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Table A. Structure configuration of the encoder. The kernel size of
‘Conv’ layers is 3×3.

# Layer name(s)
0 Conv (3, 64), ReLU
1 Conv (64, 64), ReLU
2 Conv (64, 128), ReLU
3 Conv (128, 128), ReLU
4 Conv (128, 256), ReLU

A. Content
The content of this supplementary material involves:

• Network structures of encoder, reconstructor and up-
sampler in Sec. B.

• Effect of pre-trained optical flow network in Sec. C.

• Effect of training loss in Sec. D.

• More visual comparisons in Sec. E.

B. Network Structures of Encoder, Recon-
structor and Upsampler

To estimate the effectiveness of the proposed method
comprehensively, we select bidirectional [1] and second-
order grid [2] as our temporal propagation scheme, named
EAVSR and EAVSR+, respectively. Table A shows the de-
tailed architectures of the encoder in EAVSR and EAVSR+.
Table B shows the detailed architectures of the reconstruc-
tor and upsampler in EAVSR. ‘Propagated Feature’ in Ta-
ble B refers to the well-aligned features propagated from

Table B. Structure configuration of the combination of reconstruc-
tor and upsampler. The kernel size of ‘Conv’ layers is 3×3 and
the kernel size of ‘Conv1×1’ layer is 1×1. The negative slope of
LeakyReLU is 0.1.

# Layer name(s)
0 Concat [LR,Propagated Feature]
1 Conv (67, 64), LeakyReLU
2 RCAB × 30
3 Conv 1×1 (64, 64), LeakyReLU
4 Conv (64, 256), PixelShuffle, LeakyReLU
5 Conv (64, 64), LeakyReLU
6 Conv (64, 3)
7 BilinearUpsample (LR, 2)
8 ElementwiseAdd (#6,#7)

neighboring frames, and RCAB denotes the residual chan-
nel attention block [12]. The reconstructor and upsampler
architectures of EAVSR+ follow BasicVSR++ [2].

C. Effect of Pre-Trained Optical Flow Network

As described in Sec. 4.2 of the main text, we follow
BasicVSR [1] and BasicVSR++ [2], using a light-weight
pre-trained optical flow network SPyNet [7] to calculate the
basic offset between neighboring frames. In this section, we
replace SPyNet with PWC-Net [8] to verify the effect of the
proposed ResflowNet and DeformNet when taking a better
and more robust pre-trained optical flow network.

Table C shows the experiment results on RealVSR
dataset [10]. The first and the fourth rows demonstrate
that despite deploying a better optical flow network, the
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Figure A. Visual comparison between different data post-processing strategies during training. The first ✓ or × means using color correction
or not, and the second ✓ or × means using spatial position alignment or not. Please zoom in for details.

LR EDVR [9] MANA [11] BasicVSR [1] TTVSR [6]

ETDM [5] BasicVSR++ [2] EAVSR EAVSR+ HR

Figure B. Visual comparison on RealVSR dataset [10]. Our methods EAVSR+ and EAVSR can better recover the window contours,
especially the window in the upper left corner. Please zoom in for details.

Table C. Quantitative comparison with the different pre-trained op-
tical flow networks on RealVSR [10] dataset.

Optical Flow
Network

ResflowNet DeformNet PSNR SSIM

SPyNet [7] × × 24.13 0.7854
SPyNet [7] ✓ × 24.24 0.7902
SPyNet [7] ✓ ✓ 24.41 0.7953

PWC-Net [8] × × 24.19 0.7847
PWC-Net [8] ✓ × 24.26 0.7906
PWC-Net [8] ✓ ✓ 24.44 0.7939

final performance still has a limited improvement on real-
world data. Taking our ResflowNet to compensate for the
error caused by the pre-trained flow network, the second
and fifth rows show that the performance promotes signif-
icantly. Moreover, the third and the last lines indicate the
validity of our DeformNet as well.

D. Effect of Training Loss
In this section, we show some visual results in Fig A

when using different data post-processing strategies during
training, which is mentioned in Sec. 6.2 of the main text.
When neither color correction nor spatial position align-
ment is applied, the results cannot restore the correct de-

tails. When we use the PWC-Net [8] to mitigate the spatial
misalignment between LR and HR, the result can generate
more details. Moreover, if we only apply the guided image
filtering [4] to correct the color of HR, the result can keep
the brightness consistent with LR but lead to blurry. Utiliz-
ing both color correction and spatial position alignment can
recover more textures and remain color consistent with the
LR image.

E. Visual Comparison
In this section, we provide more qualitative comparisons

between our methods and other state-of-the-art algorithms
on RealVSR [10] dataset (see Fig. B, Fig. C and Fig. F),
and MVSR4× dataset (see Fig. D, Fig. E and Fig. G), re-
spectively. Specifically, we show results of methods trained
only with ℓ1 loss in Figs B∼E, and methods trained with
additional adversarial loss in Figs F∼G, respectively.
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Figure C. Visual comparison on RealVSR dataset [10]. Our methods EAVSR+ and EAVSR can recover the characters better. Please zoom
in for details.

LR EDVR [9] MANA [11] BasicVSR [1] TTVSR [6]
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Figure D. Visual comparison on MVSR4× dataset. Our methods EAVSR+ and EAVSR can generate clearer contours with fewer artifacts.
Please zoom in for details.

LR EDVR [9] MANA [11] BasicVSR [1] TTVSR [6]

ETDM [5] BasicVSR++ [2] EAVSR EAVSR+ HR

Figure E. Visual comparison on MVSR4× dataset. Our methods EAVSR and EAVSR+ can restore sharper branches. Please zoom in for
details.
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LR RealBasicVSR [3] EAVSRGAN+ HR

LR RealBasicVSR [3] EAVSRGAN+ HR

Figure F. Visual comparison on RealVSR [10] dataset between methods trained with adversarial loss. Our results from EAVSRGAN+ have
more details and are more photo-realistic. Please zoom in for more details.

LR RealBasicVSR [3] EAVSRGAN+ HR

LR RealBasicVSR [3] EAVSRGAN+ HR

Figure G. Visual comparison on MVSR4× dataset between methods trained with adversarial loss. Our results from EAVSRGAN+ have
clearer edges and are more photo-realistic. Please zoom in for more details.
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