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Abstract

Stereo super-resolution is a technique that utilizes corre-
sponding information from multiple viewpoints to enhance
the texture of low-resolution images. In recent years, nu-
merous impressive works have advocated attention mech-
anisms based on epipolar constraints to boost the per-
formance of stereo super-resolution. However, techniques
that exclusively depend on epipolar constraint attention
are insufficient to recover realistic and natural textures for
heavily corrupted low-resolution images. We noticed that
global self-similarity features within the image and across
the views can proficiently fix the texture details of low-
resolution images that are severely damaged. Therefore, in
the current paper, we propose a stereo cross global learn-
able attention module (SCGLAM), aiming to improve the
performance of stereo super-resolution. The experimental
outcomes show that our approach outperforms others when
dealing with heavily damaged low-resolution images. The
relevant code is made available on this link as open source.

1. Introduction
It is widely recognized that, super-resolution is a prob-

lem that is inherently ill-posed. Many studies in the field
of single-image super-resolution have achieved impressive
results by constraining their model’s solution with prior
knowledge, as confirmed by the literature [5, 19, 32, 44,
46]. Unlike single-image super-resolution, stereo super-
resolution can use inter-view information to reconstruct the
subtle details of low-resolution images. In recent times, the
need for image resolution has increased greatly due to the
advancements in AR/VR and autonomous driving technolo-
gies. Thus, stereo super-resolution has gained significant at-
tention among researchers, resulting in a myriad of remark-
able results as observed in [2, 30, 34, 38, 40].

∗Corresponding author.

Figure 1. The qualitative comparison between the super-resolved
results of our proposed network and the state-of-the-art methods.

Although there have been significant developments in
stereo super-resolution techniques, our observation sug-
gests that these methods often struggle to restore textures
in severely degraded low-resolution images. Consider-
ing the differences between single-image and stereo super-
resolution, we argue that leveraging prior knowledge within
and across views in the stereo super-resolution domain
can potentially restore textures in severely damaged low-
resolution images. Inspired by the success of self-similarity
techniques in single-image super-resolution [25,26,31], this
study aims to utilize both intra-image and cross-view self-
similarity to restore the natural and authentic textures of
severely damaged low-resolution images.

In this study, we introduce a stereo cross global attention
module that allows us to utilize both the global informa-
tion within one view and the cross-view global information
to jointly restore the texture details of low-resolution im-
ages. To address the computational complexity of stereo
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global attention, we use locality-sensitive hashing (LSH)
for sparsification, as recommended in [25, 31]. Our exper-
imental results demonstrate that the sparsified global atten-
tion not only reduces the computational complexity but also
improves the texture restoration in stereo super-resolution.

To improve the accuracy of cross-view information fu-
sion, we apply the concept of soft targets from knowledge
distillation [12] and multiply the feature maps in stereo
cross-attention module (SCAM) [2] by a temperature co-
efficient τ prior to softmax. This coefficient allows us to
control the contribution of positive samples and enhance
the accuracy of cross-view information fusion. Our exper-
iments indicate that increasing the temperature coefficient
significantly improves the convergence of the stereo super-
resolution model, while decreasing it can slow down con-
vergence. Optimizing the temperature coefficient can im-
prove the performance of the stereo super-resolution model.

Contributions of this study include:

• We propose SCGLAM, a stereo cross global atten-
tion module that leverages information from both left
and right viewpoints to restore severely damaged low-
resolution images.

• We introduce SCATM, a modified version of SCAM
created by multiplying its feature maps with a tem-
perature coefficient τ . Our experiments demonstrate
that adjusting τ can significantly enhance stereo super-
resolution performance.

• By combining NAFBlock with SCATM and
SCGLAM, we create SCGLANet, which outper-
forms the current state-of-the-art NAFSSR L [2] as
demonstrated by fair comparisons.

• Extended experiments show the efficacy of
SCGLANet, and our algorithm achieved 3rd, 4th, and
5th positions in the three tracks of the NTIRE2023
Stereo Super-resolution Challenge [33].

