wang et al. [31] further pro-
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Figure 2. The framework of SC-NAFSSR. LMSE represents the MSE loss, LPL represents the perceptual loss, and LSC represents the
stereo consistency loss. LDenc and LDdec represents the adversarial loss in our GAN-based method.

posed iPASSR, which utilizes the symmetric bi-directional
Parallax Attention Module (biPAM) and an inline occlu-
sion handling scheme for exploiting symmetry cues. Lei
et al. [13] proposed the IMSSRnet, which leverages com-
plementary information from one view to assist in the re-
construction of another view. Similarly, Zhu et al. [36]
proposed the CVCnet, which uses global contextual and
local features extracted from both views. Dai et al. [4]
proposed the SSRDE-FNet, which simultaneously handles
stereo image SR and disparity estimation within a unified
framework that encourages interaction to further improve
performance. Chu et al. [3] proposed NAFSSR, which
employs Nonlinear Activation-Free Network (NAFNet) [1]
as a strong and simple feature extractor and incorporates
cross-attention modules to integrate cross-view informa-
tion. NAFSSR is the champion of the NTIRE 2022 Stereo
Image Super-resolution Challenge [25].

3. Method

In this section, we provide a detailed description of our
method. We begin by discussing the network architecture
we employed in Section 3.1. In the context of perceptual-
oriented SR, restoring high-frequency details that are con-
sistent with human perception using MAE loss or MSE loss
can be challenging. Additionally, we must consider the
stereo consistency of the generated SR images. Therefore,
in Sections 3.2 and 3.3, we focus on perceptual-oriented and
stereo-consistency-oriented optimization.

3.1. Network Architecture

As shown in Figure 2, we use the NAFNet-based [1]
stereo SR network NAFSSR [3] as our backbone. The net-
work takes an LR stereo image pair as input and super-
resolves the left and right view HR images. NAFSSR can be
divided into three parts: intra-view feature extraction, cross-
view feature fusion, and reconstruction. The two weight-
sharing networks stacked by NAFBlock extract the features
of the left and right images, respectively. The cross-view
feature fusion is based on the Stereo Cross Attention Mod-
ule (SCAM), which fuses the features extracted from the
left and right images. To complete follow-up experiments,
we use the architecture of NAFSSR-S and NAFSSR-L (con-
figurations of Small and Large).

3.2. Perceptual Guided Training

Perceptual SR is to make the synthesized SR images
more compatible with human perception, usually by min-
imizing errors in feature space rather than pixel space or by
adversarial training. We will next present our perceptual-
oriented optimization.

3.2.1 VGG Perceptual Loss

The MAE and MSE loss functions are almost unable to re-
store high-frequency details that are in line with human per-
ception, resulting in over-smoothing outputs. The goal of
VGG perceptual loss [10] is to minimize the error in the
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feature space rather than the error in the pixel space, which
can better enhance the details.

ESRGAN [29] uses the pre-activation feature maps of
the VGG network [22] instead of the post-activation fea-
ture maps. The pre-activation feature maps are more sparse,
while the post-activation ones have more details, which can
lead to stronger supervision. Using the activated feature
map as a calculation of perceptual loss brings sharper edges
and better visual effects. We use the feature maps from the
five convolutional layers before the activation function, with
weights of 0.1, 0.1, 1, 1, and 1, respectively.

3.2.2 LPIPS Perceptual Loss [33]

Previous work [9] mentions that VGG perceptual loss may
produce incorrect details in the extreme SR task. Similar
to VGG perceptual loss, LPIPS perceptual loss converts
the input image to the feature domain through a feature
extractor. LPIPS does not directly compute the error be-
tween deeply embedded features, but maps each layer of
features to a scalar LPIPS score through a learnable network
and computes the average of the scores. LPIPS is trained
on a dataset of human perceptual similarity judgments and
reflects human perceptual preferences more appropriately
than the VGG perceptual loss. Therefore, we use LPIPS as
the main perceptual loss. However, we also found that com-
bining LPIPS with VGG perceptual loss can achieve better
perceptual performance. For details, please refer to the ab-
lation study in Section 4.2. Therefore, the perceptual loss
we ultimately use is as follows:

LPL = λvggLvgg + λlpipsLlpips, (1)

where λvgg , λlpips represent the weights of the VGG per-
ceptual loss and LPIPS perceptual loss, which are set to
0.01, 1 respectively.

