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Abstract

Although there are many methods based on deep learn-
ing that have superior performance on single image super-
resolution (SISR), it is difficult to run in real time on devices
with limited computing power. Some recent studies have
found that simply relying on reducing parameters or reduc-
ing the theoretical FLOPs of the model does not speed up
the inference time of the network in a practical sense. Ac-
tual speed on the device is probably a better measure than
FLOPs. In this work, we propose a new single residual net-
work (SRN). On the one hand, we try to introduce and op-
timize an attention mechanism module to improve the per-
formance of the network with a relatively small speed loss.
On the other hand, we find that residuals in residual blocks
do not have a positive impact on networks with adjusted
ESA. Therefore, the residual of the network residual block
is removed, which not only improves the speed of the net-
work, but also improves the performance of the network. Fi-
nally, we reduced the number of channels and the number of
residual blocks of the classic model EDSR, and removed the
last convolution before the long residual. We set this tuned
EDSR as the teacher model and our newly proposed SRN as
the student model. Under the joint effect of the original loss
and the distillation loss, the performance of the network can
be improved without losing the inference time. Combining
the above strategies, our proposed model runs much faster
than similarly performing models. As an example, we built
a Fast and Efficient Network (SRN) and its small version
SRN-S, which run 30%-37% faster than the state-of-the-art
EISR model: a paper champion RLFN. Furthermore, the
shallow version of SRN-S achieves the second-shortest in-
ference time as well as the second-smallest number of acti-
vations in the NTIRE2023 challenge. Code will be available
at https://github.com/wnxbwyc/SRN.

1. Introduction
Single image super-resolution reconstruction is a rela-

tively low-level task in computer vision. Its goal is to
reconstruct a given degraded low-resolution image into a

sharp high-resolution image as much as possible. There
is a lot of detail loss in low-resolution images, so re-
construction is beyond imagination. However, in recent
years, with the rapid development of deep learning, the
reconstruction effect of neural network is amazing, and it
greatly surpasses the traditional scheme such as A+ [27].
First, the convolutional neural network [5] [6] [1] [2] [24]
[27] [28] [29] [30]produced superior results, and then the
transformer-based model [11] [12] [31]shined. Unfortu-
nately, the cutting-edge high-performance indicators often
require a lot of computing power, and it is difficult to run
in real time on devices with limited resources. In order to
complete the lightweight model, it is necessary to reduce
performance expectations and increase speed.

It is precisely because of the need to run in real time
on resource-constrained devices that many works target ef-
ficient image super-resolution. Some early works used re-
current neural networks to save the amount of model pa-
rametersp [7] [13], but in fact the requirements for comput-
ing power still increase due to the increase in the number
of recursions. Some works try to reduce the FLOPs of the
model, such as depthwise separable convolution [32] and
the blueprint separable residual network [33] that won the
NTIRE2022 model complexity track. Although it tries to
compress the model to the extreme, compared with the con-
ventional model, the actual running speed does not decrease
due to the reduction of FLOPs. This fully demonstrates that
the number of parameters and FLOPs are widely used in
theoretical analysis, and models with low FLOPs do not al-
ways run fast. That is, if we try to lower the theoretical
metric, we will defeat the original goal of optimizing the
runtime. Currently, it is especially important to develop a
model with faster inference speed rather than low flops or
parameters.

Another classic example of optimizing FLOPs is using
feature fusion. Feature fusion usually uses 1x1 convolu-
tion, which is characterized by low FLOPs and high run-
time. There are many efficient super-resolution models that
use this strategy to improve performance. It usually adopts
multi-level connections to facilitate the exchange of infor-
mation between different locations. At the same time, it
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Figure 1. Illustration of PSNR, inference time and parameter num-
bers of different SISR models on the Urban100 dataset for 4x SR.

also reduces the difficulty of deep network training. For ex-
ample, IMDN [8] proposes to build an information multi-
distillation block IMDB, whose main idea is to combine
channel split and feature fusion. IMDN also uses global
fusion, which makes IMDN have a relatively strong repre-
sentation ability. This model won the first place in the in-
ference time and parameter quantity on the AIM2019 ESR
track [36]. RFDN [34], the champion of AIM2020 ESR
track [37], made some optimizations on the basis of IMDN
to further reduce the complexity of the model. However,
the basic architecture hasn’t changed much. Multiple re-
lated feature maps stay in memory until aggregated, which
accomplishes huge memory consumption. The 1x1 convo-
lution and frequent memory access introduced by the aggre-
gation will cause a decrease in the inference speed. As the
second place in the ESR track of NTIRE2022 [21], FMEN
[35] pointed out that serial networks should be used instead
of feature aggregation when designing network backbones.
Coincidentally, RLFN [10], the first place in the ESR track
of NTIRE2022, also adopted this serial design when design-
ing the network.

