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Abstract

Video colorization task has recently attracted wide at-
tention. Recent methods mainly work on the temporal con-
sistency in adjacent frames or frames with small interval.
However, it still faces severe challenge of the inconsistency
between frames with large interval. To address this issue,
we propose a novel video colorization framework, which
combines semantic correspondence into automatic video
colorization to keep long-range consistency. Firstly, a refer-
ence colorization network is designed to automatically col-
orize the first frame of each video, obtaining a reference
image to supervise the following whole colorization pro-
cess. Such automatically colorized reference image can not
only avoid labor-intensive and time-consuming manual se-
lection, but also enhance the similarity between reference
and grayscale images. Afterwards, a semantic correspon-
dence network and an image colorization network are in-
troduced to colorize a series of the remaining frames with
the help of the reference. Each frame is supervised by both
the reference image and the immediately colorized preced-
ing frame to improve both short-range and long-range tem-
poral consistency. Extensive experiments demonstrate that
our method outperforms other methods in maintaining tem-
poral consistency both qualitatively and quantitatively. In
the NTIRE 2023 Video Colorization Challenge, our method
ranks at the 3rd place in Color Distribution Consistency
(CDC) Optimization track. Code will be available online at
https://github.com/bupt-ai-cz/TCVC

1. Introduction

As a well-known ill-posed problem, video colorization
task owns serious ambiguity that a grayscale object could
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be plausible in various colors. This characteristic usu-
ally results in temporal inconsistency that the colors of an
object may change in different frames. In order to re-
solve such inconsistency, mainly three kinds of methods are
proposed: task-independent, fully-automatic and exemplar-
based methods.

The task-independent [1, 2, 3, 4] methods aim to en-
hance temporal consistency between image colorization re-
sults via post-processing. They formulate a temporal filter
and punish the warping errors computed by optical flow be-
tween adjacent frames. However, their results are still not
consistent enough when the generated colors are extremely
different in adjacent frames, and they have to process each
frame twice. Based on the conception of task-independent
methods, automatic colorization methods [5, 6, 7, 8] are
proposed. They directly map the feature embedding of
grayscale images to their color representations by learning
from large datasets. For instance, Lei et al. [6] divide the
video colorization into a single frame colorization subnet
and a smoothing subnet. However, it is difficult to generate
colorful results. To integrate both image and video coloriza-
tion, Zhao et al. [5] propose an end-to-end network using
two step training, and introduce a dense long-term loss to
minimize flickers of generated frames. However, the long-
term loss only covers few frames and is dependent on the
quality of optical flow. For long videos, it still suffers tem-
poral inconsistency in wide frame interval. Fig. 4 illustrates
the different colorization strategy.

The exemplar-based methods utilize a colorized refer-
ence image to supervise the colorization process for all
frames [9, 10, 11, 12, 13, 14]. A semantic correspondence
network is usually adopted to find the pixel-wise correspon-
dence between reference and grayscale images. For exam-
ple, Zhang et al. [13] propose a recurrent network where
the non-local operation [15] is responsible to find semantic
correspondence between reference and grayscale images,
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Figure 1. Comparison of different frameworks in video colorization: (a) Colorization with post-processing [1, 2, 3, 4], (b) Colorization
with dense long-term loss [5], (c) Colorization with semantic correspondence (Ours), where I is the input, r is the reference image, Î is
the video colorization result and y is the image colorization result. F1, F2, C represent CNNs, and the color lines in (b) indicate dense
long-term loss.

and the previous colored frame is also leveraged to increase
temporal consistency. To further enhance spatiotemporal
long-term dependency in videos, Chen et al. [16] propose a
double-head non-local operation and an attention [17] based
linkage subnet to improve the representation ability. How-
ever, the behavior of exemplar-based method is highly de-
pendent on the selection of reference image, and the man-
ual selection of reference is usually experience required and
time-consuming.

Under this circumstance, this paper proposes Tempo-
ral Consistent Automatic Video Colorization with Semantic
Correspondence, which combines semantic correspondence
network into automatic video colorization. As difficult for
automatic methods to keep long-range consistency, a ref-
erence image together with semantic correspondence net-
work is leveraged to supervise the whole colorization pro-
cess; and as complicated to manually select the reference
image, a prior reference colorization network is leveraged
to generate the reference image by automatically coloring
the first frame in video. Such direct colorization of refer-
ence can not only avoid manual selection, but also increase
the similarity of reference and grayscale images (since they
belongs to the same video), which is beneficial for semantic
correspondence. Our contributions can be summarized as:

• A novel framework combines automatic video col-
orization with semantic correspondence is proposed to
keep long-range consistency.

