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Abstract

High-resolution non-homogeneous dehazing aims to
generate a clear image from a 4000 × 6000 image with
non-homogeneous haze. To the best of our knowledge, this
task is a new challenge that was not addressed in the previ-
ous literature. To address this issue, we propose semantic-
guided loss functions for high-resolution non-homogeneous
dehazing. We find semantic information contains strong tex-
ture and color prior. Thus, we proposed to adopt the pre-
trained model to generate the semantic mask to guide the
neural network during the training phase. On the other
hand, to handle the non-homogeneous dehazing process in
the high-resolution scenario, we adjust the kernel size of the
model to increase the receptive field. Furthermore, to deal
with the different image sizes during the training and the
testing phase, several post-processing methods are applied
to improve the high-resolution non-homogeneous dehazing.
Several experiments performed on challenging benchmark
show that the proposed model achieves competitive perfor-
mance in the NTIRE 2023 HR NonHomogeneous Dehazing
Challenge.

1. Introduction

Haze or fog is a common phenomenon because of light
absorption and scattering in the atmosphere medium in our
daily life, and they usually degrade the visibility of images.
Furthermore, haze and fog also deteriorate the performance
of high-level vision applications like autonomous driving,
robot navigation, and object recognition [1]. Therefore,
many researchers have endeavored to propose approaches to
restoring clean photographs from hazy/foggy ones in both
computational photography and vision communities in the
past decades. The atmospheric scattering model [2] is used
to estimate the clean image from a single hazy input and is

expressed as:

J(x) = I(x)t(x) +A(1− t(x)) (1)

where J(x) is the captured hazy image, I(x) is the corre-
sponding clear image, t(x) is the medium transmission and
A is the global atmospheric light. Single-image dehazing
is an ill-posed and challenging problem because multiple
mapping solutions are possible from a hazy image to clear
images.

Despite its ill-posedness, many efforts on estimating and
regularizing the solution space using a variety of statistical
and image priors [5–7] are proposed. However, these hand-
crafted statistical priors are designed based on specific ob-
servations, which may not be robust to deal with various
situations like the unconstrained environment in the wild.
Recently, many researchers proposed neural network solu-
tions [8–10] for single image dehazing because of the supe-
rior performance of the learning-based methods and large
amounts of data [11, 12]. These methods use convolutional
neural networks (CNNs) to extract features and learn the
mapping function between hazy and haze-free image pairs
and the object loss functions are selected to optimize the
network. However, these methods can not handle the high-
resolution non-homogeneous dehazing well for some rea-
sons. First, several synthetic datasets are generated based
on the assumption that the atmosphere is homogeneous,
and many deep learning-based solutions focus on this kind
of dataset. On the contrary, non-homogeneous dehazing
draws less attention. Second, the image size of the exist-
ing dataset is smaller than 4K, while the image size of the
high-resolution non-homogeneous dehazing is up to 4000 ×
6000. It is impossible to feed the whole image to train the
dehazing model. Alternatively, patches are cropped from
the training data and fed to the model. In the test phase, we
can feed the whole image to the model. However, different
image sizes would cause the inconsistency of feature distri-
butions in the training and testing phase [4] and deteriorate
the model’s performance.
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(a) (b) (c) (d) (e)

Figure 1. Visual comparison with different non-homogeneous dehazing methods. (a): the non-homogeneous haze image. (b): the
dehazed result generated by the baseline [3] method. (c): the dehazed result with proposed semantic-guided loss functions and the model.
Notably, (b) and (c) are dehazed from inference with overlapping patches and introduce visible boundary artifacts. (d): the dehazed image
with the whole input image. (e): the dehazed results with post-processing of TLC [4] and test time augmentation. Please zoom in for a
better visual experience.

To address these issues, we propose several strategies for
high-resolution non-homogeneous dehazing. We first ob-
serve semantic segmentation can provide natural priors and
high-level features, which are beneficial to guide the non-
homogeneous dehazing network. Though several tasks use
loss functions with high-level features [13, 14] to optimize
the network, semantic information contains more color, tex-
ture, and geometry priors and is more helpful in reconstruct-
ing images. Therefore, we use the pre-trained semantic seg-
mentation model [15] to generate semantic maps as extra
guidance and utilize them to propose two semantic-based
consistent loss functions.