EDSR [1] is a standard serial design model. It removes
unnecessary BN parts and tries to expand the feature chan-
nels of the model, which enhances the expressiveness of
the model. We try to further optimize the EDSR based
model. In recent years, models based on attention mech-
anism have emerged continuously. Enhanced Spatial Atten-
tion [3] is one of the better attention mechanisms. We try
to introduce a separate ESA into the improved lightweight
version of EDSR. In order to reduce the speed impact of
introducing the ESA, we further simplify the ESA. Consid-
ering that the original intention of the residual network is to
solve the problem that the deep network is difficult to learn,
for a lightweight shallow network, the speed improvement
brought by not introducing the residual is more attractive
than the performance reduction. We tentatively removed
the residuals and found that the model introducing a simpli-
fied version of ESA achieved an unexpected performance

improvement after removing the residuals. This means that
the original residuals limit the representation ability of ESA.
Finally, we try to use the model distillation strategy to make
the student model learn from the teacher model, so as to
improve the performance of the student model without com-
promising the speed. It can be seen from Fig. 1 and Table 1
that our SRN has significantly better performance than the
ECBSR [9] with a similar speed and adopts structural repa-
rameterization technique. Compared with the NTIRE2022
ESR [21]champion model RLFN [10], the running speed
is 30% to 37% faster under the premise of similar perfor-
mance. Please note that SRN-S and SRN in the X2 part of
the table are not trained with a distillation strategy, while
the X4 part is trained with a distillation strategy. Our con-
tributions can be summarized as follows:

1. According to our analysis, although the introduction
of the Enhanced Spatial Attention has brought perfor-
mance improvements, it has also led to a correspond-
ing decrease in speed. In order to reduce the loss of
speed, we optimized the Enhanced Spatial Attention
module.

2. Through comparative experiments, we found that the
model with a simplified version of Enhanced Spatial
Attention can not only speed up the model after remov-
ing the residual, but also free the model from the con-
straints imposed by the residual, thus improving per-
formance. This is where our model SRN comes from.

3. We try to gain benefits in model distillation. By de-
signing a suitable teacher network, it can be found that
the student model can benefit from the output of the
teacher model through comparative experiments.

2. Related Work
2.1. Efficient Image Super-Resolution

SRCNN [5] is the first to apply deep learning algorithms
to the field of single image super-resolution. It consists of
only three layers of neural networks and performs bicubic
interpolation on the input before passing it through the net-
work. But performing inference directly on large-resolution
images will undoubtedly slow down the model. The im-
proved version FSRCNN [6] of SRCNN solves this prob-
lem very well. It achieves a large speedup by moving up-
sampling to the end of the model, and shows that processing
at low resolutions is not only faster but may result in better
accuracy. DRCN [7] introduces a recurrent neural network
to reduce the number of parameters, but the actual amount
of computation has not been reduced due to the reduction
of parameters. IMDN [8] proposes a lightweight informa-
tion multi-distillation network by constructing cascaded in-
formation multi-distillation blocks, using the information
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distillation mechanism (IDM) to gradually extract hierar-
chical features. DRN [24] fuses images of different sizes
to achieve lightweight models. ECBSR [9] adopts a novel
structural reparameterization technique method to sacrifice
the training time of the model to obtain better performance.
RLFN [10] designs a novel residual structure, which en-
ables it to achieve an excellent balance between speed and
performance. RLFN won the NTIRE2022 efficient super-
resolution champion [21]. Besides, [26] points out that the
number of iterations and patch size can also significantly
improve model performance.

