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Abstract

Transformer-based image super-resolution (SR) has of-
fered promising performance gains over the convolutional
neural network-based one due to the adoption of parameter-
independent global interactions. However, the exist-
ing Transformer-based methods are limited to obtaining
enough global information due to the use of self-attention
within non-overlapping windows, which restricts the re-
ceptive fields. To address this issue, we construct an ef-
fective image SR model based on the attention retractable
frequency Transformer with the proposed spatial-frequency
fusion block. In our method, the spatial-frequency fusion
block is designed to strengthen the representation ability
of the Transformer and extend the receptive field to the
whole image to improve the quality of SR results. Fur-
thermore, a progressive training strategy is proposed to use
image patches with different sizes to train our SR model
to further improve the SR performance. The experimen-
tal results demonstrate that our proposed method outper-
forms the state-of-the-art methods over various benchmark
datasets, both objectively and subjectively.

1. Introduction
Image super-resolution (SR) aims to compose the high-

resolution (HR) image from the low-resolution (LR) coun-
terpart. Recently, the convolutional neural network (CNN)
has been investigated to design various image SR mod-
els [1–3]. Super resolution CNN (SRCNN) [1] firstly in-
troduced CNN into image SR. Then, several methods uti-
lized residual learning, e.g., Enhanced deep residual net-
works (EDSR) [2], and attention mechanism, e.g., resid-
ual channel attention networks (RCAN) [3], to compose
very deep networks for image SR. These CNN-based net-
works have achieved remarkable performance. However,
due to adopted parameter-dependent receptive field scaling
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and content-independent local interactions of convolutions,
CNN is limited to model the long-range dependencies [6].

To break this limitation, some Transformer-based im-
age SR networks were proposed [4, 6, 8, 10] by modeling
the long-range dependencies to improve SR performance.
For example, the image processing Transformer (IPT) [4]
was designed to be pre-trained on ImageNet [5] to maxi-
mally excavate the performance of the Transformer so as
to achieve high SR performance. SwinIR [6] was proposed
based on the Swin Transformer [7] to significantly improve
the SR performance. In addition, an attention retractable
Transformer (ART) [10] was developed based on SwinIR
with an attention retractable module and achieved state-of-
the-art results on the image SR task.

Although the Transformer-based image SR methods
achieve impressive performance, they still suffer from a de-
fect. For example, IPT [4] uses dense attention with short
token sequences from a dense area of the image, which
causes a restricted receptive field. In addition, SwinIR [6]
adopts the window-based and local attention strategy to
construct a model, which restricts employing large receptive
fields to capture global information. ART [10] noted this
defect and design the attention retractable module based on
sparse attention. But the accessible receptive field of ART
also is limited due to only using the four as interval size in
sparse attention block in SR task while the larger interval
size easily causes worse performance.

To solve the problem of ART, we design a spatial-
frequency fusion block (SFFB) based on Fast Fourier Trans-
form (FFT) to enlarge the receptive field in the frequency
domain, which accordingly composes our proposed atten-
tion retractable frequency fusion Transformer (ARFFT) for
image SR. The architecture of our ARFFT is illustrated in
Fig. 1. It is developed based on ART in which two self-
attention blocks are adopted. The first block is the dense
attention block (DAB) and the second block is the sparse at-
tention block (SAB). With these two blocks, both the local
and the non-local receptive fields are captured. To extend
the receptive field to the whole image, we design the spatial-
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frequency fusion block (SFFB) for ART, targeting better SR
performance. In addition, to further improve the SR perfor-
mance of our model, we proposed a progressive training
strategy to use different-size patches to progressively train
our SR model to achieve promising SR results.

2. Related work

2.1. Vision Transformer

The application of Transformer to machine translation
[13] has achieved impressive performance. In addition,
Transformer has also been applied to the computer vision
task. For example, ViT [14] was proposed using Trans-
former to project large image patches into token sequences
to achieve image recognition task. Glance and Gaze Trans-
former [15] was proposed to design the Glance and Gaze
branches to efficiently model both long-range dependencies
and local context for some high-level vision tasks. Multi-
axis vision Transformer [16] was developed using the multi-
axis attention based on blocked local and dilated global at-
tention to achieve the SOTA performance on image classi-
fication.

