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Abstract

Shadow removal is an important computer vision task,
whose aim is to successfully detect the shadow affected area
appearing through light occlussion, followed by a photo-
realistic restoration of the affected image contents, tex-
tures, and details. After decades of research, a multitude
of hand-crafted restoration techniques were proposed, fol-
lowing different observations on shadow formation models,
with scenes altered in particular conditions. However, the
increased popularity of deep learning based solutions en-
abled a significant step forward for the shadow removal so-
lutions, both in terms of reconstruction fidelity and percep-
tual properties. However, the publicly available datasets
remain focused around a particularly low complexity setup,
with a low variety of light occluders and affected back-
grounds, and with limited representation for more complex
light interactions and complex shadow patterns. In this
work, we propose WSRD, a novel benchmark for high reso-
lution image shadow removal, characterized by a large va-
riety in terms or represented objects, backgrounds and light
occluders. We study more complex interactions, combining
self shadows with externally casted shadows, to further ex-
tend the study of the phenomenon, its factors and effects. To
prove WSRD as a relevant benchmark, we propose DNSR,
a novel shadow removal method, comparing the results on
WSRD with the performance level observed on other well-
established benchmarks like ISTD and ISTD+. We vali-
date our approach comparing with existing state-of-the-art
(SOTA) methods, improving both in reconstruction fidelity
and perceptual properties, setting a new SOTA for the field.

1. Introduction
Shadows are defined as direct effects of light occlu-

sion [39]. During image acquisition, the sensor reading
corresponding to the shadow affected image is directly de-
pending on the amount of light interacting with the objects
present in the acquired scene. The geometry of a light oc-
cluder will be, thus, projected into the image plane, as a less

illuminated region, whose shape and properties depend on
a large variety of factors. Along the light intensity, its po-
sition in the 3D world, the geometry, it’s properties ( e.g.
color, intensity), and the material related properties, defined
both for the occluder object and the surface the shadow is
casted on, all the aforementioned factors add variety in the
shadow patterns set that can be retrieved from the acquired
images.

Shadows are usually defined by steep variation in an
image region, causing decrease in pixel intensity, without
any connection to the variation observed between various
homogeneous color regions corresponding to the segments
characteristic to each of the objects present in the acquired
scene. Thus, the shadow effect brings an additional source
of variance in the image color space, thus impacting the
other vision tasks such as object recognition [2, 20, 40] or
tracking [9, 26, 27], image segmentation [1, 11] or semantic
segmentation [15, 36].

Moreover, in contrast to the image pixels from shadow
free areas, the shadow phenomenon can be coupled with a
series of degradations altering the 3D scene observations,
with various ramifications impacting image illumination,
color, detail, and noise levels. Thus, shadow removal can be
labeled as a particular case of Image Restoration, where the
solutions achieving a significant performance level would
restore the colors, textures and a majority of the details lost
during acquisition.

As the localization information of the shadow affected
images is important for the shadow removal task [29,30,47],
shadow removal is usually connected with the detection
subtask, with publicly available [23,46] large databases tai-
lored around the shadow phenomenon.

Recently, large-scale databases consisting of shadow-
affected and shadow-free image pairs, such as SRD [33],
ISTD [47] or USR [22] allowed the formulation of the
shadow removal process as a regression problem in the
broader supervised learning framework. However, the
aforementioned datasets are sharing roughly the same setup,
with simple scenes affected only by a shadow casting ob-
ject. Even though this setup was a good starting point for
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the already proposed shadow removal methods, a significant
number of interactions still remain to be studied.

Therefore, we introduce WSRD, a novel benchmark for
High Resolution image shadow removal, based on a large
variety of interactions and represented contents. Further-
more, we propose DNSR, a novel shadow removal algo-
rithm, that sets a reference for the introduced benchmark,
and improves over the state-of-the art on well established
benchmarks, such as ISTD [47] and ISTD+ [29, 47].

2. Related Work
Despite extensive study during decades of research,

shadow removal remains a challenging problem. Even-
though the introduction of large datasets [22,33,47] enabled
a step forward in terms of reconstruction performance, there
is still a need for extensive study and solutions able to gen-
eralize on a wide variety of shadow formation model pa-
rameters.

Early works focused their efforts around determining
the underlying physical properties of the shadow forma-
tion model. Different image processing techniques [12,13]
aimed at determining a combination of shadow-affected and
shadow-free layers, resembling the input image. The impor-
tance of the localization information (e.g. the positions of
the pixels affected by shadows) is acknowledged by authors
in [37, 45, 50], where shadow detection was a sub-task of
the shadow removal algorithm, the restoration being based
on a color transfer procedure, from the shadow-free areas to
the shadow affected segments.