2. Related Works
2.1. Single Image Super-resolution

Single-image super-resolution (SISR) has been a widely
studied topic since the development of SRCNN by Dong
et al. [5]. Two main directions in SISR research are
based on fidelity, such as VDSR [16], EDSR [19], RCAN
[44], SwinIR [18] and ESRT [23], and on subjective vi-
sual perception, such as SRGAN [17], ESRGAN [36], and
RankSRGAN [43]. Recently, there has been a shift in
SISR towards real-world super-resolution, achieving im-
pressive results. For instance, Lugmayr et al. [24] uti-
lized CycleGAN to generate low-resolution-high-resolution
paired images in an unsupervised manner for training super-
resolution models that can handle real-world data. Zhang

et al. [41] and Wang et al. [35] later developed more ef-
fective degradation models, further enhancing the capabil-
ity of super-resolution models in handling real-world data.
This study applies key insights from SISR to explore stereo
super-resolution.

2.2. Stereo Image Super-resolution

Stereo super-resolution has a distinct advantage over
single-image super-resolution since it can utilize cross-view
data to improve the quality of low-resolution images. Jeon
et al. [14] proposed StereoSR, which incorporates a dispar-
ity prior to boost the performance of stereo super-resolution.
Combining the Feature Modulation Dense Block (FMDB)
with a disparity attention loss, Yan et al. [39] learned the
fundamental prior of stereo images. To address the prob-
lem of disparate disparity among different stereo images,
Wang et al. [34] introduced a parallax attention mechanism.
Ying et al. [40] introduced a stereo attention module (SAM)
to modify pre-trained single-image super-resolution models
for stereo super-resolution. Song et al. [30] developed the
self and parallax attention mechanism (SPAM) module to
combine information from both the original and the corre-
sponding stereo image. Wang et al. [38] proposed the bidi-
rectional parallax attention module (biPAM) that exploits
stereo image symmetry to more efficiently fuse cross-view
data. Chu et al. [2] recently presented the stereo-cross at-
tention module (SCAM) to combine cross-view data. Addi-
tionally, given the success of the vision transformer in com-
puter vision, Kai et al. [15] integrated Swin-Transformer
[21] into stereo super-resolution to improve its efficiency.

2.3. Sparse Self-Similarity

Self-similarity has achieved remarkable achievements in
the field of image restoration [6,7,10]. This is because simi-
lar textures often appear across scales and image. Non-local
attention mechanisms have been worked on extensively in
single image super-resolution [4, 26], using the fact that
these textures exhibit self-similarity. In order to reduce the
computational complexity of the non-local attention mod-
ule, recent works have explored the use of sparse attention
mechanisms, similar to those in [25, 31].

Building on these previous works, we propose a stereo
cross global learnable attention module (SCGLAM) based
on intra-view and cross-view similarity, for restoring
severely damaged stereo super-resolution images. We hy-
pothesize that exploiting intra-view and cross-view similar-
ity can improve the stereo super-resolution restoration re-
sults. In order to reduce computational costs, we also incor-
porate a sparse attention mechanism, Super-Bit Locality-
Sensitive Hashing(SB-LSH) [31], in the attention mecha-
nism we propose.
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(a) The SCGLANet and the NAFTBlock.
(b) The stereo cross global learnable attention module (SCGLAM).

Figure 2. The SCGLANet framework comprises NAFTBlocks and SCGLAM to support super-resolution processes.

3. Methods
In this section, we will present our method in detail. We

will first provide an overview of our method in Section 3.1.
Then, we will introduce our proposed stereo cross atten-
tion with temperature module (SCATM) in Section 3.2, and
our proposed stereo cross global learnable attention mod-
ule (SCGLAM) in Section 3.3. Our SCATM and SCGLAM
modules are designed to enhance stereo super-resolution re-
sults by incorporating cross-view attention mechanisms.

3.1. Overall Framework

Our proposed SCGALNet, which can be seen in Fig-
ure 2, is mainly composed of the SCNAFTBlock, stereo
cross global attention module (SCCGLAM), and pixel shuf-
fle layer [28]. The SCNAFTBlock consists of the NAF-
Block [2] module and our proposed stereo cross atten-
tion with temperature module (SCATM). The left-view and
right-view images, IL and IR, are processed by a shared-
weight 3 × 3 convolution layer to extract shallow features.
These features are then fused by the SCNAFTBlock to cre-
ate a stereo feature map. The fused features are fed into
the SCGLAM for intra-view and cross-view self-similarity
matching. By stacking the SCNAFTBlock and SCGLA
modules iteratively, left-view and right-view stereo images,
YL and YR, are reconstructed by the pixel shuffle layer [28].