Second, apart from the proposed loss functions, selecting
a useful neural network is necessary to handle this task. We
review several previous state-of-the-art solutions and select
DW-GAN [3] as our backbone. The dehazed results are pre-
sented in Figure 1 (b). Compared to Figure 1 (a), DW-GAN
can remove the non-homogeneous haze. However, there is
residual haze in the middle of the image. The main rea-
son is that when the haze is too dense and the image size is
too large, the dehazed network cannot capture large regions
with useful information. Thus, we increase the kernel size
of the original model to increase receptive fields. The de-
hazed image by a large model is shown in Figure 1. Third,
when inferring Figure 1 (b) and Figure 1 (c), images are
cropped to several patches to the model and merged to get
the final dehazed results. This inference pipeline may in-
troduce visible boundary artifacts. If the whole image is di-
rectly passed to the model, as shown in Figure 1 (d), though
the visible boundary artifacts disappear, the contrast and the
visual quality are dropped, which is derived from the differ-
ent feature distributions of different image sizes. Therefore,
we also use several post-processing to avoid this issue. As
shown in Figure 1 (e), after using post-processing methods,
we pass the whole images into the neural network, and the
dehazed image contains better color tone and details. To
sum up, our main contributions and novelties are as follows:

1. We propose two semantic guidance loss functions
for non-homogeneous dehazing. The semantic corre-

sponding loss makes dehazed images contain seman-
tic information like texture or structure. The semantic
color tone consistency loss further restricts color tone
consistency and smoothness.

2. Combining the proposed loss functions, we modify the
backbone [3], and several post-processing methods are
implemented to improve the model’s performance.

3. We test our proposed method and achieves competi-
tive performance in the NTIRE 2023 HR NonHomo-
geneous Dehazing Challenge [16].

This paper is organized as follows. In Section 2, related
works like single image dehazing and related optimization
loss functions are briefly reviewed. Section 3 describes
the proposed semantic-guided loss functions, the network
architecture, overall optimized loss functions, and post-
processing methods in detail. Section 4 introduces our ex-
perimental setting and provides several experimental results
compared with conventional methods. Finally, the future
works and conclusion are presented in Section 5.

2. Related Works
2.1. Single Image Dehazing

As introduced in the previous section, single-image de-
hazing can be divided from traditional prior-based meth-
ods to learning-based methods. Several traditional meth-
ods [5–7] estimate transmission maps and the global atmo-
spheric light based on statistical assumption to restore the
clear images. Because the prior-based methods are not ro-
bust to deal with situations like the non-homogeneous at-
mosphere, more and more researcher endeavor to purpose
deep learning solutions to pursue better performance. On
the other hand, due to the prevailing success of deep learn-
ing in various tasks and the capability of large datasets,
many deep-learning-based [9, 10, 14, 17–19] methods are
proposed. For example, FSGDN [10] completely utilizes
dual guidance in both the frequency and spatial domains.
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In [9], a detail-enhanced attention block is proposed to
boost the feature learning for improving the performance of
dehazing. For non-homogeneous dehazing, several meth-
ods [20] try to estimate density maps of haze and apply them
to design the neural network. In [3], DW-GAN contains two
branches of neural networks to learn the different features
and merge them to deal with non-homogeneous dehazing.

2.2. Loss Functions for Single Image dehazing

Single image dehazing can be seen as a regression task,
so absolute difference (L1) and mean square error (L2) loss
functions can be used to optimize the network. Specifi-
cally, Chabornnier loss [21] that can avoid unstable value
at zero point is proposed. This function makes the over-
all training phase stable and converges fast. Besides these
pixel-wise loss functions, another common visual similar-
ity metric based on image fidelity is given by Structured
Similarity (SSIM) [22, 23], whose spirit is the calculation
of the covariance within patches. Furthermore, the per-
ceptual loss [13] that measures the feature similarity from
the deep neural network is similar to human visual percep-
tion. Based on the perceptual loss, the contrastive loss [14]
that pushes positives closer to anchors and pushes negatives
away from anchors in the feature space has shown impres-
sive performance in image dehazing. Recently, Generative
adversarial network (GAN) [3] is proposed to train the de-
hazing neural network. GANs contain a generator and a
discriminator, and the latter can calculate the adversarial
loss to optimize the network. But all of them do not con-
sider the benefit of semantic segmentation, which contains
more useful information like color and texture of structure
for non-homogeneous dehazing. Therefore, in this paper,
we leverage the pre-trained semantic segmentation model
and extract the semantic feature to optimize the network.

3. Proposed Methods
3.1. Semantic Guided Loss Functions

In this section, we describe the proposed two semantic-
based loss functions: semantic corresponding loss Lsem

and semantic color tone consistency loss Lsc.