• We leverage an automatically generated reference im-
age to supervise the colorization of remaining frames.
Each frame is supervised by both the reference image
and the immediately colorized preceding frame.

• Experiments demonstrate that our method can better
maintain temporal consistency, and outperforms recent
state-of-the-arts both qualitatively and quantitatively.

2. Related Works
In this section, we will introduce the two main methods

in video colorization: automatic and exemplar-based.

2.1. Automatic Colorization

Automatic methods [5, 6, 7, 8] are proposed to further
optimise temporal coherence. They map grayscale images
directly to color embedding using deep neural networks,
while maintaining frame continuity. Lei et al. [6] pro-
pose a multi-modal automatic framework that can generate
four diverse colorization results simultaneously. To main-
tain spatio-temporal consistency, they impose similarity be-
tween pixel pairs by K Nearest Neighbor (KNN) search in
feature space or by optical flows. Zhao et al. [5] propose
a hybrid recurrent network that integrates both image and
video colorization and meanwhile leverage a dense long-
term loss which considers not only adjacent but long-term
continuity to optimize it. Nevertheless, it is as yet difficult
to generate a colorful result with the help of these methods.
Especially in practical applications like old movie restora-
tion, there are certain colors in specific scenarios for objects
such as clothes, skin, house, which have historical basis and
are difficult to generate by fully-automatic approaches.

2.2. Exemplar-based Colorization

Exemplar-based methods generally utilize one or more
colored frames in a video as reference images to guide
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Figure 2. The overall framework of our method. There are mainly three components: a reference colorization network, an image coloriza-
tion network and a semantic correspondence network. The reference colorization network generate a colorized reference image using the
first grayscale frame of the video. The semantic correspondence network and the image colorization network then leverage the reference
to supervise the whole colorization process.

the colorization process. These method [18, 19, 20] lever-
age handcrafted low-level features to find temporal corre-
spondence between frames and colorize following frames
in sequence. More recent methods tend to use deep neu-
ral networks to achieve temporal propagation [9, 10, 11].
While these approaches produce much more colorful re-
sults, their coloration depends only on the previous frame,
which makes it easy to accumulate color errors as they prop-
agate. Another type of method involves the reference im-
ages throughout the process [12, 13, 14], providing more
stable results. For instance, Zhang et al. [13] propose a
recurrent framework with novel loss functions where col-
orization depends on both the reference and the previous
frames. Iizuka et al. [12] first propose a single frame-
work for remastering vintage films. They adopt a source-
reference attention that can handle multiple references, and
utilize 3D-CNN for modeling temporal correspondence.
Although favorable results are obtained, these approaches
nonetheless lack long-term spatio temporal dependencies,
likely to wash out color in motion areas. Different from
previous methods, our method has strong ability in model-
ing long-term dependency both spatially and temporally.

3. Method

3.1. Problem formulation

Given consistent grayscale video frames {I l1, I l2, ..., I ln},
the colorization task aims to generate corresponding col-

orized frames {Î lab1 , Î lab2 , ..., Î labn }, where l and ab denote
the luminance and chrominance in CIELAB color space re-
spectively. On the one hand, the generated result Î labn should
be perceptually similar to the ground truth image I labn . On
the other hand, the current frame Î labn should not only be
temporal consistent to its adjacent frames Î labn−1, Î

lab
n+1, but

also be similar to the frames with wide temporal inter-
val (e.g. Î lab1 ). For recent automatic colorization meth-
ods [5, 6, 8], the colorization of I ln usually based on the
previously colorized frame:

Î labn = Fauto(I
l
n, Î

lab
n−1), (1)

where Fauto denotes the automatic colorization network.
Such methods colorize the video in manner of a Markov
Chain, while the consistency is established only for adjacent
frame, and the frames in wide interval may be inconsistent.
Meanwhile, exemplar-based methods [13, 16] usually col-
orize a frame depending on an additional reference image
Iref :

Î labn = Fexemp(I
l
n, Î

lab
n−1, Iref ), (2)

where Fexemp represents the exemplar-based video col-
orization network. The reference image is responsible to
supervise the colorization process. It determines the color
style of images, thus reduce color ambiguity and enhance
temporal consistency. However, the reference image usu-
ally needs manual selection which is experience required
and time-consuming. Therefore, this paper propose a two-
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stage colorization framework where the reference image is
automatically generated and supervise the colorization.