In addition to the high-level vision tasks, Transformer
was also applied to the low-level vision tasks [4, 6, 8–12].
For instance, IPT [4] was designed using a pre-trained
Transformer to achieve high SR performance. SwinIR
[6] was proposed based on the Swin Transformer [7] to
achieve a strong image restoration baseline. Restormer [8]
was developed by making several key blocks based on the
Transformer structure such that it can capture long-range
pixel interactions. UFormer [9] introduced a novel locally-
enhanced window Transformer block to significantly reduce
the computational complexity of the high-resolution fea-
ture. Besides, a learnable multi-scale restoration modula-
tor was proposed in UFormer to adjust features in multi-
ple layers of the decoder so as to have a high capability
for capturing both local and global dependencies for im-
age restoration task. In addition, an attention retractable
Transformer (ART) [10] was developed using an attention
retractable module to enlarge the receptive field for im-
proving SR performance. Cross aggregation Transformer
(CAT) [11] designed a rectangle-window self-attention to
aggregate features to obtain a large receptive field. Besides,
CAT developed a locality complementary module to real-
ize the coupling of global and local information for im-
proving image restoration performance. Hybrid attention
Transformer (HAT) [12] combined both channel attention
and window-based self-attention to utilize global statistics
and strong local fitting capability. Moreover, an overlapping
cross-attention module was designed to better aggregate the
cross-window information for enhancing the interaction of
features. HAT was constructed with these attentions and
achieved state-of-the-art results on the image SR task.

2.2. Frequency Learning

Lot of works were studied based on frequency domain in
low-level restoration tasks [20–25]. Some of these meth-
ods [20–22] studied to decompose features into different
frequency bands by multi-branch CNN to enhance the de-
tails. Typically, omni-frequency region-adaptive network
[20] used multi-branch CNN to separate different frequency
components and enhances these features with the proposed
frequency enhancement unit. Frequency-dependent con-
volutional neural networks [21] divided the input images
into three sub-frequency groups and trained the convolu-
tional neural network for each sub-frequency group. The
final SR image was constructed by combining the multi-SR
images from multiple networks. Besides, frequency aggre-
gation network [22] extracted different frequencies of the
LR image and pass them to a channel attention-grouped
residual dense network individually to output correspond-
ing features. Then aggregating these residual dense fea-
tures adaptively to recover the HR image with enhanced de-
tails and textures. The other methods [23–25] transformed
images into frequency domain. For example, D3 [23] de-
signs a dual-domain restoration network to remove artifacts
of compressed images. Wavelet-based dual recursive net-
work [24] was proposed to decompose the LR image into a
series of wavelet coefficients and predicted the correspond-
ing series of HR wavelet coefficients using networks so as
to construct the final HR image. SwinFIR [25] extends
SwinIR by replacing fast Fourier convolution to explore
the image-wide receptive field for improving the SR per-
formance.

3. Proposed Method
The architecture of our proposed ARFFT is illustrated in

Fig. 1 (a). Given an LR image ILR ∈ RH×D×Cin , where
H , D, and Cin are the height, width, and number of color
channels. Firstly, LR image is sent to a 3×3 convolution
layer to obtain shallow feature F0 ∈ RH×D×C , where C
is the dimension size of the feature. Next, the shallow fea-
ture is normalized and fed into the N residual groups to
generate the deep feature. Specifically, each residual group
consists of NB the combination block of DAB, SAB, and
a SFFB. After that, the deep feature passes through another
3×3 convolution layer to get refined feature F1. Then shal-
low feature and the refined feature are added to obtain the
final constructed feature FR = F0 + F1. Finally, we employ
the pixel shuffle layer to generate the high-resolution image
ISR from the feature FR.

3.1. Retractable Attention

We apply two attention strategies, i.e., the dense multi-
head self-attention module (D-MSA) and the dense multi-
head self-attention module (S-MSA), to design two self-
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Figure 1. (a) The architecture of our proposed ARFFT for image super resolution. (b) The structure of two successive attention blocks
DAB and SAB with two attention modules D-MSA and S-MSA. (c) The structure of spatial-frequency fusion block.

attention blocks, i.e., DAB and SAB. The structure is il-
lustrated in Fig. 1(b).

In DAB, D-MSA helps each token to interact with a
smaller number of tokens from the neighborhood position
of a non-overlapping W ×W window. Meanwhile, in SAB,
S-MSA allows each token to interact with the same number
of tokens as D-MSA, but which are from sparse positions
of a WI ×WI window, where I is interval size. ART [10]
demonstrates that the application of these two blocks en-
ables our model to capture local and non-local receptive
fields simultaneously. The successive attention blocks are
applied to provide interactions for both local dense tokens
and non-local sparse tokens. However, increasing interval
size I is limited. In ART, the increased interval size easily
causes worse SR performance, which impacts the model to
access a larger receptive field for improving the SR perfor-
mance.