A wide variety of factors can be identified as sources
of variation in the shadow formation model (e.g. materi-
als, shapes, sizes, geometries, illumination, etc). Thus, the
large number of involved factors increases the complexity
of the shadow formation model, making the shadow re-
moval task a challenging study. Consequently, models built
around combinations of the aforementioned parameters are
characterized by a lack of generalization ability, when asked
to restore images more complex than the particular condi-
tions those solutions were tailored around [19]. Applying
shadow detection prior to shadow removal proved to be a
winner strategy for early works [16,19], where hand-crafted
features such as pixel intensity, texture, or gradients were
used to successfully detect the shadow-affected areas.

The increased popularity of the Convolutional Neural
Networks (CNNs) and the introduction of large databases
for shadow detection and removal [22, 33, 46, 47] enabled
a new category of solutions, characterized by a step for-
ward in terms of performance. Qu et al. [33] proposed
system of three sub-networks solving different sub-tasks of
the shadow removal procedure. The G-net extracts a set of
high-level features, the A-net models the appearance of the
scene, and the S-net computes a shadow matte characteriz-
ing the shadow pattern affecting the scene.

Recently, Le et al. [29] proposed a system based on
two neural networks able to learn an approximation of
the shadow model, by estimating a corresponding shadow
matte. However, the system is limited by using a simple lin-
ear geometry encoding the illumination system. So, even in
the condition on a single light occluder object, the existence
of multiple light sources will lead to non-homogeneous
opacity shadow areas that can not be learnt using a linear
model. Moreover the nature of the shadow phenomenon
itself is not linear, with the geometry of the scene with re-
spect to the light position and intensity directly linked to
non-homogeneous opacity.

On one side, other works focused on end-to-end learnt
shadow removal [14, 18, 19, 21, 35, 47, 51]. Hu et al. [21],
proposes a type of solution coding the localization informa-
tion in a learning procedure, where the shadow detection
and removal have as backbone a Spatial Recurrent Neu-
ral Network [3], exploring the concept of a direction-aware
context. These larger complexity models can indeed, when
provided high quality training data, learn complex shadow
models, producing high quality restored images. One par-
ticular case is [14], where the manipulation of an exposure
parameter in the shadow-affected and shadow free areas en-
able the learning of a high reconstruction fidelity mapping.

Moreover, the introduction of the attention [44] mech-
anism in the computer vision tasks enabled a new set of
solutions [4, 18, 53] based usually on variations of Channel
Attention [49] or different types of feature fusion functions.
The availability for larger receptive fields, coupled with bet-
ter normalized gradients continues to provide a performance
boost for this category of solutions. Moreover, reducing the
number of parameters enabled a design shift towards more
complex operations, requiring a larger numbers of FLOPs.
But, given the development of the currently available hard-
ware, this category of models achieve real time performance
both for consumer level GPUs and smartphone deployed
hardware [4, 6, 7, 35, 41].

On the other side, the introduction, followed then by a
deeper understanding, of the Generative Adversarial Net-
works (GANs) [17] enabled a new category of solutions
solving the shadow removal as a image-to-image transla-
tion procedure. Given the proposed pix2pix [24] and Cy-
cleGAN [54] there are two approaches that can be distin-
guished. While the former assumes there exists a single
transformation between shadow-affected and shadow-free
images, the latter defining assumptions are less restrictive,
implying the existence of a forward transformation and it’s
inverse. This increases the complexity of the learnt model,
with different generators learning the direct and the inverse
transformation from the shadow-affected to shadow-free
domain, guided by a cycle-constraint to ensure the approxi-
mation of a realistic mapping.

Representative for the category of solutions is the work
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in [47], where a Conditional GANs [32] based model was
trained in the fully supervised setup, with two stacked con-
ditional GANs aiming at shadow detection and removal.
Another work is represented by [8], where a GAN based
model learns a large variety of shadow-matte images. Then,
DHAN [8], a model where downsamplings are replaced by
dilated convolutions, coupled with multi-context feature ag-
gregation for attention, encodes the complex shadow forma-
tion learned model in a solution characterized by a signifi-
cant performance level in terms of perceptual properties.