2.2. Attention Mechanism in SR

Other computer vision tasks also have some inspiration
for super-resolution tasks. SENet [38] has achieved excel-
lent results in the field of image classification by apply-
ing the attention mechanism. It automatically obtains the
importance of each feature channel by learning, promotes
useful features and suppresses less useful features. Since
SENet was proposed, various attention mechanisms have
been applied in super-resolution. RCAN [2] applies the
channel attention mechanism in the residual block. RNAN
[39] uses both residual non-local attention blocks and resid-
ual local attention blocks to adaptively adjust hierarchical
features. SAN [40] is a second-order attention network that
can use more powerful feature representation and feature
correlation learning. DRN [24] uses RCAN’s basic resid-
ual block RCAB to stack residual blocks and tries to fuse
and gain benefits at multiple scales. HAN [41] combines a
Layer Attention Module (LAM) with a Channel Spatial At-
tention Module (CSAM) to selectively capture more infor-
mative features. Transformer-based methods such as SwinIr
[11] outperform convolutional neural networks in the field
of SR. On the one hand, SwinIR uses a moving window
mechanism and supports long-range dependency modeling.
On the other hand, it has a local attention mechanism that
gives it the advantage of CNN for processing large-scale
images. However, compared with the model of the convo-
lutional neural network, the model of the transformer class
is temporarily difficult to run in real time.

2.3. Model Optimization

A common SR model optimization method is model
compression. Recursive models such as [7] reduce the size
of the model and the amount of model parameters by shar-
ing the weight of the network, but the recursive model still
has a long inference time. Model quantization can reduce
memory storage by converting weights to lower-bit stor-
age [42]. However, since the super-resolution model is
very sensitive to quantization, full quantization will cause
a significant decrease in accuracy, so the method adopted
is often partial quantization. Some methods also use full-
precision activation [42]in order to avoid loss of precision,

which makes the speed improvement brought by quantiza-
tion not ideal. PAMS [43] proposes a parameterized max-
imum scale, using trainable truncation parameters to adap-
tively explore the upper limit of the quantization range, but
it takes some time for input quantization and output de-
quantization, so that the actual speed of the model is lim-
ited. DDTB [44] proposes a layer-by-layer quantizer with
trainable upper and lower bounds and a dynamic gate con-
troller to overcome the sharply changing activation range
of different samples. But the introduction of quantizers and
gate controllers slows things down while addressing the loss
of precision. This makes the model quantification strategy
still have limited advantages. Another common approach is
to use depthwise separable convolutions [32] or similar for
model compression. However, the decrease in the number
of model parameters does not mean the increase in comput-
ing speed.

Another possible approach is to use model distilla-
tion. Knowledge distillation aims to transfer the knowl-
edge learned by a large model or multiple models (teacher
model) to another single lightweight model (student model).
In fact, there have been some works applying model distil-
lation in the field of super-resolution in recent years. [45]
simultaneously compress and accelerate SR models using
a contrastive self-distillation framework. On the one hand,
we construct a channel segmentation super-resolution net-
work from the teacher network and use it as a compact stu-
dent model. On the other hand, a contrastive loss is intro-
duced to improve the learning ability of the student model
through explicit knowledge transfer. A novel distillation
framework is proposed in [46]. Consisting of teacher and
student networks can significantly improve the performance
of FSRCNN. It uses ground-truth high-resolution (HR) im-
ages as privileged information, and lets the encoder of the
teacher model imitate the process of loss learning degrada-
tion, while the decoder in the student and teacher model has
the same network architecture as FSRCNN to distill fea-
tures transfer to students. We did not use the above options.
We train a simplified version of EDSR as our teacher model
and set SRN as the student model. We try to derive yield
from the output of the trained teacher model.

3. Method
In this section, we first introduce motivation in Section

3.1, our proposed SRN Framework in Section 3.2. In Sec-
tion 3.3, we introduce distillation loss.

3.1. Motivation

In recent years, many deep neural network struc-
tures have been proposed in single image super-resolution
research. An enhanced deep super-resolution network
(EDSR) [1] with performance exceeding those of state-of-
the-art SR methods before 2017. It proposes to use the L1
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Figure 2. Original EDSR and our models

loss function instead of the L2 loss function and remove the
batch normalization, which still makes sense today.

Another significant thing is the addition of attention
mechanisms such as Residual Channel Attention Networks
(RCAN) [2]. The proposal of enhanced spatial attention
(ESA) [3] brings the attention mechanism to a higher level.
The ESA block is designed to be lightweight and efficient
although adding ESA will make the network train slower.
So the teacher model we use does not contain ESA to speed
up training. Considering that the student model is generally
small and shallow, the impact of adding ESA for student
model on training time is more acceptable.