3.2. Two-stages Colorization

Our overall framework is illustrated in Fig. 2. The frame-
work is divided into two stages. The first stage involves
an automatic reference colorization network, and the sec-
ond stage includes a semantic correspondence network and
an image colorization network. In the first stage, the first
frame of each videos is selected to be automatically col-
orized. And the resulting image is then regarded as the ref-
erence image in the second stage.

Î labref = C1(I l0), (3)

where C1 represents the reference colorization network. Ii,
Îref denote the i−th frame and the reference image respec-
tively. For maintaining temporal consistency, rather than
only correlated to the previous few frames, the colorization
of the remaining grayscale frames also depends on their se-
mantic correspondence with the reference image, which can
be formulated as:

Î labn = C2(S(I ln, Î labref ), Î
lab
n−1), (4)

where S represents the semantic correspondence network,
and C2 the image colorization network in the second stage.
Thus, our approach is capable of better maintaining tempo-
ral consistency along time series.

3.3. Loss function

As an inherent ambiguous problem, it is improper to
directly compare the color difference between the ground
truth and generated image. Recently, the perceptual differ-
ence has been proved to be robust to appearance differences
caused by two plausible colors [21]. It compares the dif-
ference between features reluL 2 extracted by pretrained
VGG-19 network [22]. In this paper, the coarse-to-fine per-
ceptual loss is leveraged:

Lperc =
∑
L

αL∥ΦL(T̂ )− ΦL(T )∥22, (5)

here L ∈ {3, 4, 5}, and αL ∈ {0.02, 0.003, 0.5} denotes
corresponding weight coefficient. The coarse-to-fine strat-
egy involves the comparison of both high-level and low-
level feature representations.

Besides, we empirically find that the L1 loss helps the
convergence of network, and the smooth loss [13] helps to
reduce color bleeding. Moreover, the PatchGAN [23] is also
adopted to increase high-frequency color fidelity. It classi-
fies each patch as real or fake rather than the whole image.
For networks in the first stage, the overall objective loss can
be written as:

L1 =λpercLperc + λL1LL1 + λsmoothLsmooth

+ λpatchLpatch

(6)

Figure 3. Examples of bad images removed from our training set.
Including images with ambiguous colors, monotonous colors, low
resolution or grayscale.

For networks in the second stage, the temporal warping
loss [3] is further adopted to constraint temporal consis-
tency. The corresponding objective loss is:

L2 =λpercLperc + λL1
LL1

+ λsmoothLsmooth

+ λpatchLpatch + λtempLtemp

(7)

4. Implementation
Network Structure. The reference colorization net-

work is an encoder-decoder structure with skip connections,
group convolutions and dilated convolutions [24]. The
semantic correspondence network is a CNN-Transformer
structure [25] with non-local operation [15]. And the image
colorization network combines the encoder-decoder struc-
ture in the first stage with a Transformer branch. The net-
work structure in the second stage is basically the same as
in [16], and we recommend to check out more details from
the original paper.

Training. The training process of the networks in two
stages is independent. For network in the first stage, the
reference colorization network is trained on images from
ImageNet [26], REDS [27], DAVIS [28], SportMOT [29]
and the official training set in NTIRE 2023 Video Coloriza-
tion Challenge [30]. We remove the images with ambigu-
ous colors, monotonous colors, low resolution or grayscale
(Fig. 3). About 1.1 million of images are involved in train-
ing. For networks in the second stage, the training set in-
cludes DAVIS [28], Videvo [31] and FVI [32] dataset. 2090
videos in total are collected. And we train the networks in
manner of frame propagation (i.e. the first frame in each
video is regarded as the reference image). Moreover, The
pretrained models in [13, 33] are used to initialize the pa-
rameters. One can refer to our published code for more im-
plementation details.

5. Experiment
5.1. Comparisons with state-of-the-arts

In this section, state-of-the-art methods including Chro-
maGAN [34], DVP [4], FAVC [6] and VCGAN [5] are
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Figure 4. Visual comparison with the state-of-the-art methods on Videvo test set. From top to bottom are the methods of ChromaGAN [34],
ChromaGAN+DVP [4], FAVC [6] and VCGAN [5] respectively. Our method achieves the most colorful while consistent result.

Table 1. Quantitative comparison with state-of-the-art methods on DAVIS and Videvo dataset. Our method gets the best FID, while
maintains comparable CDC.