One advantage of the CycleGAN [54] approach is the
prospect of learning a domain-to-domain transformation
without the need of paired training data. Obviously, paired
data acquisition is a tedious process, and the possible con-
sidered setups are rather simple in nature. This possibil-
ity of learning a transformation in an unsupervised setup
was successfully explored by [22, 42], proposing high per-
formance solutions characterized by improved perceptual
properties.

However, the common simple setup used by the afore-
mentioned image databases still represents the main limita-
tion of the mentioned shadow removal methods, these mod-
els being unable to generalize outside the condition of an
external object casting a shadow in a scene. The newly
introduced WSRD will provide extensive proof that more
complex light-object interactions will produce scenes that
are more difficult to deshadow.

3. Method

3.1. WSRD Benchmark Particularities

As we already mentioned, the main drawback of the al-
ready publicly available shadow removal datasets comes
from the simplicity of the setup used for data acquisition.
As it can easily be observed for datasets such as SRD [33],
ISTD [47], USR [22] there is a limited light-object interac-
tion, with limited representativity of the multitude of factors
impacting the shadow formation model. The setup consists
of a surface characterized by an increased degree of consis-
tency in terms of colors and textures, on which a shadow
is casted using an object whose geometry is not captured,
the occluder object being kept outside the acquired scene.
Even if the simplicity of the aforementioned setup allows
for the acquisition of an increased number of image pairs,
the representativity of the possible scenarios remains low,
thus affecting the generalization ability of the solutions tai-
lored around these databases.

Adopting a more difficult setup is problematic, since in-
teractions such as self casted shadows would imply the us-
age of a light system to successfully eliminate them, and
the introduction of new lights will undoubtedly lead to color
inconsistencies between the shadow affected input and the
shadow free ground truth. Therefore, a color correction

O1

Reflective
Softbox

Directional
Light

Diffuse
Light

Scene

High Resolution
Sensor

Affected
surface

O2

Figure 1. A visual representation of the setup used for data acqui-
sition. The two occludes O1 and O2 cast different shadows into
the scenes. Based on the nature of the light sources and the oc-
cluder objects, the corresponding shadow pattern is characterized
by different properties.

strategy has to be taken into consideration, directly depend-
ing on the used setup.

Moreover, given the fact that data acquisition is done
in outdoors conditions, with an obvious delay between the
captured image pair components, caused by the necessity
to change the scene, additional lighting inconsistencies will
be present in the captured data. For example, such inconsis-
tencies were observed for the ISTD dataset [47], with Le
et al. proposing a correction method [29] aiming to fur-
ther decrease the error observed between the image pair
components in the shadow free areas. Additional semantic
differences found between the input and the corresponding
ground truth images [42] come as another reason to invest
more effort into the study of alternative setups.

Unlike previous methods, the proposed image database
was fully built around a set of controllable conditions, us-
ing controllable artificial light sources. Figure 1 provides a
visual representation of the used data acquisition scenario,
where the objects in the scene, coupled with the outside-the-
scene light occluders co-participate in the shadow formation
process. By extending the study to capture the interactions
between different shadow types, we aim at a better general-
ization of the model when deployed on real data.

The environment is built around a set of two lights. One
fixed flash acting as spotlight is at an elevated position over
the scene, and a 45◦ angle from the base surface plane of the
setup. This will be the light considered for shadow casting,

1828



being triggered only during the acquisition shadow affected
images. The other light is a diffuse flash, pointed towards
a reflective softbox, aiming at an optimal distribution of the
light in the captured scene, countering all the possible self-
shadows created by the high complexity surfaces appearing
in the captured scene.

To capture the shadow affected input frame, both the
spotlight and the diffuse light were triggered. The spotlight
causes objects in the scene to create a particular shadow pat-
tern, according to the light orientation and their geometry,
while the diffuse flash helps for the acquisition of detail-rich
images, helpful later, during the image restoration task. To
capture the shadow-free ground truth images, we only acti-
vate the diffuse flash. The softbox will uniformly distribute
the light across the scene, avoiding the appearance of shiny
over-exposed areas. As the light setup changes between the
images forming a pair, we are matching the exposure of the
input and the ground truth images by post-processing the
RAW data in Adobe Lightroom.