Previously, some scholars used residual learning to solve
the learning problem of deep networks [4]. In order to make
the model run faster, considering that the small model is
relatively shallow and easy to train, the performance degra-
dation of removing the residual connection in the residual
block should be within an acceptable range. In FMEN [35],
ERB with residuals removed is used instead of RB, and it
is found that the performance of ERB relative to RB has
declined but is acceptable. Among them, ERB uses a struc-
tural reparameterization technique. Therefore, it is feasible
to remove unnecessary residual connections in the residual
block and only keep one residual connection. However, us-
ing a structural reparameterization technique will greatly in-
crease the training time of the model. To reduce the slow-
down caused by the introduction of ESA, we have retuned
ESA to run faster. Related comparative experiments can
be seen in Table 2. Through comparative experiments, it is
found that the residual block introduced into ESA can not

only increase the speed but also improve the performance
after removing the residual, which may be that the residual
limits the expressive ability of ESA which can be seen in
Table 3. We call the new non-residual block NRB (Non-
Residual Block), as shown in the figure. Details of our SRN
model can be seen in Fig. 2. See Fig. 3 and Fig. 4 for more
information. In order to speed up the training, we do not
use structural reparameterization technique.

3.2. Framework

Our SRN mainly consists of three parts: the first feature
extraction convolution, Non-Residual Blocks(NRBs), and
the reconstruction module.

Specifically, the initial feature extraction is implemented
by a 3 × 3 convolution to generate coarse features from the
input LR image. Given the input x, this procedure can be
expressed as

F0 = h(x) (1)

where h denotes the coarse feature extraction function
and F0 is the extracted features.

NRB consists of two 3x3 convolutions with a
leaky ReLU and ESA module, which can be seen in Fig.
3. Compared with RB, it has no residual.

The next part of SRN is multiple NRBs that are stacked
in a chain manner to gradually refine the extracted features.
This process can be formulated as

Fk = Hk(Fk−1), k = 1, ..., n (2)

1974



Figure 3. RB and NRB

where Hk denotes the k-th NRB function, Fk−1 and Fk

represent the input feature and output feature of the k-th
NRB, respectively.

Finally, the SR images are generated through the recon-
struction as follows

y = R(Fn + F0) (3)

where R denotes the reconstruction function and y is the
output of the network. The reconstruction process only con-
sists of a 3 × 3 convolution and a non-parametric sub-pixel
operation.

Our SRN model’s feature channels is set to 64 while the
channel number of ESA is set to 16. For NTIRE2023 ESR
challenge, we set NRBs to 4, otherwise we set it to 6. The
last convolution before the long residual is removed, which
constitutes the SRN-S. The model used in NTIRE2023 ESR
challenge is SRN-S.

3.3. Distillation

Model distillation has become a hot topic since this [25]
post came out. Super-resolution distillation may be a vi-
able solution but we found that it is difficult for the student
model to benefit from the features of the middle layer of the
teacher model. Therefore, we only append the loss func-
tion between the output of the teacher model and the student
model on the basis of the primary loss function. Details can
be seen in the Fig. 5.

Furthermore, We use a lightweight version of EDSR and
remove the last single convolutional layer included in the
long residual connection. We use this as our teacher model.
The difference between the original EDSR and our teacher
model can be seen in the Fig. 2. Considering our limited
resources, we did not use the original channel size of 256
and 32 residual blocks [1]. The number of feature channels

Figure 4. ESA modify

Figure 5. Loss

is set to 128, the residual blocks is set to 20. The residual
scaling factor is set to 1.

We combine the original loss with the distillation loss as:

L(θ) =λP ||HSRN (ILR)− IHR||1+

λD||HSRN (ILR)−HT (ILR)||1
(4)

where HSRN epresents the function of our proposed
network,HT epresents the function of our teacher network,
θ indicates the learnable parameters of SRN and || · ||1 is
the l1 norm. ILR and IHR are the input LR images and
the corresponding ground-truth HR images, respectively.
λP means the coefficient of the main loss function and λD
means the coefficient of the distillation loss. we set them to
1.
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Scale Model Params runtime Set5 Set14 BSD100 Urban100
(K) (ms) PNSR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [5] 57 49.44ms 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946
FSRCNN [6] 12 10.02ms 37.05 / 0.9560 32.66 / 0.9090 31.53 / 0.8920 29.88 / 0.9020
VDSR [14] 666 220.77ms 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140
CARN [15] 1592 144.70ms 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256