Semantic corresponding loss enforces the dehazed images
to have an identical semantic representation to that of the
ground truth, and it is written as:

Lsem(I, Î) = |S(Î)− S(I)| (2)

where | · | is the absolute value. Î ∈ RW×H×3 and I ∈
RW×H×3 are the dehazed image and the ground truth. S
is the semantic segmentation model and S(.) ∈ RW×H×n

is the semantic segmentation map with n classes. This loss
strengthens the semantic relationship between ground truths
and dehazed images. We also plot the semantic segmenta-

(a) (b)

(c) (d)

(e) (f)

Figure 2. Semantic segmentation results of different images.
(a): non-homogeneous haze image; (b): semantic segmentation
results of (a); (c): dehazed image; (d): semantic segmentation re-
sults of (c); (e): ground truth; (f): semantic segmentation results
of (e). The visualization of various colors is based on [24].

tion results in Figure 2, and it indicates that the segmen-
tation results are not accurate in dense haze regions. In
Figure 2 (a), most regions are predicted as roads in dark
magenta, and the predictions from ground truth and the de-
hazed image are terrains in light green, which demonstrates
the semantic consistency loss is helpful to remove haze, es-
pecially in dense hazy regions.

Semantic color tone consistency loss adjusts the color
tones based on separated classes. We notice some pixels
in some categories, like the sky, contain similar color tone
distribution, which motivates us to consider semantic-based
color tone to design the loss function. This loss function is
written as:

Lsc(I, Î) =

n∑
i=1

|CI,i − CÎ,i| (3)

where CI,i means the average color tone of the ith class of
I . Specifically, CI,i can be written as:

CI,i =
1

n

∑
S(x)∈i

I(x) (4)
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Figure 3. The proposed network for high-resolution non-homogeneous dehazing. This model applies the DWT U-net and Res2Net
as two branches to extract the different frequency features and high-level features. It is noted all convolutional kernel size is 5 × 5. Two
branches are encoder-decoder structures. A 7 × 7 convolution layer is added to fuse feature maps and output the clean images.

3.2. Overall Neural Network

The architecture for non-homogeneous dehazing is pre-
sented in Figure 3. This network is based on DW-GAN
[3] and contains two branches: Discrete wavelet transform
(DWT) branch [25] and Res2Net [26,27] branch. The DWT
branch is used to directly extract various frequency features
and learn the color tone mapping from hazy to haze-free im-
ages. This branch is seen as an encoder-decoder structure
based on U-Net [28, 29]. The DWT down-sampling mod-
ule and DWT up-sampling module are seen as the encoder
and decoder modules, respectively. The input feature maps
are passed to DWT down-sampling module and decom-
posed into low-frequency and three high-frequency com-
ponents by DWT. Low-frequency components are concate-
nated with convolution output as down-sampling features,
and high-frequency components are added to the DWT up-
sampling module by skip connection. At the bottom of the
U-net, the residual block is used and makes the training pro-
cess effective, especially in the event of deeper networks.
By adding DWT into the neural network, the network re-
places the down-sampling and up-sampling with the DWT
and inverse discrete wavelet transform (IDWT). Addition-
ally, the network further captures the various frequency fea-
tures and bi-orthogonal properties of the DWT for signal
recovery.

Second, the Res2Net [26] branch also contains the en-
coder and decoder parts. In the encoder part, the Res2Net50

is applied [26] as the backbone. The Res2Net can repre-
sent multi-scale features at a granular level and increases
the range of receptive fields for each network layer. After
the input is passed through the backbone, multi-scale fea-
tures are obtained. Note that the Res2Net utilized in this
work discards the full connection layer, and the size of final
output feature maps from our encoder is 1

16 . We connect
the bottom features to the decoder. The decoder consists of
stacks of convolution to refine the feature maps. The pixel
shuffle [30] is adopted to magnify feature maps. Further-
more, we leverage attention modules to refine intermediate
features. Attention modules contain both spatial and chan-
nel attention.

Finally, to fuse feature maps from two branches, a simple
7×7 convolution layer is added, and the model predicts the
final clear images. In NTIRE 2023 HR NonHomogeneous
Dehazing Challenge, the image size is up to 4000 × 6000,
and the haze distribution becomes challenging. To address
this issue, we increase the kernel size of the original model.
We replace 3 × 3 convolutions with 5 × 5 convolutions in
the whole model to increase the receptive field and make the
dehazing network handle the challenging haze distribution.

