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Table A. Structure configuration of the encoder. The kernel size of
‘Conv’ layers is 3 x3.

# | Layer name(s)

0 | Conv (3,64), ReLU

1 | Conv (64,64), ReLU
2 | Conv (64,128), ReLU
3 (
4 (

Conv (128, 128), ReLU
Conv (128, 256), ReLU

A. Content
The content of this supplementary material involves:

» Network structures of encoder, reconstructor and up-
sampler in Sec. B.

* Effect of pre-trained optical flow network in Sec. C.
* Effect of training loss in Sec. D.

* More visual comparisons in Sec. E.

B. Network Structures of Encoder, Recon-
structor and Upsampler

To estimate the effectiveness of the proposed method
comprehensively, we select bidirectional [!] and second-
order grid [2] as our temporal propagation scheme, named
EAVSR and EAVSR+, respectively. Table A shows the de-
tailed architectures of the encoder in EAVSR and EAVSR+.
Table B shows the detailed architectures of the reconstruc-
tor and upsampler in EAVSR. ‘Propagated Feature’ in Ta-
ble B refers to the well-aligned features propagated from

Table B. Structure configuration of the combination of reconstruc-
tor and upsampler. The kernel size of ‘Conv’ layers is 3x3 and
the kernel size of ‘Conv1x 1’ layer is 1x 1. The negative slope of
LeakyReLU is 0.1.

| Layer name(s)

Concat [LR, Propagated Feature]

Conv (67,64), LeakyReLU

RCAB x 30

Conv 1x1 (64, 64), LeakyReLU

Conv (64, 256), PixelShuffle, LeakyReLU
Conv (64, 64), LeakyReLU

Conv (64, 3)

BilinearUpsample (LR, 2)
ElementwiseAdd (#6, #7)

R QAN BV N~ *

neighboring frames, and RCAB denotes the residual chan-
nel attention block [12]. The reconstructor and upsampler
architectures of EAVSR+ follow BasicVSR++ [2].

C. Effect of Pre-Trained Optical Flow Network

As described in Sec. 4.2 of the main text, we follow
BasicVSR [1] and BasicVSR++ [2], using a light-weight
pre-trained optical flow network SPyNet [7] to calculate the
basic offset between neighboring frames. In this section, we
replace SPyNet with PWC-Net [8] to verify the effect of the
proposed ResflowNet and DeformNet when taking a better
and more robust pre-trained optical flow network.

Table C shows the experiment results on Real VSR
dataset [10]. The first and the fourth rows demonstrate
that despite deploying a better optical flow network, the
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Figure A. Visual comparison between different data post-processing strategies during training. The first v’ or x means using color correction
or not, and the second v’ or x means using spatial position alignment or not. Please zoom in for details.
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Figure B. Visual comparison on RealVSR dataset [10]. Our methods EAVSR+ and EAVSR can better recover the window contours,
especially the window in the upper left corner. Please zoom in for details.

Table C. Quantitative comparison with the different pre-trained op-
tical flow networks on Real VSR [10] dataset.

tails. When we use the PWC-Net [8] to mitigate the spatial
misalignment between LR and HR, the result can generate
more details. Moreover, if we only apply the guided image

O};\t}ical Fll?W ResflowNet DeformNet PSNR  SSIM filtering [4] to correct the color of HR, the result can keep
etwor the brightness consistent with LR but lead to blurry. Utiliz-

SPyNet [7] X X 2413 0.7854 ing both color correction and spatial position alignment can
SPyNet [7] v x 2424  0.7902 recover more textures and remain color consistent with the
SPyNet [7] v v 2441  0.7953 LR image.

PWC-Net [8] X X 24.19 0.7847

PWC-Net [¢] v x 2426 0.7906 E. Visual Comparison

PWC-Net [8] v v 24.44  0.7939

In this section, we provide more qualitative comparisons
between our methods and other state-of-the-art algorithms

final performance still has a limited improvement on real-
world data. Taking our ResflowNet to compensate for the
error caused by the pre-trained flow network, the second
and fifth rows show that the performance promotes signif-
icantly. Moreover, the third and the last lines indicate the
validity of our DeformNet as well.

D. Effect of Training Loss

In this section, we show some visual results in Fig A
when using different data post-processing strategies during
training, which is mentioned in Sec. 6.2 of the main text.
When neither color correction nor spatial position align-
ment is applied, the results cannot restore the correct de-

on RealVSR [10] dataset (see Fig. B, Fig. C and Fig. F),
and MVSR4 x dataset (see Fig. D, Fig. E and Fig. G), re-
spectively. Specifically, we show results of methods trained
only with ¢; loss in Figs B~E, and methods trained with
additional adversarial loss in Figs F~G, respectively.



Figure C. Visual comparison on Real VSR dataset [ 10]. Our methods EAVSR+ and EAVSR can recover the characters better. Please zoom
L ‘ ‘

in for details.
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Figure D. Visual comparison on MVSR4 x dataset. Our methods EAVSR+ and EAVSR can generate clearer contours with fewer artifacts.
Please zoom in for details.

Figure E. Visual comparison on MVSR4 x dataset. Our methods EAVSR and EAVSR+ can restore sharper branches. Please zoom in for
details.



EAVSRGAN+

RealBasicVSR [ ?]

o

Figure F. Visual comparison on Real VSR [10] dataset between methods trained with adversarial loss. Our results from EAVSRGAN+ have
more details and are more photo-realistic. Please zoom in for more details.
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Figure G. Visual comparison on MVSR4 x dataset between methods trained with adversarial loss. Our results from EAVSRGAN+ have
clearer edges and are more photo-realistic. Please zoom in for more details.
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