3.2.3 Adversarial Training

To improve the visual quality, we incorporate GAN [7] for
adversarial training. Specifically, we utilize the U-Net [20]
discriminator architecture from Real-ESRGAN [28], with
some modifications. During training, directly feeding the
left and right images separately to the discriminator is not
conducive to maintaining stereo consistency. Therefore, we
concatenate the left and right images and input them to-
gether to the discriminator. We refer to [9] for the discrim-
inator loss, which includes relative losses for both the en-
coder and decoder outputs. We also add a consistency regu-
larization loss, which applies CutMix [32] to the HR and SR
images with a certain probability before inputting them to
the discriminator. This helps to maintain consistency in the
SR images. With these modifications, we can significantly
reduce artifacts while maximizing perceptual performance
and stereo consistency.

3.3. Stereo Consistency Supervision

Since stereo image pairs have complementary informa-
tion, enhanced stereo consistency helps produce accurate
and reasonable attention maps when reconstructing SR im-
ages and solves occlusion problems for better feature in-
teraction. From the perspective of human perception, the
better the stereo consistency, the less likely the viewer will
experience 3D fatigue. Next, we will study the stereo-
consistency-oriented loss function.

3.3.1 Parallax Supervision Loss

To improve the stereo consistency of stereo super-resolution
images, a direct approach is to supervise the disparity of an
SR image pair

(
ISR
L , ISR

R

)
and the disparity of the corre-

sponding HR image pair
(
IHR
L , IHR

R

)
. Since the HR image

pair has ideal stereo consistency, constraining the disparity
of the SR image pair to be close to that of the HR image
pair can improve the stereo consistency of the SR image
pair. Specifically, given a pre-training model for a disparity
estimation task or optical flow task, we calculate the dis-
parity maps for the SR image pair and the HR image pair
respectively. Then, we calculate the relative errors between
the SR disparity map and the HR disparity map as losses,
namely Parallax Supervision Loss:

LPS =
∥∥Φ (

ISR
L , ISR

R

)
− Φ

(
IHR
L , IHR

R

)∥∥
1
, (2)

where Φ represents the disparity estimation pre-trained
model. In our experiments, we utilized RAFT-stereo [16],
which is a dual-view stereo disparity estimation model
based on the optical flow network RAFT [24]. As expected,
it performs well in Table 4, since it is score oriented. How-
ever, in the NTIRE 2023 Stereo Image Super-Resolution
Challenge, all participants are required to refrain from us-
ing any external models, including pre-trained backbones
and optical flow networks. Therefore, we need to explore
alternative solutions for stereo consistency enhancement.

3.3.2 Stereo Consistency Loss

As previous works have studied stereo consistency in stereo
SR tasks, we have extensively referenced the works of
PASSnet [27] and iPASSR [31]. PASSnet proposed a
parallax-attention loss to maintain stereo consistency, which
includes photometric loss for illumination robustness, cycle
loss for consistency, and smoothness loss for stereo corre-
spondence. The stereo consistency loss is defined as:

LSC = λ1Lphotometric + λ2Lsmooth + λ3Lcycle, (3)

where the weights λ1, λ2, λ3 are set to 1, 0.1, 1 respectively.
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iPASSR applies them to the residual maps of HR and
bicubic upsampled LR images while computing an addi-
tional photometric loss on the residual maps of HR and SR
images. More details can be found in PASSnet and iPASSR.

Based on these studies, we supervise the attention mod-
ule in NAFSSR to improve stereo consistency. We super-
vise all SCAMs, where N denotes the number of blocks,
and the final stereo consistency loss function can be defined
as:

LSC =
∑
i∈N

Li
SC . (4)

The overall loss function consists of MSE loss, per-
ceptual loss, stereo consistency loss, and adversarial loss,
which can be formulated as:

Ltotal = λmseLMSE + λplLPL + λscLSC + λadvLADV ,
(5)

where the weights λmse, λpl, λsc, λadv of the loss terms are
set to 1, 1, 0.01, 0 respectively in our GAN-free method,
and 1, 1, 0.01, 0.005 in our GAN-based method.

4. Experiments
4.1. Implementation Details

Evaluation Metrics. To evaluate the image reconstruc-
tion quality, we adopt PSNR, SSIM, LPIPS, and the rank-
ing criteria SCORE. SCORE is introduced in the NTIRE
2023 Stereo Image Super-Resolution Challenge Track 2
[26]. SCORE first calculates the LPIPS for the left and
right views separately to measure perceptual quality, and
then calculate the MAE between the SR disparity map and
the HR disparity map to measure the stereo consistency.
According to the official requirements of the challenge,
SCORE can be formulated as:

SCORE = 1− 0.5× L
(
ISR
L , IHR

L

)
− 0.5× L

(
ISR
R , IHR

R

)
− 0.1 ∗ S

(
DSR,DHR

)
(6)

where L
(
ISR
L , IHR

L

)
represents the LPIPS score of ISR

L

and L
(
ISR
R , IHR

R

)
represents the LPIPS score of ISR

R .
S
(
DSR,DHR

)
calculates the MAE between disparity

maps DSR and DHR. Here RAFT-stereo [16] is used to
obtain the disparity maps from the SR and HR image pairs.