3.3. Overall Loss Functions

Besides the proposed semantic loss functions Lsem and
Lsc, we also train the network with three extra loss func-
tions. The first function is Charbonnier loss [21], which is
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considered as the robust L1 loss function near zero, and the
formula of Charbonnier loss can be written as:

LCha(I, Î) =
1

T

T∑
i

√
(Ii − Îi)2 + ϵ2 (5)

where e is seen as a tiny constant (e.g., 10−6) for stable and
robust convergence. Lcha is used to restore global structure
[21] and can handle outliers robustly.

Secondly, we apply the wavelet SSIM loss [23,30]. First,
SSIM loss can be expressed as:

LSSIM (I, Î) = −
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î
+ C2)

(6)

where µ and σ mean the covariance, the mean, and the stan-
dard deviation of images. In the non-homogeneous image
dehazing task, to remove different dense haze from the orig-
inal image, we extend the SSIM loss function so that our
network can restore more detailed parts. The DWT is help-
ful for both neural network structures and the loss function.
We integrate DWT into the SSIM loss. Initially, the DWT
decomposes the dehazed image into four different and small
sub-band images. The operation can be expressed as

ÎLL, ÎLH , ÎHL, ÎHH = DWT(Î) (7)

where superscripts mean the output from respective filters
(e.g., fLL, fHL, fLH and fHH ). fHL, fLH , and fHH

are high-pass filters for the horizontal edge, the vertical
edge, and the corner detection, respectively. fLL is seen
as the down-sampling operation. Moreover, the DWT can
keep decomposing the ÎLL generating images with differ-
ent scales and frequency information. This step is written
as:

ÎLL
i+1, Î

LH
i+1 , Î

HL
i+1 , Î

HH
i+1 = DWT(ÎLL

i ) (8)

where the subscript i means the output from the ith DWT
iteration, and ÎLL

0 is the original predicted dehazed image.
The SSIM loss terms described above are calculated from
the original image pair and various sub-band image pairs.
The fusion of the SSIM loss and the DWT is integrated as
follows:

LW−SSIM (I, Î) =

i∑
0

γiLSSIM(Iwi , Îwi ),

w ∈ {LL,HL,LH,HH}

(9)

where γi is based on [23] to control the importance of differ-
ent patches. Compared to the original LSSIM , LW−SSIM

can reconstruct local textures and details better.
The third loss is the perceptual loss [13]. Unlike the

aforementioned two loss functions, the perceptual loss
leverages multi-scale features based on a pre-trained deep

neural network (e.g., VGG19 [31]) to measure the visual
feature difference between the ground truth and the esti-
mated image. Formally, in this task, the VGG19 pre-trained
on ImageNet is utilized as the loss function network. The
perceptual loss is defined as

LPer(I, Î) = |(V GG(I)− V GG(Î)| (10)

where | · | is the absolute value. The overall loss function :

LTotal = λ1Lcha+λ2LW−SSIM+λ3LPer+λ4Lsem+λ5Lsc

(11)
where λ1, λ2, λ3, λ4, and λ5 are tuning coefficients and
used to adjust the relative weights of the overall loss func-
tion.

3.4. Post-Processing for Inference

Because of different image sizes during the training and
testing status, several operations like global average and in-
stance normalization would generate different results and
impact the final quality of dehazing images as shown in 1
(d). To address these issues, we use Test-time Local Con-
verter (TLC) [4] to adjust the model after the training phase.
Specifically, our model contains the global average in the
channel attention layer. TLC converts the region of feature
aggregations from global to local, which aligns the global
distribution with the local one.

Besides TLC bridges the gap of information aggregation
between training and testing, another test time augmenta-
tion (TTA) method is applied to improve the performance of
our model. Specifically, the input hazy images are rotated
and flipped vertically and horizontally and passed through
the neural network. We flip and rotate back dehazed im-
ages and average them as the final prediction. It is noted
that there are 8 different orientation images used for TTA.
In Section 4, several ablation studies demonstrate the effec-
tiveness of these post-processing methods.

