
Enhanced Thermal-RGB Fusion for Robust Object Detection

Wassim El Ahmar
University of Ottawa

Ottawa, Ontario, Canada
welahmar@uottawa.ca

Yahya Massoud
University of Ottawa

Ottawa, Ontario, Canada
ymass049@uottawa.ca

Dhanvin Kolhatkar
Sensor Cortek Inc

Ottawa, Ontario, Canada
dhanvin@sensorcortek.ai

Hamzah AlGhamdi
University of Ottawa

Ottawa, Ontario, Canada
halgh091@uottawa.ca

Mohammad Alja’afreh
University of Ottawa

Ottawa, Ontario, Canada
jaafreh@uottawa.ca

Riad Hammoud
Plus AI

Santa Clara, California, USA
riad.hammoud@plus.ai

Robert Laganiere
University of Ottawa

Ottawa, Ontario, Canada
laganier@eecs.uottawa.ca

Abstract

Thermal imaging has seen rapid development in the last
few years due to its robustness in different weather and
lighting conditions and its reduced production cost. In this
paper, we study the performance of different RGB-Thermal
fusion methods in the task of object detection, and introduce
a new RGB-Thermal fusion approach that enhances the per-
formance by up to 9% using a sigmoid-activated gating
mechanism for early fusion. We conduct our experiments on
an enhanced version of the City Scene RGB-Thermal MOT
Dataset where we register the RGB and corresponding ther-
mal images in order to conduct fusion experiments. Finally,
we benchmark the speed of our proposed fusion method and
show that it adds negligible overhead to the model process-
ing time. Our work would be useful for autonomous systems
and any multi-model machine vision system. The improved
version of the dataset, our trained models, and source code
are available at https://github.com/wassimea/rgb-thermal-
fusion.

1. Introduction

The rapid evolution of machine learning models in com-
puter vision has led to increased focus and effort in deploy-
ing such systems in real-world environments. Such sys-
tems require reliable and robust performance under differ-
ent lighting and weather conditions. For this reason, ma-
chine vision systems often utilize different types of sen-

sors to mitigate the limitations of individual sensors. With
the advent of deep convolutional neural networks (CNNs),
computer vision research has seen significant improvements
in many different applications such as image classifica-
tion [17, 26, 38, 47], object detection [9, 21, 40], semantic
segmentation [4, 5, 35, 50], instance segmentation [1, 16],
multiple object tracking (MOT) [45, 46, 48, 49] and odome-
try estimation [22, 29, 42]. Solutions to these tasks tend to
rely on a single type of input data for predictions, but can
be improved by using multi-modal sensor fusion to combine
information from multiple, ideally complementary, types of
data [6, 20, 23, 30, 31, 43].

1.1. Multi-modal Sensor Fusion

Multi-modal sensor fusion can be used in computer vi-
sion tasks to alleviate the disadvantages of each unique
type of sensor. For example, sensors operating in the visi-
ble spectrum suffer in poor lighting and weather conditions
but perform quite well when those conditions are decent.
Thermal sensors, on the other hand, operate well in poor
lighting and weather conditions but usually have a lower
resolution [10, 39]. Fusing information from both spectra
can be expected to mitigate the limitations of each sen-
sor. Data collected from the different sensors is fused in
one of many ways to enable the system to predict more
accurate results. These fusion techniques are classified
into three main groups depending on where in the pro-
cessing pipeline fusion is implemented: early-, mid-, and
late-fusion (before, during, and after feature extraction re-
spectively). These techniques also vary from computation-
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ally simple but limited operations (e.g. element-wise arith-
metic [23]) to more complex ones with the potential for bet-
ter fusion results [27, 30].

1.2. 2D Object Detection

Deep CNNs have achieved impressive results in 2D ob-
ject detection [3,9,16,21,24,40,41] - the task of classifying
and predicting the location of objects in a scene - which has
been used for applications such as face detection [18] and
autonomous driving [2, 6, 15, 44]. In addition, object detec-
tion is often the first step in other computer vision tasks like
MOT [46,48]. Deep learning-based object detection models
are most often trained to detect objects on frames from RGB
cameras rather than other types of sensors. Thermal sensors
prove to be more robust than RGB cameras in some scenar-
ios [10, 39], particularly in low-light settings such as night-
time assisted driving. The performance of systems relying
on thermal and RGB sensors can be improved through sen-
sor fusion, which should increase a network’s performance
by improving the quality of the input information, leverag-
ing the important features from both sensors.

