
A. Implementation details
A.1. Architecture

Our GAN architecture is composed of an RRDB based
generator and a ResNet critic. The generator largely follows
the architecture proposed in Real-ESRGAN [54,55], where
we use a pixel-unshuffle block to rearrange a m ⇥ n ⇥ 3
input into a m/2 ⇥ n/2 ⇥ 12 input to reduce the compu-
tational complexity of the following 23 RRDB blocks, fol-
lowed by an upscale of the result to restore the original in-
put shape. One major difference from [54] is the injection
of noise channels along the network – Each “Noise Injec-
tion” block concatenates a new channel filled with Gaussian
noise, which is used by the network to generate stochastic
details (this is Z, mentioned in the loss formulation). In
cases supporting multiple QFs we implement a FiLM [40]
block that modulates the results of an RRDB or upsampling
block using a learned affine transformation, conditioned on
the quantization table that is embedded in the JPEG file. We
present the generator architecture in Figure 5. The critic is
a plain ResNet34 [20].

A.2. Training
We train our models using the Adam [27] optimizer with

batch-size of 32 to alternately update the generator and the
critic networks, using Eq. 10 and Eq. 9. We use exponential
moving average on the generator weights with decay factor
of 0.999.
FFHQ-128: The learning rate starts at 1 ⇥ 10�4 and an-
nealed to 1⇥10�7 after 400, 000 steps using cosine anneal-
ing. We scale V (D!, G✓) in Eq. 10 by 1 ⇥ 10�3 and set
�R1 = 1, �FM = 1 and �C according to the version re-
ported in Figure 2. For the versions denoted as Ours and
Ours-P we use cosine annealing of �C from 1 ⇥ 10�1 to
1⇥ 101.
General-Content: The learning rate starts at 1⇥ 10�4 and
annealed to 1 ⇥ 10�6 after 400, 000 steps using cosine an-
nealing. The weights are initialized from a model trained
for 50, 000 steps as a regression model using an MSE loss,
as this was found to be important for stabilizing the train-
ing. We scale V (D!, G✓) in Eq. 10 by 1 ⇥ 10�3 and set
�R1 = 1, �FM = 1, �P = 1⇥ 10�2, �SM = 1⇥ 103 and
use cosine annealing of �C from 1⇥ 100 to 1⇥ 103.

To estimate the mean and variance of generated images
for use in FM(G✓) and SM(G✓) we generate 16 differ-
ent restorations (using different Zs) for each of the first 8
images in a batch. In order to save train time we preform
this every 8 iterations as we found negligible performance
differences compared to performing this each iteration.

As the reference MMSE estimator for SM(G✓) we use
a regression model with the same architecture, trained for
650, 000 steps using a simple MSE loss.

As training data, we extract square patches with random

scale (between 128⇥128 and the image resolution) from the
training set at random position and rescale them to 128⇥128
pixels. This is inspired by [9] and it exposes our GAN to
more diverse set of patches.

B. MMSE estimator is consistent
Theorem 1. Let X̄(Y) be an MMSE estimator for JPEG
artifact removal, i.e X̄(Y) = E [X|Y]. Then X̄(Y) is nec-
essarily perfectly consistent with the compressed input Y .

Proof. Denote by D the matrix that performs block-wise
2D-DCT and elementwise division by the matrix Q. Then
X̄(Y) is consistent with Y iff

��DX̄(Y)�DY
��
1 1

2 .
And indeed,

��DX̄(Y)�DY
��
1 = kDE [X|Y]�DY k1

= kE [DX �DY |Y]k1
 E [kDX �DY k1 |Y]

 E

1

2
|Y

�
=

1

2
,

where we used the triangle inequality and the fact that at
any point where p(X|Y) > 0, the maximal difference in
the DCT domain, before rounding, is 1

2 .

C. Second-moment penalty
The per-pixel conditional variance �2

X|Y of a random-
variable X can be estimated from samples {xi}ni=1 sampled
from pX|Y :

�2
X|Y ⇡ 1

n

nX

i=1

(xi � µX|Y)
2, (12)

where µX|Y is the mean of X conditioned on Y . In practice
we do not have access to this mean, hence we can approxi-
mate it either using an MMSE estimator X̄(Y) (that at op-
timality becomes the conditional mean) or using the sample
mean:

µ̃X|Y =
1

n

nX

i=1

xi. (13)

In our case, we have two different variables for which we
would like to compare their variances – the ground-truth im-
ages X and our reconstructed images X̂ , both conditioned
on the compressed images Y .