4. Experiments
4.1. Dataset

The NTIRE 2023 HR NonHomogeneous Dehazing
Challenge dataset comprises 50 images from different
scenes. 40 pairs of clear and non-homogeneous dehazing
images are used for training, and five non-homogeneous
dehazing images are used for validation and testing, re-
spectively. The resolution of all images is 4000 × 6000.
To avoid overfitting the model, we split five pairs of im-
ages from the training data and evaluated them to select the
best model. Additionally, we also use extra datasets from
the previous NTIRE dehazing Challenge: O-Haze [11],
DENSE-HAZE [12], NH-HAZE [32] and NH-HAZE2 [33].
There are 45 outdoor images and the corresponding im-
ages affected by haze in O-Haze. DENSE-HAZE contains
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33 dense hazy and ground-truth images. It is noted both
datasets are not for non-homogeneous dehazing, but we
also use them to make the model robust against challeng-
ing non-homogeneous hazy scenarios. Both NH-Haze and
NH-Haze2 consist of all 80 non-homogeneous hazy images
and their corresponding ground truth images of the same
scene.

4.2. Experimental Setting

During the training phase, the image size is randomly
cropped as 512 × 512, and we use the random rotation
and the random flip vertically and horizontally as the data
augmentation. The AdamW optimizer [34] is utilized with
batch size 10 to train the network. We train the network
for 1000 epochs with the momentum β1 = 0.5 and β2 =
0.999. The learning rate is initialed as 10−4 and divided by
ten after 300, 600, and 900 epochs. We use (11) to opti-
mize the network, and the λ1, λ2, λ3, λ4, and λ5 in (11)
are set as 1, 1.1, 0.1, 0.1 and 0.1, respectively. We use the
pre-trained DeepLab v3 [15] semantic segmentation model
trained on the Cityscape dataset [24] to extract the semantic
masks. The Cityscape dataset contains 19 categories, and
we just select the fence, sky, terrain, vegetation, sidewalk,
and road in (2) and (4). In the final 100 epochs, we remove
semantic-based loss functions. We perform our experiments
on a single Nvidia V100 graphic card and the PyTorch plat-
form. We spend about 40 hours training the model. In the
testing phase, we can feed the whole image to the model,
and our model takes 6.51 seconds to infer a single image.

4.3. Ablation Experiments

To find the best effectiveness of the proposed solution,
we perform some ablation experiments in this section. The
peak signal-to-noise ratio (PSNR) and the SSIM are applied
as objective metrics for quantitative evaluation.

The ablation experiments contain five experimental set-
tings. First, we use the dehazing neural network of DW-
GAN [3] as the baseline. Second, we change the kernel size
in DW-GAN from 3 × 3 to 5 × 5. Note that only Char-
bonnier loss [21], wavelet SSIM loss [23], and perceptual
loss [13] functions are used for both experiments. Third,
we use the proposed loss functions Lsem Lsc to train the
large model. Forth, we use TLSC [4] as post-processing to
make inferences. Last, besides TLSC, TTA is also applied.

The results tested on the validation images are reported
in Table 1. The PSNR and SSIM scores of setting 2 can be
improved compared with setting 1. It can demonstrate that
using large convolutional kernels can increase the receptive
field to capture features of non-homogenous haze and im-
prove dehazing performance. Furthermore, compared with
setting 2, the performance of setting 3 is improved effec-
tively. It indicates that the Lsem and Lsc can be more
beneficial to reconstruct clear images. Additionally, com-

Table 1. The ablation experiment of applying different models,
loss functions, and post-processing.

Index Method
Metrics

PSNR SSIM
(1) Baseline [3] 19.3441 0.6846
(2) (1) + Large kernels 20.5395 0.6964
(3) (2) + Lsem, Lsc 21.0412 0.7011
(4) (3) + TLSC [4] 21.3831 0.7049
(5) (4) + TTA 21.4235 0.7088

Table 2. Non-homogeneous dehazing results by state-of-the-art
methods.

Method Metrics
PSNR SSIM

DW-GAN [3] 21.3212 0.7349
FSDGN [10] 21.3826 0.7355
DEA-Net [9] 19.6420 0.7295

Ours 22.5186 0.7477

pared with setting 3, performances of setting 4 and setting
5 are also further improved. It proves that post-processing
is essential for performance even though the network is un-
changed. To sum up, compared with baseline methods, in
setting 3, the proposed semantic-based loss functions new
model makes the PSNR score and the SSIM improve by
1.70 and 0.017, respectively. On the other hand, the PSNR
and the SSIM are increased by 0.38 and 0.008 between set-
ting 3 and setting 5, which demonstrates the effeteness of
our proposed strategies.