× 2 IMDN [8] 694 106.21ms 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283
ECBSR [9] 596 58.21ms 37.90 / 0.9615 33.34 / 0.9178 32.10 / 0.9018 31.71 / 0.9250
RLFN [10] 527 84.53ms 38.07 / 0.9607 33.72 / 0.9187 32.22 / 0.9000 32.33 / 0.9299

SRN-S(ours) 492 61.59ms 37.96 / 0.9604 33.62 / 0.9175 32.13 / 0.8990 32.15 / 0.9282
SRN(ours) 529 64.37ms 37.98 / 0.9605 33.65 / 0.9176 32.14 / 0.8992 32.19 / 0.9287
SRCNN [5] 57 49.66ms 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221

FSRCNN [6] 13 4.20ms 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280
VDSR [14] 666 220.22ms 31.35 / 0.8838 28.01 / 0.7674 27.29 / 0.7251 25.18 / 0.7524
CARN [15] 1592 62.67ms 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837

× 4 IMDN [8] 715 28.97ms 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838
ECBSR [9] 603 16.92ms 31.92 / 0.8946 28.34 / 0.7817 27.48 / 0.7393 25.81 / 0.7773
RLFN [10] 543 23.10ms 32.24 / 0.8952 28.62 / 0.7813 27.60 / 0.7364 26.17 / 0.7877

SRN-S(ours) 513 17.05ms 32.13 / 0.8940 28.60 / 0.7813 27.57 / 0.7355 26.08 / 0.7843
SRN(ours) 550 17.82ms 32.15 / 0.8942 28.60 / 0.7814 27.58 / 0.7356 26.11 / 0.7849

Table 1. Quantitative results of the state-of-the-art models on four benchmark datasets.The best and second-best results are marked in red
and blue colors, respectively.

4. Experiments

4.1. Setup

Datasets and Metrics. We train our models on DIV2K
[16] and LSDIR [22] datasets. We test the performance of
our models on four benchmark dataset: Set5 [17], Set14
[18], BSD100 [19] and Urban100 [20]. We evaluate the
PSNR and SSIM on the Y channel of YCbCr space.

Training Details. The proposed SRN has 6 NRBs (Non-
Residual Blocks), in which the number of feature channels
is set to 64 while the channel number of ESA is set to 16. In
total we used two datasets: DIV2K [16] and LSDIR. SRN S
means removing the last convolution before the end of the
residual network which makes network running fast.

To train the models with images, we augment training
dataset with geometric transforms: vertical/horizontal flips
and 90-degree rotation in order to enhance the comprehen-
sive ability of the model.This also makes the model have
higher performance in dealing with non-training set data.

For teacher model:

1. At the first stage, the model is trained from scratch.
HR patches of size 192 × 192 are randomly cropped
from HR images, and the mini-batch size is set to 16.
The teacher model is trained by minimizing L1 loss
function with Adam optimizer. The initial learning
rate is set to 2 × 10−4. The total number of epochs
is 20000.(Only use DIV2K dataset). The learning

rate decay is following cosine annealing with Tmax =
total epochs, etamin = 1× 10−7.

2. At the second stage, the model is initialized with the
pretrained weights. The initial learning rate is set to 1
× 10−4.In this stage, we use LDSIR dataset. The total
number of epochs is 200. Other settings are the same
as in the previous step.

3. At the last stage, the model is initialized with the pre-
trained weights.HR patches of size 256 × 256 are ran-
domly cropped from HR images. The initial learning
rate is set to 2.5 × 10−5. Now the teacher model is
trained by minimizing L2 loss function with Adam op-
timizer. The total number of epochs is 50. Other set-
tings are the same as in the previous step. After train-
ing, we freeze the parameters of the teacher model.

Since we only trained the teacher network at x4 scale,
the distillation scheme was not used in x2 scale.

For student model:

For x4 scale, HR patches of size 256 × 256 are ran-
domly cropped from HR images. For x2 scale, HR
patches of size 128 × 128 are randomly cropped from
HR images. The mini-batch size is set to 32. The stu-
dent model is trained by minimizing L1 loss function
with Adam optimizer. The initial learning rate is set to
2 × 10−4. The total number of epochs is 80000. The
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Model last conv ESA runtime Set5 Set14 BSD100 Urban100
PNSR ∆ PSNR ∆ PSNR ∆ PSNR ∆

baseline 3 7 13.81ms 31.7287 - 28.3271 - 27.3810 - 25.4518 -
baseline 7 7 13.20ms 31.6948 -0.0339 28.3187 -0.0084 27.3657 -0.0153 25.4193 -0.0325