1.3. Contributions

This paper introduces the following contributions to the
field of RGB-Thermal sensor fusion, applicable for au-
tonomous systems and multi-modal machine vision sys-
tems:

• A novel fusion approach for RGB and thermal images
that improves performance by up to 9% compared to
existing fusion approaches for the task of 2D object
detection.

• An augmented public benchmark of 10, 000 registered
RGB-Thermal frames on which we report comparative
results of our proposed approach and with state-of-the-
art techniques. This enhanced dataset will be a valu-
able resource for RGB-Thermal fusion future research.

• Comparison of the performance of object detectors us-
ing different backbones, with and without the utiliza-
tion of existing fusion operations. We benchmark all
experiments on 3 different computing platforms and
show that our proposed fusion method does not add
any noticeable overhead.

The remainder of this paper is organized as follows. We
provide a review of standard sensor fusion operations, ob-
ject detectors, and the use of thermal sensors in the litera-
ture in Section 2. We elaborate on our work to improve the
City Scene RGB-Thermal MOT Dataset in Section 3. We
discuss the sensor fusion methodology and architecture in
Section 4. We elaborate on our experiments and the results
achieved in Section 5, and conclude this paper in Section 6.

2. Literature Review
Sensor fusion, object detection, and the utilization of

thermal sensors in computer vision tasks have been signifi-
cantly explored in the literature. In this section, we provide
an overview of some of this work that we have built upon.

2.1. Object Detection

Object detection methods are divided into two cate-
gories: two-stage and one-stage. Methods in the former cat-
egory use a first stage to generate object proposals that are
refined and classified by a second stage [3,9,13,14,16,34],
while those in the one-stage category bypass the region pro-
posal stage and generate predictions directly [21,24,25,32].
One-stage detectors have become the more popular and
standard apporach for 2D object detection as they are gen-
erally faster, and the accuracy of these models have become
comparable to that of two-stage approaches.

The Task-aligned Head (T-Head) and Task Alignment
Learning (TAL) concepts were devised by Feng et al. [11]
for their Task-aligned One-stage Object Detection (TOOD)
network. The T-head’s purpose is to increase feature sharing
between the localization and classification tasks, as com-
pared to the traditional independent design (one set of fea-
tures for localization and one for classification). These
shared features are then fed through one Task-aligned Pre-
dictor (TAP) for each task to generate aligned final pre-
dictions. On the other hand, the TAL is designed to im-
prove anchor selection to ensure task alignment. Combin-
ing ResNeXt-101 with TOOD, Feng et al. achieved an mAP
of 51.1 on the MS-COCO test-dev set.

2.1.1 ResNet

He et al. [17] introduced the residual block to enable the
training of significantly deeper models than previously pos-
sible. The architecture of the residual block uses iden-
tity mappings as shortcuts around consecutive convolutional
layers. The resulting residual network, or ResNet, is pre-
sented in multiple versions depending on its number of lay-
ers: ResNet-18, ResNet-34, ResNet-50, ResNet-101, and
ResNet-152. Each version is composed of 5 stages, each
composed of residual blocks of two or three convolutional
layers.

2.1.2 ConvNeXt

Liu et al. [26] proposed ConvNeXt as an update of the
ResNet architecture. They change training parameters (us-
ing the AdamW optimizer and new data augmentation tech-
niques), the number of residual blocks in each stage (mak-
ing the 3rd stage heavier and the other stages lighter), the
structure of the first layer (using a smaller non-overlapping
kernel), and how downsampling layers are implemented
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(between stages instead of at the end of each stage). Addi-
tionally, the authors use depth-wise convolutions, inverted
bottleneck design, and larger kernel sizes, replace ReLU
activation functions with GELU and Batch Normalization
with Layer Normalization, and reduce the number of each.
All these design changes result in a significant increase in
accuracy for multiple tasks.

2.2. Multi-Modal Fusion

Sensor fusion can be used with a variety of combinations
of sensors but is expected to achieve the most noticeable
performance by fusing data from complimentary sensors.
Fusion methods can be classified in one of three categories
depending on when fusion occurs in the network’s structure:
early-fusion, mid-fusion, or late-fusion.

Massoud [27] implements learnable fusion from a Li-
DAR scanner and an RGB camera. The approach uses fu-
sion methods with the LiDAR bird’s eye view (BEV) rep-
resentation, the LiDAR’s frontal view (FV) representation,
and RGB frames for the tasks of 2D, 3D, and BEV ob-
ject detection. The method proposed for learnable fusion,
Multi-modal Factorized Bilinear Pooling (MFB), is tested
as an early and mid-fusion approach and is compared with
the more straight-forward solutions of element-wise addi-
tion [23] and element-wise multiplication.