The NAFBlock [2] module is composed of the Layer-
Norm [1], Mobile convolution module [29], SE Channel
Attention module [13], and SimpleGate nonlinear activa-
tion function. For more detailed information, please re-
fer to [2]. We also propose the stereo cross attention with

temperature module (SCATM) and stereo cross-view global
learnable attention module (SCGLAM) in this paper. The
SCATM module is designed to exploit cross-modal cor-
relations for better stereo feature fusion. Meanwhile, the
SCGLAM module is designed to further enhance inter-view
and intra-view self-similarity matching.

3.2. SCATM

In comparison to the original SCAM, our proposed
stereo cross attention with temperature module (SCATM)
incorporates a temperature coefficient τ before the softmax
calculation. This modification, which we refer to as Tem-
perature Attention (TA), is depicted in Fig. 2a. By adjusting
the coefficient τ , the accuracy of cross-view feature map-
ping can be enhanced. This can be represented by the fol-
lowing Eq. (1).

TA(Q,K,V) = softmax
(
τQKT /

√
C
)
V, (1)

where, C represents the dimension of the feature. The cal-
culation of Q, K, V is the same as SCAM [2], which first
performs LN on the input feature XL and XR, then projects
them to Q, K, V spaces by projection matrix WQ, WK

and WV. Following SCAM [2], we also use the same WQ

and WK to map them. Therefore, the SCATM can be rep-
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resented as Eq. (2).

FR→L = TA
(
WL

1XL,W
R
1 XR,WR

2 XR

)
,

FL→R = TA
(
WR

1 XR,WL
1XL,W

L
2XL

)
,

FL = γLFR→L +XL,

FR = γRFL→R +XR,

(2)

where XL = LN(XL), XR = LN(XR).

3.3. SCGLAM

As shown in Fig. 2b, our stereo cross global learnable
attention module (SCGLAM) utilizes the self-similarity of
intra-view and inter-view features to restore texture details
in low-resolution images. Specifically, we input left-view
and right-view feature maps, FL ∈ Rh×w×c and FR ∈
Rh×w×c, respectively, and reshape them into 1 − D vec-
tors, F́L ∈ Rhw×c and F́R ∈ Rhw×c, to facilitate the
attention mechanism. Note that our formula differs from
that of traditional Non-Local attention, which requires con-
sidering all vectors and performing cross-correlation cal-
culations between them. To reduce the high computa-
tional overhead associated with calculating global dispar-
ity in stereo super-resolution, we use Super-Bit Locality-
Sensitive Hashing(SB-LSH) divide the features into buck-
ets and calculate similarity within each bucket λi represents
the index of buckets, which can be represented as Eq. (3)

λi = {xj | argmax (Mxi) = argmax (Mxj)} , (3)

where M ∈ Rb×c is a orthonormal matrix and b represents
the number of hash buckets. Therefore, the stereo intra-
view and inter-view attention process of the query feature
vector xi can be formulated as Eq. (4).

SCGLA (xi) =
∑

xj∈λi

exp (s (xi,xj))∑
xk∈λi

exp (s (xi,xk))
ϕv (xj) ,

(4)
where ϕv(·) is a feature embedding layer. xj and xk are the
j-th and k-th feature vectors on F́ ∈ R2hw×c respectively
and F́ = concate[F́L, F́L]. s(·, ·) is used to measure sim-
ilarity about two vectors and composes a learnable similar-
ity scoring function sl(xi) and a fixed dot product similarity
scoring function sf (xi, xj), which can be written as Eq. (5).

s(xi, xj) = slj(xi) + sf (xi, xj), (5)

where sf (xi, xj) = ϕq (xi)
T
ϕk (xj), in this article, we

also set ϕq(·) and ϕk(·) to share the same embedding layer.

slj(xi) is the j-th component in sl(xi), it can be define as
Eq. (6)

sl(xi) = W 2σ (W 1ϕl (xi) + b1) + b2, (6)

where σ(·) is the ReLU activation and W1,W2,b1,b2 are
learnable parameters.