Dataset. We use the Flickr1024 [30] dataset to train our
models, which contains 1024 pairs of high-quality images
and covers diverse scenarios. Specifically, we use 800 pairs
of stereo images from the training set of Flickr1024 as train-
ing data. We crop the LR images into 30 × 90 patches with
a stride of 20 before training. For testing, We use 112 pairs
of stereo images from the validation set of Flickr1024 and
20 pairs of stereo images from KITTI 2015 [19].

Training Details. We train the final submitted model
employing NAFSSR-L as our backbone. For the ablation

Table 1. Ablation study of LPIPS loss and stereo consistency loss.
The results are evaluated on Flickr1024 [30] dataset.

Loss 1 2 3 4
MAE ✓ ✓ ✓ ✓
LPIPS Loss ✓ ✓ ✓
PS Loss ✓
SC Loss ✓
LPIPS↓ 0.3258 0.2170 0.2167 0.2152
SCORE↑ 0.5721 0.6770 0.6907 0.6894

Table 2. Ablation study of different strategies. The results are
evaluated on Flickr1024 dataset. LPIPS loss and parallax supervi-
sion loss are used in all strategies. These training strategies remain
applicable even though parallax supervision loss is dropped in our
final training.

Strategy 1 2 3 4 5
MAE ✓ ✓ ✓ ✓
MSE ✓
VGG Loss ✓
EMA ✓
Online dataset ✓
LPIPS↓ 0.2167 0.2167 0.2159 0.2167 0.2156
SCORE↑ 0.6907 0.6907 0.6913 0.6930 0.6971

Table 3. Ablation study of Test-Time Augmentation(TTA). The
results are evaluated on Flickr1024 dataset. hflip and vflip repre-
sent horizontal flip and vertical flip, respectively.

Method PSNR↑ SSIM↑ LPIPS↓ SCORE↑
w/o TTA 22.8390 0.7109 0.2159 0.6915
vflip 23.1804 0.7259 0.2342 0.6792
vfilp+hfilp 23.3325 0.7324 0.2450 0.6662

study, we utilize NAFSSR-S to expedite the completion of
various experiments. We use 4 Nvidia RTX 3090 GPUs
for training, and the batch size is 8. For the optimizer set-
tings, we use Adam and set its parameters to β1 = 0.9 and
β2 = 0.9. In the first training stage, we train the model
using MSE loss. We use the cosine annealing strategy with
an initial learning rate of 3e − 3 and a minimum learning
rate of 1e − 7, performing 100000 iterations. In the sec-
ond stage, we utilize perceptual loss and stereo consistency
loss for fine-tuning and set the initial learning rate to 5e− 4
for 100000 iterations. The weights of MSE loss, perceptual
loss, and stereo consistency loss are 1, 1, and 0.01, respec-
tively. The dataset is randomly cropped online to enhance
the generalization performance, and the EMA is applied to
improve the robustness of the model. Other training hyper-
parameters are set as in the first training stage.

4.2. Ablation study

In this section, we show the ablation study on the differ-
ent strategies mentioned in this paper. We perform exper-
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Table 4. Quantitative comparison of perceptual-oriented stereo SR on the Flickr1024 and KITTI 2015 [19] datasets. The best results are
highlighted in bold. #Params. represents the number of parameters of the SR network. The PSNR / SSIM / LPIPS values are calculated
and averaged on the left and right images. SCORE is the ranking criteria of NTIRE 2023 Stereo Image Super-Resolution Challenge Track
2. After submitting the results, we further improve the perceptual performance by GAN.