ESAN old 3 3 19.62ms 31.9248 +0.1961 28.4501 +0.1230 27.4446 +0.0636 25.6798 +0.2280
ESAN old 7 3 18.91ms 31.8563 +0.1276 28.3996 +0.0725 27.4101 +0.0291 25.5809 +0.1291
ESAN new 3 3 18.95ms 31.9015 +0.1728 28.4341 +0.1070 27.4386 +0.0576 25.6428 +0.1910
ESAN new 7 3 18.28ms 31.8333 +0.1046 28.3769 +0.0498 27.3980 +0.0170 25.5464 +0.0946

Table 2. Introduction of ESA module. Runtime is tested on DIV2K validation set.

Model last conv residual runtime Set5 Set14 BSD100 Urban100
PNSR ∆ PSNR ∆ PSNR ∆ PSNR ∆

ESAN new 3 3 18.95ms 31.9015 - 28.4341 - 27.4386 - 25.6428 -
ESAN new 7 3 18.28ms 31.8333 -0.0682 28.3769 -0.0572 27.3980 -0.0406 25.5464 -0.0964
ESAN new 3 7 17.82ms 31.9730 0.0715 28.4622 0.0281 27.4613 0.0227 25.7253 0.0825
ESAN new 7 7 17.05ms 31.9039 0.0024 28.4196 -0.0145 27.4322 -0.0064 25.6683 0.0255

Table 3. Limiting effect of residuals. Runtime is tested on DIV2K validation set.

learning rate decay is following cosine annealing with
Tmax = total epochs, etamin = 1× 10−7.

4.2. Quantitative Results

In this scetion, we compare our model against several ad-
vanced efficient super-resolution models with upsampling
factors of 2 and 4. This includes SRCNN [5], FSRCNN [6]
, VDSR [14], CARN [15], IMDN [8], ECBSR [9], RLFN
[10]. The quantitative performance comparison of several
benchmark datasets is shown in Table 1. The inference
time in Table 1 is the average speed in milliseconds on the
DIV2K [16] validation set on an NVIDIA 3080 GPU. Com-
pared with other state-of-the-art models, the proposed SRN-
S and SRN still have gaps in terms of PSNR and SSIM com-
pared with the 2022 SOTA model RLFN, but the gaps are
within acceptable limits. Even models can be sub-optimal
in the table. SRN-S doesn’t have the last convolution be-
fore the end of the large residual compared with SRN. It
is worth mentioning that our SRN-S is about 36% faster
than RLFN. SRN and can be about 30% faster than RLFN.
Compared with ECBSR, which uses structural reparameter-
ization technique, the speed is almost the same, but the per-
formance index is far beyond. In other words, the speed is
far better than RLFN, and the performance is far better than
ECBSR. It can be considered that our model has achieved a
good balance between speed and performance.

4.3. Ablation Study

When doing ablation experiments, we use DIV2K [16]
and Flickr2K datasets. We consider whether there is a last
convolution before a large residual as a variable. The ab-
sence of the last convolution can make the network run
faster. The baseline network has 6 RBs without the attention
mechanism.

Effectiveness of a simplified version of enhanced spa-
tial attention. DIV2K and Flickr2K datasets are used. As
shown in Fig. 4, compared to the original ESA model, we
replace the convolution group with a single convolution and
remove a 1x1 convolution. The model is trained by mini-
mizing L1 loss function with Adam optimizer. The initial
learning rate is set to 2 × 10−4. The total number of epochs
is 1250. The learning rate decay is following cosine anneal-
ing with Tmax = total epochs, etamin = 1 × 10−7. The
experimental results can be seen in the Table 2.

We can roughly draw the following conclusions:

• The absence of the last convolution will slightly re-
duce the performance of the network, but make net-
work runs faster.

• The introduction of ESA can greatly improve network
performance but will also greatly affect the speed.

• Compared with the normal version, our simplified
ESA model does not perform too badly, but it is faster
than the normal version.

In the end this made us decide to use a simplified version
of the ESA module to do more optimization.

Effectiveness of Non-Residual Blocks. DIV2K [16]
and Flickr2K datasets are used. The training is the same as
before. Shown in Fig. 3, NRB (Non-Residual Block) means
that the residual blocks in the network have no residuals. Fi-
nally, we call this network mainly composed of NRBs SRN.
The experimental results can be seen in the Table 3.