4.4. Comparison with State-of-the-art Methods

We compare our solution with three state-of-the-art
single-image dehazing methods, including DW-GAN [3]
DEA-Net [9], and FSDGN [10] as described in Section 2.
We use the same training set to train these methods and re-
port PSNR and SSIM on our split validation data. As shown
in Table 2, our solution outperforms other methods by a
large margin. Our method achieves the best performance
on both PSNR and SSIM, which surpasses the second place
1.13 dB and 0.012 in SSIM. It is noted we apply the dif-
ferent datasets to calculate the PSNR and the SSIM, so the
numerical results of Table 1 and Table 2 are not aligned.

Some dehazed images are plotted in Figure 4. Compared
with other state-of-the-art methods, the proposed method
has the best performance in terms of non-homogenous haze
removal and artifact/distortion suppression. It is noted that
the performance of FSDGN is slightly better than that of
DW-GAN, but the dehazed results from FSDGN contain
some artifacts and residual haze. Therefore, we select DW-
GAN [3] as our baseline.
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Figure 4. Visual comparison for the high resolution non-homogeneous dehazing results recovered by our solution and other state-
of-the-art solutions. For convenience, all images are depicted in landscape modes.

(a) (b) (c) (d)

Figure 5. The failure segmentation results and the corresponding dehazed results. (a): the non-homogeneous haze image; (b): the
dehazed results from our solution; (c): the inaccurate semantic segmentation result. The skin pixels and gray pixels mean the building and
fence. (d): ground truth. Compared with the ground truth, there is a color tone shift and residual haze on the building of (b).

4.5. Results of Challenge

We list the results of the proposed solution compared
with other competing entries in HR Non-Homogeneous De-
hazing of NTIRE 2023 workshop [16] in Table 3. Besides
PSNR, SSIM, and LPIPS, the Mean Opinion Score (MOS),
as a result of an user study set by the challenge organizers is
adopted to evaluate the performance of all submissions. As
shown in Table 3, our results obtained a competitive perfor-
mance in terms of SSIM, PSNR, LPIPS, and MOS.

4.6. Limitations and Discussion

The proposed method contains semantic guidance loss
functions and a large kernel neural network, making it easy
to learn the mapping functions of non-homogeneous de-
hazing. Although our method achieves competitive perfor-
mance in this competition, there are some limitations. First,
the Cityscape dataset and dataset from NTIRE 2023 HR
NonHomogeneous Dehazing Challenge are collected in dif-
ferent environments, which may cause the domain gap and
the inaccurate semantic segmentation prediction as shown
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Table 3. The average SSIM, PSN, LPIPS, MOS of top 10 meth-
ods over NTIRE 2023 HR NonHomogeneous Dehazing Challenge
dataset validation and testing dataset.

User name PSNR SSIM LPIPS MOS
zhouh115 22.87 0.71 0.346 8.07

lillian 22.96 0.71 0.345 7.85
ShawnDong98 22.18 0.7 0.401 7.125

Yinwei Wu 21.97 0.68 0.38 7.9
Anas 22.27 0.7 0.439 7.4

YuanGao 21.75 0.7 0.404 6.95
lightdehaze 22.01 0.70 0.384 5.35

xsourse 22.09 0.65 0.556 7.65
CongXiaofeng 21.86 0.67 0.492 6.9
HaoqiangYang 22.11 0.71 0.442 7.1

in Figure 5(c). Furthermore, Lsc can not handle certain
categories like buildings because buildings would contain
various color pixels. These limitations cause color tone
shift and residual haze on the building of dehazed images as
shown in Figure 5(b). Last but not least, as shown in Table
3, in terms of perceptual properties, the proposed method
seems to suffer. It demonstrates that when designing the
loss function, it is necessary to consider the impact of per-
ceptual loss and the balance of overall loss functions.

5. Conclusion
In this paper, we propose a novel solution for HR non-

homogeneous dehazing. Our solution mainly contains three
parts. First, we propose two semantic-based loss functions:
semantic corresponding loss and semantic color tone con-
sistency loss to optimize the dehazing network. Further-
more, we increase the receptive fields of the model to handle
complicated high-resolution hazy scenarios. Third, several
post-processing methods are applied to further improve the
performance of the model. In the NTIRE 2023 HR Non-
Homogeneous Dehazing Challenge, our solution achieves
competitive performance. In future works, we would collect
compact datasets for a better semantic segmentation model.
We could integrate the semantic guided loss function to con-
trastive learning [14]. Furthermore, features from language
knowledge or text-image embedding seen as the high-level
guidance [35] can be used to further develop the dehazing
model. Besides dehazing, the proposed semantic-based loss
functions can be leveraged for other image enhancement
tasks [36, 37].
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