Method #Params.
Flickr1024 KITTI 2015

PSNR↑ SSIM↑ LPIPS↓ SCORE↑ PSNR↑ SSIM↑ LPIPS↓ SCORE↑
Bicubic / 21.8796 0.6326 0.4091 0.4253 24.4673 0.7361 0.3537 0.5676
EDSR [15] 38.6M 23.3739 0.7296 0.3338 0.5564 25.8409 0.8012 0.2949 0.6450
RCAN [34] 15.3M 23.4561 0.7307 0.3340 0.5631 26.0535 0.8040 0.3008 0.6490
SRGAN [12] 1.51M 20.8837 0.6240 0.2729 0.5896 22.0922 0.6435 0.2990 0.6325
ESRGAN [29] 16.70M 20.8119 0.6260 0.2686 0.6091 21.7731 0.6308 0.2968 0.6303
PASSRnet [27] 1.42M 23.2485 0.7167 0.3347 0.5519 26.0319 0.7985 0.2905 0.6568
iPASSR [31] 1.37M 23.3730 0.7267 0.3389 0.5589 26.2678 0.8068 0.2967 0.6487
NAFSSR-L [3] 23.79M 24.0854 0.7565 0.3103 0.5984 26.9031 0.8257 0.2613 0.6948
Ours (w/o GAN) 23.79M 22.6236 0.6918 0.2106 0.6915 25.0399 0.7548 0.2132 0.7420
Ours (w/ GAN) 23.79M 22.4388 0.6918 0.2100 0.6983 24.8870 0.7582 0.2076 0.7464

0028_L

Bicubic

NAFSSR-L

RCAN

Ours (w/o GAN)

iPASSR ESRGAN

HROurs (w/ GAN)
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Bicubic
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Ours (w/o GAN)

iPASSR ESRGAN

HROurs (w/ GAN)

Figure 3. Qualitative comparison of perception-oriented stereo SR on the Flickr1024 dataset.

iments using the NAFSSR-S architecture, first pre-training
according to the first stage training method in Section 4.1,
and then applying various strategies for fine-tuning to verify
their effectiveness.

Perceptual Loss. LPIPS perceptual loss is shown to bet-
ter match the human visual perceptual system and is there-
fore commonly used as an alternative to the VGG-based
conventional perceptual loss. In Table 1 we can see that
LPIPS loss greatly improves the perception metrics. More-

over, our experiments confirm that combining the two per-
ceptual losses and assigning a smaller weight (0.01) to the
VGG-based perceptual loss helps convergence, as shown in
the third column of Table 2.

Stereo Consistency Loss. Since the optical flow and
parallax estimation models pre-trained on the other train-
ing sets are not allowed to be used, we use Stereo Con-
sistency Loss as a substitute for Parallax Supervision Loss.
In Table 1 we can see that replacing Parallax Supervision
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HROurs (w/ GAN)Ours (w/o GAN)NAFSSR-L

Figure 4. Qualitative comparison of our GAN-free and GAN-based method on the Flickr1024 dataset.

Loss with Stereo Consistency Loss slightly decreases the
SCORE, but is still superior to no consistency supervision.

Self-ensemble and Model-ensemble. In SR tasks, self-
ensemble and model-ensemble are common test-time aug-
mentation strategies. However, as shown in Table 3, both
self-ensemble and model-ensemble have negative effects on
perceptual-oriented stereo SR. We hypothesize that averag-
ing the SR results may destroy the images’ perceptual do-
main structure and stereo consistency, so we have chosen
not to use these ensemble strategies.

Other Strategies. In Table 2, we also investigate the ef-
fects of other strategies on the results. Compared to the first
column, the second column replaces MAE with MSE loss,
which has no significant effect on the results. The fourth
column indicates that applying EMA improves the stabil-
ity of the model and helps convergence. The fifth column
indicates that randomly cropped of the dataset during fine-
tuning enhances the generalization performance.

GAN Based Method. Based on our testing, we have
observed that models trained with LPIPS loss tend to gen-
erate SR images with numerous rule-based artifacts, partic-
ularly in dense and complex textures such as leaves. The
quantitative metrics after incorporating GAN are presented
in Table 4, and we have also analyzed the visual effects
in Section 4.3. Compared to methods without GAN, our
approach exhibits better perceptual performance and stereo
consistency. We investigate this approach after submitting
our results, therefore, our submitted model is GAN-free.

4.3. Comparison to State-of-the-arts

We evaluate our method and other SOTA SR methods
on the Flickr1024 dataset and KITTI 2015 dataset. For the
SISR models, we retrain them on the Flickr1024 dataset.
For the stereo SR models, we use the pre-trained models
directly, which are trained using Flickr1024 and additional
60 images in Middlebury. We use PSNR, SSIM, LPIPS, and
SCORE as the evaluation metrics. It is worth noting that our
method is proposed to improve human perceptual quality, so
we mainly focus on the LPIPS and SCORE metrics.