3.2. Spatial-frequency Fusion Block

To explore the larger receptive field, we design SFFB to
strengthen the representation ability of the Transformer and
extend the receptive field to the whole image to improve the
SR performance. As shown in Fig. 1(c), the SFFB network

consists of two primary branches: a frequency branch and
a spatial branch. We send input feature X into these two
branches to generate Xfrequency and Xspatial respectively. We
will respectively introduce two branches as follow.

In frequency branch, a frequency branch network
Hfrequency is designed to obtain the frequency enhanced fea-
ture,

Xfrequency = Hfrequency (X). (1)

The frequency branch network is illustrated in Fig.1(c).
Specifically, The X is firstly refined using a convolution
layer to obtain the initial feature Xfinit for the frequency
transforming,

Xfinit = CL(X), (2)

where CL denotes a 3×3 convolution layer with a
LeakyReLU activate function. The Xfinit is transformed
into the frequency domain using the 2-D Fast Fourier Trans-
form (FFT) to extract the global information for generating
high-quality frequency features. The inverse 2-D FFT op-
eration is performed to transform the frequency feature into
the spatial feature,

Xfrequency = C1(F̂T (CL(FT (C(Xfinit)))) +Xfinit)), (3)
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where C1 denotes a 1×1 convolution layer, FT denotes a
Fast Fourier Transform layer, F̂T denotes a inverse Fast
Fourier Transform layer.

Besides, spatial information also needs to be explored.
We use convolution layers and activate functions to con-
struct the spatial branch to increase the expressiveness of the
feature for obtaining the refined spatial feature. The Xspatial
is represented as

Xspatial = C(CL(C(X))) +X. (4)

Based on the frequency branch and spatial branch, the
output of the SFFB is denoted as

XSFFB = C1([Xfrequency , Xspatial ]), (5)

where [·] denotes a concatenation operation.

3.3. Progressive Training Strategy

In general, the SR model is trained with only a patch
size to achieve the highest performance on the validation
set will be selected as the final one. However, in the test
phase, the whole image is fed into the SR model to generate
SR results. The inconsistent patch size in the training stage
and test stage easily causes the final SR performance to de-
crease. We propose a novel progressive training strategy
(PTS) used based on multi-training stages to improve SR
performance. Specifically, the progressive training strategy
utilized multi-training stages to gradually obtain the final
SR results. Our SR model is trained with different patch
sizes of training datasets in different training stages. The
model of the previous stage is utilized to initiate the cur-
rent model. We set three training stages and our SR model
is gradually trained using the patch size of 48, 64, and 84,
respectively so as to obtain the improved SR performance.

Different from Restormer [8], we use the PTS to train
our SR model with the fixed batch size and fixed patch size
at each stage, while Restormer only uses one stage to grad-
ually reduce the batch size and increase the patch size to
obtain the final SR model. Besides, in Restormer, the up-
date points for changing the patch size and batch size pairs
is difficult to set for specific SR model. The inaccurate up-
date points can easily cause missing the best SR model to
affect the final SR performance. Our PTS avoids this prob-
lem, the best model is selected in each training stage for
initialization of the next training stage so as to effectively
obtain the final SR results.

3.4. Loss Function

In addition to the structure of our network, the loss func-
tion also determines whether the model can achieve good
results. In low-level visual tasks, such as denoising and de-
blurring, the L1, L2, and perceptual adversarial loss func-
tions are often used to optimize neural networks. Recently,

the Fast Fourier Transform loss (FFTLoss) [26] is proposed
to focus on the frequency information of restoration results
during the training network so as to get better performance
in super-resolution tasks. In our method, we adopt the L1

loss, the L2 loss, and the FFTLoss [26] to train our proposed
image SR model targeting high-quality results.

In each training stage of PTS, we firstly use the basic loss
function Loss1 composed by the L1 loss and the FFTLoss
to obtain the initial SR performance

Loss1 = ∥IHR − ISR∥1 + αFFTLoss(IHR, ISR), (6)

where IHR is the corresponding HR image and α is the
penalty factor with a value of 0.1.

After using PTS, we also adopt another loss function
Loss2, i.e., L2 loss, to fine-tune our SR model for further
improving the SR performance and obtain the final SR re-
sults,

Loss2 = ∥IHR − ISR∥2. (7)

With PTS and adopting the Loss2 loss function, our model
achieves state-of-the-art SR performance.