The entire process of SCGLAM can be expressed as
Eq. (7).

SFL = SCGLA(concate(FL,FR))L + FL,

SFR = SCGLA(concate(FL,FR))R + FR, (7)

where SCGLA(·)L and SCGLA(·)L represent the left and
right view features part after attention respectively.

3.4. Loss Function

In the NTIRE 2023 stereo super-resolution challenge
[33], we participated in three tracks and used different loss
functions depending on the track. Specifically, for Tracks 1
and 3, we utilized L1 and MSE losses, which can be written
as Eq. (8) and Eq. (9).

Lpixel1 =
∥∥YSR

L −YHR
L

∥∥
1
+

∥∥YSR
R −YHR

R

∥∥
1
, (8)

Lpixel2 =
∥∥YSR

L −YHR
L

∥∥
2
+

∥∥YSR
R −YHR

R

∥∥
2
, (9)

where YSR
L and YSR

L represent the super-resolved left and
right images respectively, and YHR

L and YHR
R represent the

corresponding high-resolution images.
It should be noted that for Track 2, we also incorporated

a combination of generative and LPIPS losses [42] to opti-
mize the generator, which can be written as Eq. (10).

LGtotal = γLLPIPS + λLG + ηLpixel1, (10)

where LG represents the loss of generator. When computing
the loss of generater, we concatenate the left and right im-
ages along the channel dimension and fed them into the dis-
criminator. This approach allows the discriminator to learn
implicit left-right disparity information, which helps im-
prove the visual quality of the reconstructed images. There-
fore, LG can be written as Eq. (11). LLPIPS is the perceptual
loss, which can be defined as Eq. (12).

LG = EYSR [1−D(ySR)], (11)

where YSR = concate[YSR
L ,YSR

R ].

LLPIPS =LPIPS(YSR
L −YHR

L )

+ LPIPS(YSR
R −YHR

R ).
(12)
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4. Experiments
4.1. Datasets

To ensure a fair and objective comparison, we used
only the dataset provided by the NTIRE2023 Stereo Super-
Resolution Challenge organizers which was sourced from
Flickr1024 [37]. The dataset comprises 800 stereo images
for training, 112 stereo images for validation, 112 stereo
images with publicly available ground truth for testing, and
100 stereo images without publicly available ground truth
for the final competition test. For Tracks 1 and 2, bicubic
interpolation was used to downsample all images to obtain
low-resolution versions, whereas for Track 3, the organiz-
ers degraded the images using various types of techniques
to obtain the low-resolution versions.

In order to further evaluate the method proposed in this
paper, relevant metrics were also tested on three other public
test datasets, KITTI2012 [9] , KITTI2015 [8], and Middle-
bury [27].

4.2. Evaluation Metrics

The organizers used peak signal-to-noise ratio (PSNR)
in the RGB channels to quantitatively evaluate the super-
resolved results for Tracks 1 and 3. Track 2 was evaluated
using the perceptual index LPIPS [42] and the disparity er-
ror between the ground truth disparity and the disparity of
the reconstructed left and right images. The evaluation met-
ric for Track 2 is defined as Eq. (13).

score =1− 0.5× LPIPS
(
Y SR

L , Y HR
L

)
− 0.5× LPIPS

(
Y SR

R , Y HR
R

)
− 0.1 ∗ MSE

(
DisSR, DisHR

) (13)

where Dis represents the disparity function, which can be
obtained by [20].

4.3. Implements

Track 1 Our models underwent 400,000 iterations on
eight NVIDIA A40 GPUs with a batch size of 24. We uti-
lized AdamW optimization with β1 = 0.9 and β2 = 0.9 and
set weight decay to 0 by default. The initial learning rate
was 5e− 4, and we employed true cosine annealing [22] as
the learning scheme. Initially, we used L1 loss for training,
with a subsequent fine-tuning using MSE loss to improve
PSNR further.