Recall that for a fixed Y we have only a single ground-
truth sample X and thus we cannot compute a useful sample
conditional mean, hence we opt to use a pre-trained regres-
sion model as our MMSE estimator X̄(Y):

�̃2
X|Y = (x� X̄(Y))2. (14)

Intuitively, X̄(Y) averages all possible values of each pixel
in the reconstructed image based on the probability of the

Pi
xe

l
U

ns
hu

ffl
e

C
on

v RRDB
Block

RRDB
Block

x23

C
on

v

2x
 U

ps
am

pl
e

2x
 U

ps
am

pl
e

C
on

v

C
on

v

Le
ak

yR
eL

U

RDB Block

C
on

v

N
oi

se
In

je
ct

io
n

Le
ak

yR
eL

U

x5
RRDB Block

R
D

B
Bl

oc
k

R
D

B
Bl

oc
k

R
D

B
Bl

oc
k

Fi
LM

 B
lo

ck

2x Upsample

N
oi

se
 In

je
ct

io
n

N
N

 In
te

rp
ol

at
io

n

C
on

v

Fi
LM

 B
lo

ck

Le
ak

yR
eL

U

Figure 5. Our generator’s architecture is based on [54], where Residual-in-Residual Dense Blocks (RRDBs) are used to restore a degraded
input. Due to the fact that we work on full resolution inputs, we trade spatial resolution with depth using a pixel-unshuffle block that
rearrange the input from m ⇥ n ⇥ 3 tensor into a m/2 ⇥ n/2 ⇥ 12 tensor and in the end we upsample the resulted tensor. To achieve
stochasticity, we inject a noise channel to the features at the beginning of every RDB block and in the upsampling blocks. To be agnostic
to the QF of the input image, we condition the RRDB and upsampling blocks on the quantization table used to create the image using a
FiLM [40] block.

value. Hence, pixels with similar values in X̄(Y) and in x
are pixels with small ambiguity – all of the possible recon-
structions agree on the pixel’s value, and thus we can expect
small variance at such locations. On the other hand, pixels
with large discrepancy between X̄(Y) and x are not neces-
sarily an indication for large variance as the value in x might
be rare and thus far from the mean. To better analyze the
latter case we need further assumption on the conditional
probability X|Y .

As pX̂|Y changes during training, we cannot use a pre-
trained regression model that was trained on pX|Y , but we
can generate as much samples as needed, hence we can
compute a sample conditional mean that approximates well
the true mean:

�̃2
X̂|Y =

1

n

nX

i=1

(x̂i � µ̃X̂|Y)
2, (15)

To create the penalty mentioned in Subsection 4.2 we just
compute the distance between those two, per-pixel, variance
approximations over a batch of realizations of Y :

SM(X̂) = �SMEX,X̂,Y

h����̃2
X|Y � �̃2

X̂|Y

���
i
. (16)

In Figure 6 we present a visual illustration of the vari-
ance estimator �̃2

X|Y using QGAC as our MMSE estimator
alongside per-pixel sample variance of Ours’ and Bahat et
al.’s methods.

D. JPEG numerical errors
As mentioned in Subsection 5.1 and Table 4, numeri-

cal approximations in the JPEG algorithm result in near,

but not perfect, consistent results. To showcase that this
phenomena is not unique to the differentiable JPEG im-
plementations used by us and [5] we test libjpeg-9d [1],
a standard JPEG implementation used in packages such as
OpenCV [7] and PIL [12]. We compress the FFHQ test
set with QF=100 which corresponds to no quantization, at
block size of 1 which means the DCT values equal the
color values, and without chroma sub-sampling, meaning
we should expect a perfect reconstruction of the inputed im-
ages theoretically. Table 2 present the RMSE between the
ground-truth images and the compressed images, using dif-
ferent configurations of the encoder-decoder. As it can be
clearly seen, as long as we do not skip the YCbCr color-
space conversion, true lossless compression is not achieved
due to numerical approximations. Table 3 presents the ac-
tual Consistency RMSE results of the projected methods.
We can see that while all the methods are not perfectly con-
sistent, they are extremely quite to zero and perform better
than libjpeg-9d when operating at the YCbCr color space.

To reproduce the libjpeg-9d images, use the following
snippet:

1 # 2D-DCT=float, Color-Space=YCbCr, Block-Size=1
2 cjpeg -block 1 -quality 100 -sample 1x1,1x1,1x1 -

dct float <input_image> | djpeg -dct float >
<output_image>

3

4 # 2D-DCT=float, Color-Space=RGB, Block-Size=1
5 cjpeg -block 1 -quality 100 -sample 1x1,1x1,1x1 -

dct float -rgb <input_image> | djpeg -dct
float > <output_image>

Compressed (Y) QGAC (X̄(Y)) Ground-Truth (X) (X � X̄(Y))2

0

0.2

0.4

0.6

0.8

1

Bahat et al. Baseline + VGG + SM Ours

Figure 6. We approximate the conditional variance of clean images on a compressed input (Y) using a single ground-truth image (X)
and an MMSE estimator (X̄(Y)). Here we use QGAC [15] as our MMSE estimator on a JPEG compressed image with QF=10. On the
bottom row we present per-pixel variance maps calculated on 64 samples of different methods (X̂). For visualization purposes we use the
8th root of the variance and add a color bar (white and black correspond to low and high variance, respectively). The variance estimation
(X�X̄(Y))2 indicates that we should expect more variance in regions with sharp transitions and this is indeed what we see in the variance
maps of the different methods. Our method produce more variance compared to Bahat et al.’s method in regions with sharp transition and
less variance in smooth regions. This is also supported quantitatively in Table 1 where we see larger average per-pixel standard deviation
while achieving better FID.

Table 2. RMSE between clean FFHQ test images and compressed-
decompressed FFHQ test images using the libjpeg-9d library. We
use no chroma sub-sampling and quantization table of ones, hence,
the process should be invertible. In practice, we see deviations due
to numerical approximations.

2D-DCT Color-Space Block-Size RMSE
float YCbCr 1 0.5465
float RGB 1 0

Table 3. Consistency results of different constrained methods on
the FFHQ test dataset at QF=5. The inconsistencies stem from
numerical approximations.

Method Consistency
Bahat 0.0867
�C=0-P 0.9466
Ours-P 0.1664
Ground Truth (theoretical) 0

E. More results
E.1. FFHQ

In Table 4 we present quantitative results of the different
methods on the FFHQ test set at QF=5.

In Figure 7 we visually demonstrate the perceptual qual-
ity and the stochastic variation of our method by presenting
several realizations of a given input and comparing them

to the other methods. As expected, the regression model
generates overly-smoothed results and is unable to recover
fine details such as hairs and wrinkles. Bahat’s method suc-
cessfully recovers some fine details but suffers from severe
color and grid-like artifacts. We find that the training of this
method is highly unstable, and we hypothesize that this is
partly due to the overly constrained optimization with per-
fect consistency. The results denoted Ours are highly visu-
ally appealing – fine details such as hair and wrinkles are
generated in a reasonable manner.

In Figure 8 we present a couple of compressed images
from the test set of FFHQ and the corresponding recom-
pressed restoration from our method with and without con-
sistency regularization and with projection. This showcases
the effectiveness of our consistency regularization in im-
proving the consistency of the reconstructed images without
detoriating their perceptual quality.

In Figure 9 we present the stochastic nature of the differ-
ent methods (except the deterministic regression models).
We expect to see different plausible details generated for
the same compressed input image Y given different noise
injection Z. Indeed, we see that our methods generate slight
variations in the expression, in the beard and hair structure,
in the background details and in the skin colors. Those vari-
ations are also indicated by the per-pixel standard deviation
map we present for each method, where darker values rep-
resent more varying pixels in the restored images. While
Bahat’s method also produces stochastic results, it can be

clearly seen that most of the variation comes from color ar-
tifacts.

In Figure 10 we present more results of the different
methods on the test set of FFHQ.

Table 4. Quantitative results of different methods on the FFHQ
test set at QF=5. The consistency of constrained methods, marked
by *, are practically zero – please refer to Subsection 5.1 and Ap-
pendix D for more details.

Method FID (#) Consistency (#) PSNR (")
Regression 66.14± 0.00 5.2217 25.6579
Ours-A 35.26± 0.00 0.3203 25.4529
Bahat 65.86± 0.28 ⇡ 0* 22.6807
�C=0 16.46± 0.16 11.8848 23.3457
�C=0-P 20.60± 0.16 ⇡ 0* 23.4896
Ours 16.70± 0.14 0.7481 23.7595
Ours-P 18.54± 0.14 ⇡ 0* 23.7767
Ground Truth 10.28± 0.00 0 1

E.2. ImageNet
In Table 5 we present quantitative results of the different

methods on ImageNet-ctest10k at QF=10.
In Figure 11 and Figure 12 we present more results of the

different methods on ImageNet-ctest10k. Note that QGAC
and QGAC-GAN are not trained on QFs lower than 10,
hence we do not show their results on QF=5 for fair compar-
ison. The visual results further corroborate the quantitative
results shown in Figure 3 – Our method provides the best
perceptual results, creating more fine details and less arti-
facts and projecting our results does not detoriate their per-
ceptual quality. Note that while QGAC-GAN provide better
visual results compared to Bahat’s, they are not consistent
with the compressed inputs. This means that those are not
valid reconstructions in the sense that they could not have
created the compressed images.