Quantitative Results. Table 4 shows the quantitative
results of our method and other methods, which include
PSNR-oriented SISR methods EDSR [15] and RCAN [34],
perceptually oriented SISR methods ESRGAN [29] and
Real-ESRGAN [28], and stereo SR methods PASSRnet
[27], iPASSR [31], and NAFSSR [3]. As shown in Ta-
ble 4, our proposed GAN-based method achieves SOTA
results in terms of LPIPS and SCORE on the Flickr1024
and KITTI 2015 datasets. Notably, even without GAN, our
method still achieves the second-best in terms of LPIPS
and SCORE. Specifically, with perceptually-oriented and
stereo-consistency-oriented training, our GAN-free method
reduces the LPIPS metric by 0.058 and improves the
SCORE metric by 0.0824 over the second-best method (i.e.,
ESRGAN) on the Flickr1024 dataset. Our GAN-based
method further reduces the LPIPS metric by 0.0006 and im-
proves the SCORE metric by 0.0068.

Visual Comparison. Figure 3 shows a visual compar-
ison of the ×4 SR on the Flickr1024 validation set. The
results of different models reveal that the PSNR-oriented

1432



NAFSSR-L
MAE = 1.8344

Ours (w/o GAN)
MAE = 1.4072

iPASSR
MAE = 2.9370

HROurs (w/ GAN)
MAE = 1.3383

Figure 5. Quantitative and qualitative comparison of disparity maps of each method on the Flickr1024 dataset.

SR model generates images with more blurred details, such
as brick and leaf textures. In contrast, ESRGAN [29] gen-
erates images with relatively better details but still exhibits
some pseudo-textures. Our proposed method, which con-
siders properties closer to human eye perception, generates
images with realistic textures closer to those of HR im-
ages. In Figure 4, we demonstrate the advantages of our
GAN-based method. Our GAN-free method produces more
complex textures while PSNR-oriented NAFSSR-L tends to
generate smoother textures. However, models trained with
the LPIPS loss generate many regular artifacts, especially
in dense and complex textures such as leaves and branches.
By applying the modified GAN method to our original ap-
proach, we significantly improve the visual quality while
maintaining perceptual quality and stereo consistency.

Stereo Consistency Analysis. We selected an example
from the Flickr1024 dataset and present a comparison of
disparity maps of different methods in Figure 5. All dis-
parity maps are generated by RAFT-stereo and the MAE
metric is calculated between the SR disparity map and the
corresponding HR one (without normalization). The dispar-
ity maps of the image pairs generated by our GAN-free and
GAN-based models (the 4th and 5th columns) are closer to
that of the HR image pair, both in terms of quantitative met-
rics and qualitative results. This indicates that our method
generates SR images with better stereo consistency.

4.4. NTIRE 2023 Stereo Image SR Challenge

The top 10 results of the NTIRE 2023 Stereo Image
Super-Resolution Challenge Track 2 [26] selected by the
NTIRE 2023 committee are presented in Table 5, with our
method ultimately ranking second on the Flickr1024 test
set. Note that the method we submitted is the version with-
out the GAN applied. During testing, we do not employ
self-ensemble or model ensemble strategies, including in-
terpolation of multiple models trained with various hyper-

Table 5. Quantitative results of Top 10 Teams for NTIRE 2023
Challenge on Stereo Image Super-Resolution Challenge Track 2.

Rank Team Name SCORE↑
1 SRC-B 0.8622
2 SYSU FVL 0.8538
3 webbzhou 0.8496
4 SSSL 0.8471
5 Giantpandacv 0.8351
6 DiffX 0.8303
7 LongClaw 0.7994
8 BUPT-PRIV 0.7992
9 McSR 0.7960
10 LVGroup HFUT 0.7958

parameters. In all of our experiments, the scoring methodol-
ogy is based on the approach outlined in Section 4.1 where
disparity maps calculated by RAFT-stereo are not normal-
ized. However, our scoring methodology appears to differ
from that used by the leaderboard. Our final submission
achieves a score of 0.8538 on the Flickr1024 test set.

5. Conclusion
In this paper, we propose a perceptual-oriented frame-

work for stereo SR, noted as SC-NAFSSR. We not only
combine LPIPS-based perceptual loss and VGG-based per-
ceptual loss for perceptual training, but also use a variety of
training strategies to improve the perceptual performance
on stereo SR. To mitigate the stereo inconsistency suffered
by other methods, we perform supervision on each SCAM
in the network with stereo consistency loss. Extensive ex-
periments demonstrate that SC-NAFSSR surpasses exist-
ing SR methods on perceptual-oriented stereo SR. In future
work, perceptual training strategies and stereo consistency
mechanisms will be explored.
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