DAVIS Videvo
Method FID↓ CDC↓ FID↓ CDC↓ Model type

ChromaGAN [34] 52.97 0.008771 50.57 0.004565 Fully-automatic (image)
ChromaGAN+DVP [4] 58.94 0.003672 58.85 0.001967 Task-independent
FAVC [6] 58.33 0.003682 57.08 0.001575 Fully-automatic
VCGAN [5] 59.58 0.008951 67.48 0.003208 Fully-automatic
Ours 46.28 0.003836 49.02 0.001681 Fully-automatic

compared with our method both quantitatively and qualita-
tively. The official published code of the methods are used
for comparison.

Quantitative comparison. For quantitative compari-
son, the image quality metric FID (Fr´echet Inception Dis-
tance) [35] and temporal metric CDC (Color Distribution
Consistency index) [3] are adopted, as which are widely
used in previous works [3, 13, 16, 21, 30]. The FID mea-
sures the semantic distance between generated and ground
truth images. The lower the FID, the more natural the im-
age result. And the CDC computes the Jensen-Shannon
(JS) divergence of the color distribution between consecu-
tive frames. More consistent video will get lower CDC. We
experiment on the test set of DAVIS [28] and Videvo [31]
dataset, the quantitative result is illustrated in Tab. 1. The
ChromaGAN gets excellent FID, but with bad CDC since
it is an image colorization method without temporal model-
ing. With DVP, the CDC of ChromaGAN obviously de-
clines, but its FID gets worse at the same time. FAVC
achieves the second best and the best CDC in the two

datasets respectively. However, it gets high FID. In both of
the two datasets, our method achieves the best FID, while
maintains comparable CDC with the best results.

Qualitative comparison. The visual comparison of the
methods on Videvo test set is illustrated in Fig. 4. Chro-
maGAN generates colorful result, but the object color can
be very different from frame to frame, as in the case of the
ducks in the left video. The DVP distinctly removes the
temporal inconsistency of ChromaGAN. However, it also
washes out the colors in images (like in the right video), as
it is tend to remove the bright but inconsistent colors rather
than propagate the bright colors to other frames. The result
of FAVC is quite consistent, but it is not colorful enough
compared with other methods. VCGAN models dense tem-
poral consistency in small frame interval. But with large
frame interval, distinct inconsistency can be observed. Such
as the grass in the left video and the water in the right video.
Though the dense consistency in VCGAN with large inter-
val is feasible, it requires huge computational consumption
that dozens or hundreds of optical flows are required for a
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Figure 5. Visual comparison of colorization results for networks with or without semantic correspondence on the test set of NTIRE 2023
Video Colorization Challenge [30]. Each interval of the adjacent frames is 30.

Table 2. Comparison of our method with task-independent method DVP [4] on DAVIS test set. Our method maintains better color
perceptual quality while obtaining the better temporal consistency compared to DVP. Moreover, we try to combine DVP with our method
(the last row), and the CDC further improved, but with apparent performance drop in FID.

Image
colorization

Semantic
correspondence DVP FID↓ CDC↓ Time (s) Parameters (M)

✓ 41.12 0.005045 0.4648 32.80
✓ ✓ 58.85 0.004189 0.4648+0.9884 32.80+23.93
✓ ✓ 46.28 0.003836 0.4718 32.82+148.21
✓ ✓ ✓ 59.92 0.003708 0.4718+0.9884 32.82+23.93+148.21

single image’s training. With semantic correspondence, our
method achieves the most colorful while consistent result.

5.2. Ablation study

Effect of semantic correspondence. We train another
model without the semantic correspondence network in or-
der to represent its effectiveness, and the task-independent
method DVP [4] is also adopted for comparison. The quan-
titative result is reported in Tab. 2. Combining DVP with
image colorization, the CDC gets improved, but with huge
decline of FID (from 41.12 to 58.85). While with semantic
correspondence, our method achieves better CDC and less
drop in FID (from 41.12 to 46.28), which represents that
our method maintains better color perceptual quality while

obtaining better temporal consistency. Moreover, we try to
combine DVP with our method, and the CDC further im-
proved, but with apparent performance drop in FID (from
46.28 to 59.92).

Beside, the processing time per image and number of
network parameters in Tab. 2 represents that our method
consumes less time than task-independent method DVP
(0.4718 sec. compared to 0.4648+0.9884 sec. per image)
though with more parameters (32.82+148.21 M compared
to 32.80+23+93 M). Moreover, the visual comparison for
networks with or without semantic correspondence is illus-
trated in Fig. 5. Without semantic correspondence network,
the object can have diverse colors in different frames (e.g.
the color of the car could be white in frame 1 and yellow
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Figure 6. Comparison of the colorization via reference images obtained by different methods on DAVIS test set. The methods including
GCP (Generative Color Prior) [36], a retrieval method [21] and our reference colorization network. Each interval of the adjacent frames is
20. Our method obtains more colorful and realistic results.