E.3. LIVE1 & BSDS500
In Figure 13 and Figure 14 we present visual results

of different methods on LIVE1 [44, 45] and BSDS500 [4]
datasets.

Such small datasets (29 and 500 images, respectively)
cannot be used for reliable deep-features-based, ensemble
perceptual quality assessments (FID, KID, IS, etc.). From
the official FID implementation4 “IMPORTANT: The num-
ber of samples [...] should be greater than the dimension of
the coding layer, here 2048 [...]”. Hence, we do not include
quantitative results for this datasets.

4https://github.com/bioinf-jku/TTUR

Table 5. Quantitative results of different methods on ImageNet-
ctest10k at QF=10. The consistency of constrained methods,
marked by *, are practically zero – please refer to subsection 5.1
and Appendix D for more details.

Method FID (#) Consistency (#) PSNR (")
SwinIR 13.93± 0.00 2.5858 27.8662
FBCNN 14.85± 0.00 3.9929 27.6000
QGAC 16.20± 0.00 2.6551 27.4091
QGAC-GAN 6.93± 0.00 1.8640 27.0681
Bahat 13.71± 0.03 0.3598* 25.4243
Ours 4.76± 0.01 0.9696 25.5758
Ours-P 4.78± 0.01 0.6411* 25.6008
Ground Truth 2.67± 0.00 0 1

C
om

pr
es

se
d

O
ur

s
(1

)

O
ur

s-
M

SE

O
ur

s
(2

)

B
ah

at
et

al
.[

5]

O
ur

s
(3

)

R
ea

l

O
ur

s
(4

)

Figure 7. Zoom-in on the results of different recovery methods. Left column: The decompression of a single image from the FFHQ data
set compressed using QF=5. Notice the smoothed result of Ours-MSE and the artifacts in Bahat’s solution, while our method produces
sharp and realistic results. Right column: Four realizations from our method that further show the stochastic nature of the results. Note the
different hair patterns and ear shapes.

�C=0 Ours Ours-P

R
ec

om
pr

es
se

d
C

om
pr

es
se

d

| {z }
|Compressed � Recompressed|

�C=0 Ours Ours-P

R
ec

om
pr

es
se

d
C

om
pr

es
se

d

| {z }
|Compressed � Recompressed|

Figure 8. The difference between a compressed input and the recompressed outputs of our method with and without explicit consistency
penalty and with projection. Values has been rescaled by taking the 4th root for visualization purposes. By adjusting �C we are able
to produce reconstruction with near-perfect consistency (Ours). This allows us to project the results to achieve perfect consistency with
minimal impact on the perceptual quality (Ours-P). Quantitative results can be seen in Table 4.

Decompressed Samples
z }| { Std Dev

Clean Compressed

B
ah

at
�
C
=
0

O
ur

s

Clean Compressed

B
ah

at
�
C
=
0

O
ur

s

0

0.2

0.4

0.6

0.8

1

Figure 9. Stochastic variation of decompressed images using Bahat’s and our methods. To the left we present two clean images and their
corresponding compressed JPEG version using QF=5. To the right we present 4 realizations using each method, along with per-pixel
standard deviation map calculated on 32 samples. For visualization purposes we use the 4th root of the standard deviation and add a color
bar (white and black correspond to low and high standard deviations, respectively). All decompressed images were obtained using the
default noise injection scheme (z ⇠ U(�1, 1) for Bahat’s method and z ⇠ N (0, I) for the others).

C
le

an
C

om
pr

es
se

d
O

ur
s

O
ur

s-
P

�
C
=
0

�
C
=
0-

P
O

ur
s-

A
R

eg
re

ss
io

n
B

ah
at

Figure 10. Decompression results using different methods on FFHQ images compressed using JPEG with QF=5. For stochastic methods
(all except for Regression), the default noise injection scheme (z ⇠ U(�1, 1) for Bahat’s method and z ⇠ N (0, I) for the others) was
used during inference.

ImageNet-ctest10k (QF=5)
Compressed Bahat Ours Ours-P Clean

Figure 11. Decompression results using our method and Bahat et al.’s on ImageNet JPEG compressed images with QF=5.

ImageNet-ctest10k (QF=10)
Compressed QGAC QGAC-GAN Bahat Ours-P Clean

Figure 12. Decompression results using different methods on ImageNet JPEG compressed images with QF=10.

LIVE1 (QF=10)
Compressed QGAC QGAC-GAN Bahat Ours-P Clean

Figure 13. Decompression results using different methods on LIVE1 JPEG compressed images with QF=10.

BSDS500 (QF=10)
Compressed QGAC QGAC-GAN Bahat Ours-P Clean

Figure 14. Decompression results using different methods on BSDS500 JPEG compressed images with QF=10.