As shown in Figure 1, the images are captured using a
high resolution sensor, the Canon EOS R6 II, set up in a
slightly elevated position with respect to the surface plane.
The first light, serving as directional spotlight, is fixed at a
45◦ vertical angle towards the scene and a 90◦ horizontal
angle with respect to the camera position. During capturing
of the input and ground truth frames, the camera ISP param-
eters were fixed in manual mode, to avoid exposure or white
balance changes between corresponding frames. The light
sensitivity was set to ISO100, minimizing noise based color
fringes, and the aperture of the used 70mm lens system was
fixed to F11, thus maximizing the depth of field.

The WSRD 1 is based on a large variety of captured sur-
faces (see Figure 2), with a multitude of colors and textures.
Moreover, the captured objects are characterized by differ-
ent geometries, with different thickness, height, or depth.
The dataset is characterized by various types of materials,
with opaque, translucent and transparent materials, charac-
terized by different conductivity. The dataset contains 1200
high resolution image pairs (1920×1440px), with 1000
pairs used for training, 100 in the validation split and an-
other 100 representing the benchmark. Even though the ac-
quisition setup was kept consistent for the aforementioned
splits, the data splitting was made with respect to the repre-
sented contents, with 20% of the testing/validation samples
representing objects unseen during training and 50% of the
testing/validation acquired scenes are characterized by base
plane surfaces that are unseen during training.

A particular difficulty posed by the described setup is the
appearance of soft self-shadows. These are caused by the
increased complexity of surfaces that, in some cases, cast
diffuse shadows on different surfaces. This can be easily
circumvented by the adoption a translucent scene based that

1https://github.com/fvasluianu97/WSRD-DNSR

is illuminated from below. Additional softboxes placed on
the sides of the scene volume can additionally improve the
uniform light distribution. However, the explored setup is
characterized by high flexibility when it comes to the prop-
erties of the lights, captured materials, and light occluder
combinations, enabling to further extend the study of the
shadow formation model.

3.2. DNSR: Distill-Net Shadow Removal

Figure 3 provides a schematic representation of the pro-
posed architecture (DNSR). The model is built in a classi-
cal UNet [34] fashion, with skip connections between the
encoder blocks and their decoder counterparts. Given the
high resolution of the input data, there exists an advantage
in performing a progressive downsampling of the feature
space used for shadow removal.

Between the encoder and decoder blocks, our features
suffer a distillation phase, based on the input shadow map
and variations of the input shadow affected image. Two
learnt parameters, α and ω, are used to manipulate the expo-
sure in the shadow/shadow-free areas. The idea of exposure
manipulation was explored by Le et al. in [14], achieving
state-of-the-art results. This variation of the input shadow
image will be processed by the Distiller module, and the
output feature map will be added to the Channel Atten-
tion [49] weighted feature map, after it passes through a
Dynamic Convolution model and Layer Normalization [4].
The dynamic convolution operation, that appears in the Dis-
till blocks and the Decoder block is defined as an auto-
weighted average of a fixed number of 3×3 convolutions,
with the set of weighting parameters being learnt by the
model. The idea is similar to the already explored Malleable
Convolution [25], or Dynamic Convolution [5], but with far
lower constraints over the set of blending parameters. The
Fused Pooling operation form the Distiller Module repre-
sents two parallel Average/Max Pooling operations, that are
blended by a 1×1 convolution.

In the decoder block, the updated propagated feature
map is upscaled by a 2×2 transposed convolution opera-
tion, then the output of this operation is fused to the skip
connection information through the Stereo Channel Atten-
tion Module [4]. An additional block is then used to refine
the feature map, before it gets propagated to the next level
of the architecture.

Overall, the model is characterized by a number of 47.22
Million learned parameters, with 67 GMACs needed to
compute the shadow free estimation, at the original reso-
lution of the ISTD [47] dataset, of 480×640 px.

3.3. Experimental Setup

We based our work on the Pytorch framework, using
for training and evaluation four NVIDIA RTX3090Ti GPUs
with 24 GB VRAM.
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Training images

Validation images

Testing images

Input Ground-truth Input Ground-truth

Figure 2. Samples from the introduced WSRD benchmark. Best zoom-in on screen in the electronic version.

We perform our training and evaluation runs on the ISTD
[47], ISTD+ [29, 47] and our proposed WSRD datasets.
Given the particularities of the aforementioned datasets, the
hyperparameters of the model training will be adapted for
optimal convergence.

The model was trained using a combination of L2 and a
perceptual loss [42] as the minimized objective. The defini-
tion of the training loss for the prediction ŷ and the ground-
truth y is provided in the Equation 1.