Table 3. Comparison of different methods to automatically obtain
reference image on DAVIS test set. Note that we have not specially
trained the stage 2 network for reference images in stage 1.

DAVIS Videvo
Reference FID↓ CDC↓ FID↓ CDC↓
Retrieval [21] 53.38 0.003939 48.24 0.001793
GCP [36] 50.19 0.003843 48.51 0.001710
Ours-r 46.17 0.004179 45.35 0.001684

in frame 61). While with the semantic correspondence net-
work, the frames with large interval still maintain pleasant
temporal consistency.

Different reference selection strategy. We further in-
troduce two methods to automatically obtain the reference
image for video colorization, which are: (1) GCP (Gener-

ative Color Prior) [36], a generation method based on Big-
GAN [37]. The GCP learns a mapping from a grayscale im-
age to a embedding which acts as the condition of BigGAN
to generate a colorized image similar with the grayscale im-
age. (2) a retrieval method [21] using PCA-based compres-
sion [38]. This method compares the PCA embedding of
the grayscale image with embeddings of images from large
dataset (e.g. ImageNet). And the image with largest corre-
lation will be selected. The two methods are compared with
our reference colorization network on DAVIS and Videvo
datasets. The reference image obtained by three methods
are used in our stage 2 network respectively. As the stage
2 networks are trained by frame propogation, we train an-
other network mostly leveraging the retrieved images as ref-
erences like in [13]. As shown in Tab. 3, in DAVIS dataset,
our method gets the best FID. And in Videvo dataset, our
method obtains both the best FID and CDC. Besides, the
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Table 4. Test results on NTIRE 2023 Video Colorization Chal-
lenge [30]. Our method obtains the 3rd place in CDC track with
52.68% improvement over the baseline.

Team FID↓ CDC↓
MiAlgo 54.72 0.000819
CUCPLUS 26.79 0.000962
Ours 63.76 0.001017
NJUSTer 62.45 0.001066
ppzz 56.81 0.001122
LVGroup HFUT 63.71 0.001525
baseline 61.30 0.002149

visual comparison is shown in Fig. 6. It can be noticed that
our results are more colorful and realistic. We believe this is
because our method obtains a reference image that is more
similar to the grayscale frames, so we are able to transfer
colors more precisely and obtain more vivid results.

5.3. NTIRE 2023 Challenge

We have proposed our method for NTIRE 2023 Video
Colorization Challenge [30]. Our entry obtains the 3rd
place in Track 2: Color Distribution Consistency (CDC)
Optimization and the CDC score is very close to the second
method. The goal of this track is to obtain the best CDC
result while being constrained to maintain FID. The bench-
mark results of our model and the other teams in NTIRE
2023 are shown in Tab. 4.

5.4. Limitations

Despite the promising progress of our method for main-
taining video temporal consistency, there are still some lim-
itations.

Since we include the semantic correspondence network,
our method is not robust enough when the scene changes
in videos, which is an inherent weakness of the exemplar-
based video colorization [16]. Meanwhile, as the reference
image is automatically colorized, it is not likely to generate
diverse image results.

Moreover, the performance of the final colorization re-
sult is highly dependent on the quality of the reference im-
age. As shown in Fig. 7, we can apparently observe that
the reference image has a high similarity to the subsequent
colored images in terms of the color style. The reason is
that the most of the colors from the reference image are
considered plausible and will be transferred directly to the
grayscale images. Even the incorrectly colored regions may
still be considered as supervision information to guide the
colorization of subsequent grayscale images. That is, the
colorization of the reference image will affect the style of
the videos (e.g., the color styles of the first and third rows
are quite different due to the different reference images.),

Figure 7. Colorization with different reference images obtained
from our reference colorization network. The first and the sec-
ond row show the results of the original model. The third and the
fourth row show the results of another model trained without Ima-
geNet [26] dataset.

or even lead to unexpected colors (e.g., the ground in the
second row is colorized to unpleasant green).

6. Conclusion
In this paper, we propose a novel automatic video col-

orization method via semantic correspondence, which uti-
lize an automatically generated reference image to super-
vise the colorization process and preserve temporal consis-
tency. Our intuition is to fully exploit the semantic corre-
spondence between video frames to improve the coloriza-
tion consistency of the network. Experiment also demon-
strated that our method is capable of better maintaining
color consistency in large frame interval than recent meth-
ods. Finally, ablation studies show the effectiveness of the
network components.
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