Track 2 We employed L1Loss, GAN Loss, and LPIPS
Loss to train our model, using the pre-trained model from
Track 1 and keeping all other configurations the same, ex-
cept for adjusting the initial learning rate to 1e− 4 and set-
ting β2 = 0.99.

Track 3 We utilized the pre-trained model from Track 1
and kept all other configurations the same, with the excep-
tion of adjusting the initial learning rate to 2e− 4.

4.4. Results

Fidelity Results In this section, we compare our
SCGLANet with several existing state-of-the-art single im-
age super-resolution (SR) methods, including VDSR [16],
EDSR [19], RDN [45], RCAN [44], and SwinIR [18].
For VDSR, EDSR, RDN, and RCAN, these methods were
retrained on a stereo image dataset by Wang et al. [38]
and were trained using the extra dataset-Middlebury [27]
dataset. SwinIR was retrained by Jin et al. [15]. We
also compared several stereo image SR methods, including
StereoSR [14], PASSRnet [34], SRRes+SAM [40], iPASSR
[38], SSRDE-FNet [3], PFT-SSR [11], SwinIPASSR [15],
and NAFSSR [2]. The results of these comparisons are pre-
sented in Tab. 1.

Table 1. Quantitative results achieved by different methods on
Flickr1024 [37] test dataset, PSNR and SSIM was reported in term
of RGB channel. Method with * represents using Flickr1024 and
Middlebury [27] dataset for training and † represents use data en-
semble strategy. The best results are in bold faces and the second
results are in underline.

Method #Params. PSNR SSIM
*Bicubic - 21.82 0.6293
*VDSR 0.66M 22.46 0.6718
*EDSR 38.9M 23.46 0.7285
*RDN 22.0M 23.47 0.7295
*RCAN 15.4M 23.48 0.7286
SwinIR-S 14.95M 23.81 0.7444
SwinIR-M 21.20M 23.84 0.7450
*PASSRnet 1.42M 23.31 0.7195
*SRRes+SAM 1.73M 23.27 0.7233
*iPASSR 1.42M 23.44 0.7297
*SSRDE-FNet 2.24M 23.59 0.7352
*PFT-SSR - 23.89 0.7277
SwiniPASSR-S2 16.55M 24.00 0.7549
SwiniPASSR-M2 22.81M 24.05 0.7560
†SwiniPASSR-M2 22.81M 24.13 0.7579
*NAFSSR L 23.83M 24.17 0.7589
SCGLANet(Ours) 25.29M 24.30 0.7657
†SCGLANet(Ours) 25.29M 24.38 0.7676

From Tab. 1, it is evident that our method has a sig-
nificant advantage over the Flickr1024 test set [37]. The
use of SCGLAnet without a dataset ensemble strategy gives
a 0.25dB improvement in PSNR, in comparison to the
SwiniPASSR-M2 version, under the same training set. Ad-
ditionally, our method results in an increase of 0.0097 in
SSIM values. We outperform NAFSSR L by 0.13dB in
PSNR and 0.0068 in SSIM without incorporating additional
datasets in the model training. These findings establish the
effectiveness of our approach. Our study also involves geo-
metric transformations such as left-right flipping, up-down
flipping, their combinations, and color fusion (by swapping
different RGB orders) in the dataset ensemble strategy, with
no increase in the additional parameters. Consequently,
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Figure 3. The x4 qualitative comparison between the super-resolution results of our proposed network and the state-of-the-art methods on
Flickr1024 test set [37]. Our method with † represents use data ensemble strategy

our SCGLANet exhibits a PSNR of 24.38 and an SSIM of
0.7676.

Our methodology was compared with state-of-the-art al-
gorithms on out-of-domain test set, such as KITTI 2012 [9]
, KITTI 2015 [8], and Middlebury [27], and Tab. 2 presents
our findings. Our results indicate that on KITTI 2012
and KITTI 2015, our approach outperforms NAFSSR L in
terms of SSIM without using additional training data, al-
beit with a slightly lower PSNR than NAFSSR L. We at-
tribute two reasons for this outcome. Firstly, we aimed to
achieve high performance on the Flickr1024 dataset, lead-
ing to the model being overfitted to this dataset. Secondly,
KITTI 2012 and KITTI 2015 datasets lack in more texture
details, which impairs cross-image similarity matching in
the SCGLAM process.