In the experiment, we can find that simply removing the
residuals not only makes the network inference faster, but
also improves the network performance. This shows that
this is a lossless optimization.
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Model last conv distillation runtime Set5 Set14 BSD100 Urban100
PNSR ∆ PSNR ∆ PSNR ∆ PSNR ∆

teacher 7 7 - 32.3928 - 28.8507 - 27.7372 - 26.7776 -
SRN 3 7 17.82ms 31.9314 - 28.4481 - 27.4463 - 25.6931 -
SRN 7 7 17.05ms 31.8728 -0.0586 28.3795 -0.0686 27.4184 -0.0279 25.6250 -0.0681
SRN 3 3 17.82ms 31.9390 +0.0076 28.4581 +0.0100 27.4724 +0.0261 25.7605 +0.0674
SRN 7 3 17.05ms 31.8937 -0.0377 28.4159 -0.0322 27.4584 +0.0121 25.6713 -0.0218

Table 4. The utility of distillation. Runtime is tested on DIV2K validation set.

Team Name PSNR PSNR Ave Time Params FLOPs Acts Mem Conv
[Val] [Test] [ms] [M] [G] [M] [M]

MegSR 29.04 26.95 18.30 0.243 14.9 72.97 495.91 39
Zapdos(ours) 28.96 27.03 18.59 0.352 21.97 63.01 420.5 26

DFCDN 29.00 27.08 18.71 0.245 15.49 82.76 376.99 39
KaiBai Group 28.95 27.01 20.49 0.272 16.76 65.1 296.45 35

RIP ShopeeVideo 28.97 27.04 20.65 0.255 16.16 74.97 439.6 35

Table 5. Runtime results of NTIRE 2023 efficient SR challenge. Only the top five methods are included.

Effectiveness of distillation. Only DIV2K [16] datasets
is used. The model is trained by minimizing L1 loss func-
tion with Adam optimizer. The initial learning rate is set to
2 × 10−4. The total number of epochs is 5000. The learn-
ing rate decay is following cosine annealing with Tmax =
total epochs, etamin = 1× 10−7. The distillation method
can generally be seen from the Fig. 5. The experimental
results can be seen in the Table 4.

The improvement brought by distillation is not as obvi-
ous as removing the residual directly, but it is also a positive
effect because it can improve accuracy without affecting in-
ference speed. At the same time, distillation can reduce the
gap between SRN-S and SRN on some data sets such as
BSD100.

4.4. SRN for NTIRE 2023 challenge

We include the top five methods in Table 5 [23]. The
speed of our team’s method achieves the second-shortest
inference time as well as the second-smallest number of ac-
tivations in the NTIRE 2023 efficient super-resolution chal-
lenge. At the same time, our method contains the least num-
ber of convolutions.

The training strategy in challenge is as follows. For
teacher model, it is the same as previous method. But for
student model, the model structure and training strategy are
slightly different from the above:

1. We only use the DIV2K dataset. We use main loss
and distillation loss to train our student model. The
proposed SRN has 4 NRBs instead of 6. Besides, in
order for the network to run faster, we remove the last
convolution before the end of the single residual.

2. At the first stage, the model is trained from scratch. HR
patches of size 256 × 256 are randomly cropped from

HR images, and the mini-batch size is set to 32. The
student model is trained by minimizing L1 loss func-
tion with Adam optimizer. The initial learning rate is
set to 2 × 10−4. The total number of epochs is 80000.
The learning rate decay is following cosine annealing
with Tmax = total epochs, etamin = 1× 10−7.

3. At the second stage, the model is initialized with the
pretrained weights, and trained with the same settings
as in the previous step.

4. At the last stage, the model is initialized with the pre-
trained weights. HR patches of size 640 × 640 are ran-
domly cropped from HR images, and the mini-batch
size is set to 32. The student model is trained by min-
imizing L2 loss function with Adam optimizer. The
initial learning rate is set to 5 × 10−5.The total number
of epochs is 4000.

5. Conclusion

In this paper, we propose a single residual network for
efficient SISR. By introducing and optimizing the ESA
model, the accuracy of the network is reasonably improved.
We then revisit the limitations of residuals on the capabil-
ities of models incorporating ESA, and removing residu-
als greatly improves model performance and speed. We
also propose a model distillation strategy that can effec-
tively improve performance without compromising speed.
Our method achieves a large advantage in running time and
number of activations, and our model achieves a good bal-
ance between speed and performance.
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