4. Experiments
4.1. Datasets

We train our proposed ARFFT with a large combination
training dataset consisting of DIV2K [27], Flicker2K [28]
and LSDIR [29]. Additionally, we use Bicubic downsam-
pling to obtain the low-resolution inputs using 4 scale factor
downsampling operation. DIV2K includes 800 training im-
ages and Flicker2K includes 2650 training images. Besides,
LSDIR is a new large-scale dataset containing 84991 high-
quality training images, 1000 validation images, and 1000
test images to fully exploited the information of datasets.
To evaluate our model performance, we perform validation
on Image Super-Resolution benchmark datasets Set5 [31],
Set14 [32], BSD100 [32], Urban100 [33] and Manga109
[34] for our SR task.

4.2. Implementation details

For the network settings, we set the number of Residual
Group and the number of the combination block NB are
6 and 12. The non-overlapping window size W , the inter-
val size of S-MSA, and the number of attention heads in
D-MSA/S-MSA are set as 12, 4, and 6. The channel dimen-
sion is set as 180 for most layers. In practice, we treat 1×1
patch as a token. All the convolution layers are equipped
with 3×3 kernel, 1-length stride, and 1-length padding, so
the height and width of feature map remain unchanged.

Our ARFFT is trained using progressive training strat-
egy to gradually improve SR performance. Specifically, in
the first training stage, we use the batch size and patch size
pair [32,48] to train our initial SR results for 600k iterations.
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Table 1. Quantitative comparisons on five SR test datasets.

Method Scale Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR × 4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

RCAN × 4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

SAN × 4 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

SRFBN × 4 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160

HAN × 4 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177

IGNN × 4 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182

CSNLN × 4 32.68 0.9004 28.95 0.7888 27.80 0.7439 27.22 0.8168 31.43 0.9201

RFANet × 4 32.66 0.9004 28.88 0.7894 27.79 0.7442 26.92 0.8112 31.41 0.9187

NLSA × 4 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184

IPT × 4 32.64 N/A 29.01 N/A 27.82 N/A 27.26 N/A N/A N/A

SwinIR × 4 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260

ART × 4 33.04 0.9051 29.16 0.7958 27.97 0.7510 27.77 0.8321 32.31 0.9283

CAT-R × 4 32.89 0.9044 29.13 0.7955 27.95 0.7500 27.62 0.8292 32.16 0.9269

CAT-A × 4 33.08 0.9052 29.18 0.7960 27.99 0.7510 27.89 0.8339 32.39 0.9285

HAT × 4 33.04 0.9056 29.23 0.7973 28.00 0.7517 27.97 0.8368 32.48 0.9292

Ours × 4 33.18 0.9042 29.55 0.8012 28.14 0.7546 28.42 0.8496 33.08 0.9330

The initial learning rate is 2 × 10−4 and is reduced by half
as the training iteration reaches 200k, 400k, 500k, where 1k
means one thousand. In the second training stage, we ad-
just the batch size and patch size pair as [16,64] and initial
learning rate as 2× 10−5 to train our ARFFT for improving
SR performance, the number of iterations and adjustment
of the learning rate is the same as the first training stage.
In the third training stage, we use the batch size and patch
size pair [8,84] to train ARFFT for 600k iterations with the
initial learning rate of 1 × 10−5. The learning rate is re-
duced by half as the training iteration reaches 200k, 350k,
450k. Moreover, we fine-tune our SR model keeping the
batch size and patch size pair [8,84] and using the L2 loss
for 10k iterations with a small learning rate of 1 × 10−6.
Except for the first training stage, the best model of the
previous stage is utilized to initiate the training of the cur-
rent stage. ADAM optimizer is utilized to optimize our SR
model in all the training process with β1 = 0.9, β2 = 0.999,
and zero weight decay. We also use the data augmentation
on the training data through the horizontal flip and random
rotation of 90◦, 180◦, and 270◦. Our proposed model is im-
plemented with PyTorch and trained with 4 NVIDIA RTX
3090 GPUs. The evaluation experimental results with in
terms of PSNR and SSIM values on the Y channel of im-
ages transformed to YCbCr space.

4.3. Quantitative Results

We adopt the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) for performance eval-
uation. Besides, we compare our proposed model with
the state-of-the-art SR methods, including CNN-based ap-
proaches (EDSR [2], RCAN [3], SAN [35], SRFBN [36],

HAN [37], IGNN [38], CSNLN [39], RFANet [40], NLSA
[41]) and Transformer-based SR methods (IPT [4], SwinIR
[6], ART [10], CAT-R [11], CAT-A [11], HAT [12]). The
PSNR and SSIM results of our model for × 4 image SR
are presented in Table 1. As one can see from Table 1, our
ARFFT achieves the best performance on all five bench-
mark datasets. Compared with the existing Transformer-
based state-of-the-art methods, i.e, SwinIR, ART, CAT-
R, CAT-A, HAT, our SR model obtains significant perfor-
mance gain for ×4 SR. Especially, our ARFFT achieves
0.32dB in terms of PSNR gain on Set14, 0.45dB in terms
of PSNR gain on Urban100, and 0.60dB in terms of PSNR
gain on Manga109 comparing the competitive method HAT.
It benefits from our spatial-frequency fusion block, progres-
sively training strategy, and larger datasets for training en-
abling our SR model to have stronger representation abil-
ity. These results demonstrate that our ARFFT is a stronger
Transformer-based deep image SR network.