Visual comparisons for ×4 stereo SR on the Flickr1024
test set [37] are displayed in Fig. 3, demonstrating the capa-
bility of our SCGLANet to restore severely damaged low-

resolution images significantly. In contrast, other compara-
ble methods may lead to unsatisfactory results, thus high-
lighting the effectiveness of our SCGLANet.

Perceptual Results To validate further the effectiveness
of our algorithm in improving visual perception, we con-
ducted comparisons of our approach with the classic algo-
rithm ESRGAN [36] on the KITTI 2012 [9] , KITTI 2015
[8] [27], Middlebury [27], and Flickr1024 [37] datasets.
We utilized the official version of ESRGAN downloaded
from BasicSR1 for our evaluation, with its pre-trained
weights. Our results are presented in Tab. 3. We re-
fer to our SCGLANet based on the generative adversarial
network version of the model as SCGLAGAN. Observing
from Tab. 3, our approach outperforms the classic single-
image super-resolution ESRGAN in quantitative metrics.
Our visual results for Flickr1024 are presented in Fig. 5.

1https://github.com/XPixelGroup/BasicSR
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Figure 4. The x4 qualitative comparison between the super-resolution results of our proposed network SCGLAGAN and ESRGAN [36]
methods on Flickr1024 test set [37]. (Zoom in for best view)

Table 2. Quantitative results achieved by different methods on
KITTI2012 [9] KITTI2015 [8] and Middlebury [27] test dataset,
PSNR and SSIM was reported in term of RGB channel. Please
note that our SCGLANet only use Flickr1024 for training, and †
represents use data ensemble strategy. The best results are in bold
faces and the second results are in underline.

Method # param (Left + Right) /2
KITTI2012 KITTI2015 Middlebury

VDSR [16] 0.66M 25.60//0.7722 25.32//0.7703 27.69//0.7941
EDSR [19] 38.9M 26.35//0.8015 26.04//0.8039 29.23//0.8397
RDN [45] 22.0M 26.32//0.8014 26.04//0.8043 29.27//0.8404
RCAN [44] 15.4M 26.44//0.8029 26.22//0.8068 29.30//0.8397
StereoSR [14] 1.42M 24.53//0.7555 24.21//0.7511 27.64//0.8022
PASSRNet [34] 1.42M 26.34//0.7981 26.08//0.8002 28.72//0.8236
SRRes+SAM [40] 1.73M 26.44//0.8018 26.22//0.8054 28.83//0.8290
iPASSR [38] 1.42M 26.56//0.8053 26.32//0.8084 29.16//0.8367
SSRDE-FNet [3] 2.24M 26.70//0.8082 26.43//0.8118 29.38//0.8411
PFT-SSR [11] - 26.77//0.7998 26.54//0.8083 29.74//0.8426
NAFSSR L [2] 23.83M 27.12//0.8194 26.96//0.8257 30.20//0.8605
SCGLANet(Ours) 25.29M 27.10//0.8209 26.87//0.8263 30.18//0.8596
†SCGLANet (Ours) 25.29M 27.17//0.8223 26.96//0.8281 30.33//0.8616

Compared with ESRGAN, our method has fewer artifacts,
and in contrast to SCGLANet, the reconstructed images of
SCGLAGAN show better visual quality.

Ablation Study To demonstrate the effectiveness of our
SCATM improvement, we conducted a series of experi-
ments with models utilizing different temperature coeffi-

Figure 5. The training process under different temperature coeffi-
cients.

cients (τ ). The results can be found in Tab. 5. The table
shows that an increase in temperature coefficient initially
improves the results, however, the trend reverses with coef-
ficients greater than or equal to 10, where the improvement
is not significant. Setting the temperature parameter to 50
resulted in a training crash. Therefore, for our final experi-
ment, we chose a temperature coefficient of 2 as our training
parameter, which produced stable improvement compared
to a coefficient of 1. Initial training results with different

1422



Table 3. The quantitative comparison results of our proposed method SCGLAGAN and ESRGAN [36].

method scale PSNR ↑// SSIM↑// LPIPS↓
KITTI 2012 KITTI 2015 Middlebury Flickr1024

ESRGAN x4 22.96//0.6944//0.1466 22.22//0.6560//0.1832 24.22//0.6907//0.1101 20.99//0/6228//0.1662
SCGLAGAN(ours) x4 25.36//0.7688//0.1266 24.84//0.7572//0.1463 28.49//0.8194//0.0948 22.77//0.7101//0.1331

Table 4. The final results of the top 10 teams in the NTIRE 2023 stereo SR Challenge [33].