L(ŷ, y) = L2(ŷ, y) + αperc.Lperc.(ŷ, y) (1)

The perceptual loss (Equation 2) is a combination of a
color loss, a VGG19 [38] based content loss, and a style loss
[10]. Each of the aforementioned loss terms are blended in
the final objective through a set of weights determined by
the magnitude of each loss function when the model reaches
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Figure 3. A visual representation of the proposed DNSR architecture (top left), along with the decoder block (D) (top right). On the
bottom row, we provide schematics representing the encored block (E) (left), the architecture for the Distill Block (db), (center) and a
visual representation of the Distiller (d) module (right).

training convergence.

Lperc.(ŷ, y) = αcLc(ŷ, y) + αvggLvgg(ŷ, y) + αsLs(ŷ, y)
(2)

The definition of the color loss Lc is provided in the Equa-
tion 3, where the smoothing operation is performed using a
gaussian filter.

Lc(ŷ, y) = L2(ŷsmoothed, ysmoothed) (3)

In Equation 4, we define the VGG loss Lvgg as the aver-
age L2 loss observed for the feature maps F i extracted from
the VGG19 [38], after each batch normalization operation.
The index i is covering the set of aforementioned layers.

Lvgg(ŷ, y) =
1

Nl

Nl∑
i=1

L2(F
i
ŷ, F

i
y), (4)

Using the 2D nature of the extracted feature maps, in Equa-
tion 5, for the fixed i, j index pair, we define the Gramm
matrix Gl

i,j characteristic to the layer l and it’s correspond-
ing dimension D. Using an elementwise product operation,
we can use every Gramm matrix as a set of similarity mea-
sures, characterizing the set of VGG features extracted for
the prediction ŷ and for the ground-truth y.

Gl
i,j(x) =

D∑
k=1

F l
i,k(x)F

l
k,j(x) (5)

Then, the style loss Ls can be defined, as shown in the

Equation 6.

Ls(ŷ, y) =
1

Nl

Nl∑
i=1

L2(G
i(ŷ), Gi(y)) (6)

In Table 1, we specify the values for the loss terms
blending weights for each of the datasets used for train-
ing. Given the significant differences between the afore-
mentioned datasets, there are differences in the other hyper-
parameters characterizing the performed training runs.

4. Experimental Results
4.1. Evaluation measures

For the quantitative evaluation of our method on the
ISTD [47] related datasets, we stick to the already estab-
lished method of reporting the Lab image representation
RMSE error between the predicted outputs and their corre-
sponding ground truths. Given the fact that ISTD provides
also a set of shadow maps as the localization information for
the shadow affected areas, we report the Lab space RMSE
for the shadow affected/shadow free areas.

As the WSDR dataset was used as challenge data for
the NTIRE2023 Image Shadow Removal challenge [43],
we adopt their reported metrics to compare against the top
performing solutions. So, we report the recovery fidelity in
terms of PSNR, the Structured Similarity Index (SSIM) [48]
and, since the shadow removal is a highly perceptual task,
we report the LPIPS distance [52]. Considering that we
used a VGG19 [38] based loss in our training objective, the
reported LPIPS uses AlexNet [28] as feature extractor.
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Training objective Training hyperparam. Evaluation hyperparam.
Training Dataset αperc. αc αvgg αs Train res. rCrop rRotate rHflip rVflip Eval. res. Orig res. Rescale
WSRD 0.25 1.0 0.1 107 800×800 p = 1 p = 0.5 p = 0.5 p = 0.5 960×1280 1440×1920 ✓

ISTD [47], ISTD+ [29, 47] 0.10 1.0 0.1 107 448×448 p = 1 p = 0.5 p = 0.5 p = 0.5 480×640 480×640 ✗

Table 1. Hyperparameters characteristic to the trainig/evaluation runs, depending on the dataset.

4.2. Quantitative results

In Table 2, we provide a comparison between the pro-
posed DNSR and other top performing solutions from the
NTIRE2023 Image Shadow Removal challenge [43]. Also,
we provide information about the well-established methods
that were used as backbone for the proposed solutions. As
you can see, DNSR is able to produce high fidelity results
with consistent perceptual properties.

Method Team Backbone PSNR↑ SSIM↑ LPIPS↓
PES MTCV NAFNet [4] 22.36 0.70 0.182

IR-SDE IR-SDE IR-SDE [31] 19.60 0.58 0.149
SRDM SRDM - 22.20 0.69 0.269

MFDSNSR MM911 SHARDS [35] 21.69 0.69 0.293
ShadowFormer+ IIM TTI ShadowFormer [18] 18.08 0.53 0.196

DNSR (ours) - - 22.92 0.65 0.285

Table 2. Quantitative results of the challenge final submission on
the WSRD test split. We compare against top performing NTIRE
2023 Image Shadow Removal Challenge [43] solutions.