4.4. Qualitative Results

We provide some challenging examples for visual com-
parison (×4) on three test datasets in Fig. 2. Compared
with representative CNN-based methods, i.e., RCAN, and
representative Transformer-based methods, i.e., SwinIR and
ART, we can see that our ARFFT is able to restore more
detailed edges and textures. Specifically, the periodic tex-
ture of the tablecloth is clearly restored by our ARFFT, but
the restored results of ART and SwinIR only focus on the
simple texture due to the restricted receptive field so as to
restore poor visual results. The parallel stripes with small
intervals on Urban100 are failed to restored using SwinIR
and ART, but the result of our ARFFT is very clear. Besides,
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Set14 RCAN SwinIR ART Ours

Urban100 RCAN SwinIR ART Ours

Manga109 RCAN SwinIR ART Ours

Figure 2. Visual quality comparisons of × 4 image SR on Set14, Urban100 and Manga109 test datasets.

Table 2. Validity of SFFB and PTS with ×4 SR in terms of PSNR
and SSIM on Set14, Urban100 and Manga109.

Baseline + SFFB + SFFB + PTS

Set14 29.20 / 0.7946 29.45 / 0.7998 29.55 / 0.8012

Urban100 27.88 / 0.8336 28.26 / 0.8445 28.42 / 0.8496

Manga109 32.46 / 0.9285 32.89 / 0.9312 33.08 / 0.9330

our ARFFT also has the stronger ability to restore the blur-
ring words on the Manga109 dataset. Compared with other
methods, ARFFT obtains visually pleasing results by intro-
ducing the spatial-frequency fusion block to restore more
details. It indicates that our ARFFT performs outstanding
visual results for image SR.

4.5. Ablation Study

In this section, we demonstrate the importance of our
method in our SR model. We train our models for ×4 image
SR based on the same combination training dataset (Men-
tioned in 4.1) for ablation experiments. The results are eval-
uated on the Set14, Urban100 and Manga109 benchmark
datasets. Specifically, we employ ART [10] as our base-
line model. Based on the baseline model, we add the SFFB

Table 3. NTIRE 2023 Challenge Results with ×4 SR in terms of
PSNR and SSIM on validation phase and testing phase.

Validation phase Testing phase

PSNR 31.13 31.18

SSIM 0.85 0.86

in residual groups to construct the Base SFFB to verify the
effectiveness of SFFB. The SFFB can improve by 0.38 dB
and 0.43dB in terms of PSNR gain on the Urban100 and
Manga109 datasets compared with the baseline. Further-
more, we employ the SFFB and proposed progressive train-
ing strategy to construct our ARFFT further improve the
SR performance, which achieves a significant gain of 0.16
dB and 0.19dB on the Urban100 and Manga109 datasets in
SR performance comparing the Base SFFB. Overall, with
the SFFB and PTS, our model attains a captivating perfor-
mance gain of 0.54dB and 0.62dB in terms of PSNR over
the baseline on the Urban100 and Manga109 datasets.

4.6. NTIRE 2023 Challenge

It consists of DIV2K, Flickr2K, and LSDIR three
datasets for NTIRE 2023 Image Super-Resolution (x4)
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Challenge. Specifically, in the DIV2K, the training data in-
cludes 800 high and low-resolution image pairs. The valida-
tion data includes 100 low-resolution images used for gen-
erating super-resolution corresponding images, the high-
resolution images will be released when the final phase of
the challenge starts. The test data includes 100 diverse im-
ages used to generate low-resolution corresponding images.
Our SR model also participated in this Challenge in the val-
idation phase and testing phase. The respective results are
shown in Table 3.

5. Conclusion
In this paper, we propose an attention retractable fre-

quency fusion Transformer (ARFFT) for image super-
resolution. Due to the restricted receptive field of ART, we
proposed a spatial-frequency fusion block (SFFB) to fur-
ther enlarge the receptive field to improve the quality of
constructed SR results. Additionally, the progressing train-
ing strategy (PTS) is proposed to gradually obtain better
SR performance. With the SFFB and PTS, our model out-
performs other existing state-of-the-art methods for super-
resolution task.
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