Track1 Track2 Track3
Rank Team PSNR (RGB) Team score LPIPS Team PSNR (RGB)
1 BSR 23.8961 SRC-B 0.8622 0.1386 IPIU 22.3531
2 TeamNoSleep 23.8911 SYSU FVL 0.8538 0.1451 Team OV 21.949
3 SRC-B 23.883 webbzhou 0.8496 0.1493 SRC-B 21.8351
4 webbzhou 23.822 SSSL 0.8471 0.1519 Giantpandacv 21.8026
5 BUPT-PRIV 23.8041 Giantpandacv 0.8351 0.1637 webbzhou 21.7676
6 GDUT 506 23.7719 DiffX 0.8303 0.1686 LVGroup HFUT 21.7396
7 STSR Sharpeners 23.756 LongClaw 0.7994 0.1992 NTU607-stereo 21.6973
8 Giantpandacv 23.7424 BUPT-PRIV 0.7992 0.1994 SYSU FVL 21.5162
9 LVGroup HFUT 23.7252 McSR 0.796 0.2026 zzuli 21.4845
10 MakeStereoGreatAgain 23.7181 LVGroup HFUT 0.7958 0.2028 JNU 620 21.4829

Table 5. Comparison results under different temperature coeffi-
cients τ

Temperature(τ ) Results
PSNR SSIM

1 23.65 0.7373
1.5 23.68 0.7388
2 23.71 0.7410
2.5 23.70 0.7401
10 23.67 0.7392
50 NaN NaN

Table 6. The results of different numbers of SCGLA module.

SCGLAM number params Results
PSNR (RGB) SSIM

0(baseline) 23.79M 24.15 0.7588
2 24.57M 24.25 0.7619
4 25.29M 24.30 0.7657
7 26.43M 24.29 0.7631

temperature coefficients are displayed in Fig. 5. It is ev-
ident that a temperature coefficient of 10 converges faster
and produces a 0.12dB improvement compared to a coeffi-
cient of 1, but later training results are suboptimal. Conse-
quently, selecting the appropriate temperature coefficient is
crucial.

We also conducted comparative experiments using dif-
ferent numbers of SCGLA modules, with the final results
shown in Tab. 6. The table reveals that when adding 2
SCGLAM modules, only 0.78M parameters are added, re-
sulting in a 0.1dB PSNR improvement. An increase to 4
modules showed an optimal peak, trading 1.5M parameters
for a 0.15dB PSNR improvement. Upon further increasing
the number of modules, PSNR performance plateaued at 7
modules, with similar results to those of 4 modules. Hence,
we utilized 4 SCGLAM modules in our final version.

4.5. NTIRE2023 Stereo Super-resolution Challenge

In the NTIRE 2023 Stereo Super-Resolution Challenge
[33], we participated in three tracks utilizing a model en-
semble and data ensemble strategy for Tracks 1 and 3. How-
ever, Track 2 did not utilize these ensembles. Results on the
private Flickr1024 test set, consisting of 100 images with-
out public ground truth, are presented in Tab. 4. Our team
was ranked 3rd, 4th, and 5th in each respective track.

5. Conclusion

In this paper, to further improve the accuracy of left-
right view information fusion, we have effectively improved
SCAM by adding a temperature coefficient τ . By adjusting
different temperature coefficients, rapid convergence and
better performance can be achieved. In addition, to fur-
ther restore severely damaged low-resolution stereo images,
we introduced a stereo cross-view global learnable attention
module. By introducing self-similarity across views and
scales, the restored stereo high-resolution images have re-
alistic and natural textures. The extended experiments fully
demonstrate the effectiveness of the proposed method. In
the future, we will explore better ways to provide cross-
view prior knowledge and further improve the performance
of stereo super-resolution.
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