To compare the proposed method against other shadow
removal proposed methods, we also report results on the
ISTD dataset [47] and its corrected variant [29, 47]. Here,
we compare against well-established solutions like STC-
GAN [47], DHAN [8], PULSr [42], and AEF [14]. Also,
we report results for some contemporary works, such as
ShadowFormer [18] and SHARDS [35]. We report the Lab
space RMSE, with the reported values computed over the
set of publicly available results, at their original resolution,
or with our own implementations of the described methods,
based on the publicly available software and descriptions.

Method Lab space RMSE
name Eval. res. Shadow region Shadow free region Total

unprocessed 640×480 15.07 3.86 6.80
STCGAN [47] 256×256 4.83 3.44 4.05

DHAN [8] 640×480 4.65 3.13 3.43
PULSr gen. [42] 512×512 4.48 3.03 3.33

AEF [14] 256×256 3.75 2.79 3.1
ShadowFormer [18] 640×480 3.25 2.38 2.43

DNSR (ours) 640×480 4.39 2.47 2.84

Table 3. Quantitative results of DNSR (ours), compared to state-
of-the-art solutions on the ISTD [47] dataset.

As it can be observed in the Table 3 and Table 4, DNSR is
achieves top performance on the ISTD benchmarks [29,47],
improving over the results achieved by well-established
methods, and with a comparable level of performance com-
pared to other contemporary works.

Method Lab space RMSE
name Eval. res. Shadow region Shadow free region Total

unprocessed 640×480 17.53 1.82 7.15
SP-M Net [29] 512×512 4.79 4.27 4.37

DHAN [8] 640×480 4.04 2.97 3.19
PULSr gen. [42] 512×512 4.12 2.39 2.82

AEF [14] 256×256 3.23 2.05 2.31
SHARDS [35] 640×480 3.16 1.61 1.98

ShadowFormer [18] 640×480 2.93 1.66 1.93
DNSR (ours) 640×480 3.92 1.80 2.24

Table 4. Quantitative results of DNSR (ours), compared the afore-
mentioned top performing solutions on the ISTD+ [29, 47] test
split.

Input DNSR (ours) Ground Truth

Figure 4. Visual results of DNSR on the test split of WSRD
dataset.

4.3. Qualitative results

In Figure 4, we provide samples of the shadow free pre-
dictions of the proposed DNSR on the WSRD test split.

1832



Input SP-M Net [29] DHAN [8] PULSr [42]

AEF [14] ShadowFormer [18] DNSR (ours) Ground truth

Input SP-M Net [29] DHAN [8] PULSr [42]

AEF [14] ShadowFormer [18] DNSR (ours) Ground truth

Figure 5. Visual results from the test split of the ISTD [47] dataset. Here, we compare our DNSR against SP-M Net [29], DHAN [8],
PULSr [42], AEF [14] and ShadowFormer [18]. All the results were upscaled back to the original resolution of the input data. Note that
SP-M Net [29] is trained on the corrected data (using the authors proposed method). Best zoom-in on screen in the electronic version.

DNSR is able to successfully remove the shadows, with a
high perceptual quality. It can handle complex conditions
with cluttered scenes described by a wide range of interrac-
tions and shadow patterns.

To validate the proposed method against other well-
described solutions, available in the public literature, we re-
port equivalent predictions (see Figure 5) on samples from
the ISTD [47] test split. DNSR is able to produce results
characterized by a low level of visible artifacts, with correct
colors and textures, and naturally looking reconstructions.
The quality of the provided results is supported by the per-
formance level quantified in Table 3 and Table 4.

5. Conclusions

In this work we proposed a novel benchmark for the Im-
age Shadow Removal task, extending the study of shadow

formation models by increasing the representation of a
wide range of interactions and altered surfaces. The im-
age database is characterized by a large variety of sur-
faces, characterizing a multitude of colors and textures.
To evaluate the differences between the newly introduced
benchmark and other well-established datasets, we pro-
pose DNSR, a novel solution for Image Shadow Removal,
achieving state-of-the art results on the proposed bench-
mark, and being able to achieve a similar or better level of
performance, compared to other contemporary works tai-
lored around the existing datasets.
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