Pasandi et al. [30] expand upon this work by comparing
the same set of fusion operations, but add in feature concate-
nation and their proposed Bilaterally-Guided Fusion (BGF).
The authors compare these techniques as either early-fusion
or mid-fusion in the context of the 2D object detection task
on the KITTI dataset. They present a detailed analysis of
performance and computational complexity.

As the work in [27, 30] shows that early fusion methods
out-perform mid and late fusion approaches, we focus on
early fusion in our work.

2.3. Thermal Sensors in Computer Vision

Thermal sensors are increasingly used in recent work [7,
10, 19, 28], especially due to their ability to operate well
regardless of lighting conditions [10, 39].

Nowruzi et al. [28] proposed a computationally cheap
CNN approach to detect the number of passengers in a ve-
hicle. Using an in-vehicle thermal sensor and a small neu-
ral network enables deployment in embedded systems while
preserving competitive performance and protecting the pri-
vacy of the passengers. Kristo et al. [19] experiment with
and compare the performance of various object detection
approaches [3, 25, 33, 34] with thermal sensors. The dataset
used for the experiments is composed of images captured at
night in various weather conditions. Dai et al. [7] propose
the TIRNet object detection approach based on VGG [37]
and collect the China Thermal Infrared (CTIR) dataset.

El Ahmar et al. [10] collected the City Scene RGB-
Thermal MOT Dataset and compare tracking performance
on its RGB and thermal images, achieving superior results
on the latter. The dataset is made up of 15 sequences for a
total of 1997 annotated frames for each sensor.

3. Improvements to City Scene Dataset
We conduct our experiments on the City Scene RGB-

Thermal MOT Dataset [10]. The dataset is composed of
thermal and RGB images collected through two different
sensors mounted on a fixed support. During data collection,
the sensors were static and aimed at a city intersection.
Cars and pedestrians were annotated up to a distance of
300m and 100m respectively.

The collected data contains sequences taken during
different times of the day (morning, afternoon, and night)
making it ideal for experimenting the efficacy of different
sensor fusion approaches under different conditions. How-
ever, even though the sensors are fixed close to each other,
the captured images were not registered and had different
resolutions. In order to conduct fusion experiments, the
collected RGB and corresponding thermal images needed
to be aligned to be in the same coordinate system.

To achieve this, we utilize an ORB feature extractor [36]
to extract 5000 features from the thermal image and
the corresponding RGB image (after being converted to
grayscale). We then take the top 90% matched features
and find the homography between the two images using
the RANSAC algorithm [12] running for 10000 iterations.
Calculating the homography matrix is not guaranteed to be
accurate from one pair of thermal-RGB images. However,
since the cameras and support are fixed, it is enough
for the homography to be accurate for only one pair of
thermal-RGB images, and then this calculated homography
can be applied to all images in the dataset.

As a result of this transformation, both thermal and RGB
images in the enhanced dataset have the same resolution of
500× 425, and share the same annotation file. This contri-
bution allows for thermal-RGB sensor fusion experiments
to be conducted and simplifies multi-modal training of ob-
ject detection and MOT algorithms.

4. RGB-T Fusion Experiment
4.1. Architectural Overview

The architecture of our RGB-T fusion framework con-
sists of (1) a data preprocessing module, (2) a backbone
network, and (3) an object detector. The data preprocess-
ing module loads the registered frames from the City Scene
dataset. Each frame contains a pair of images: an RGB
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image and a thermal image. We compare the performance
of fusion experiments to two different baseline models. The
first baseline model uses RGB-only input. The second base-
line uses thermal-only input. Other experiments perform a
fusion operation on both modalities before proceeding to
the next step. This type of fusion is denoted as early fusion
and is applied before feature extraction. Moreover, the data
preprocessing module standardizes the input images before
feeding them to the backbone network.

The second component is the backbone network, which
performs feature extraction on either its uni-modal or multi-
modal input. We experiment using ResNet-50 [17] and
ConvNeXt [26]. Both backbone networks are pre-trained
on the ImageNet [8] dataset. The final component is the
detector. We use TOOD [11] as our single-stage 2D object
detector.

4.2. Fusion Operators

We aim to experiment with our multi-modal detector
with two categories of fusion operators: (1) arithmetic-
based and (2) learnable fusion. The arithmetic-based opera-
tions are advantageous in terms of processing speed since
they do not include any learnable weights. Meanwhile,
learnable fusion operators have processing overhead due to
the layers of trainable parameters. That being said, learn-
able fusion operators provide an edge over arithmetic-based
fusion when it comes to their learning capacity. This is due
to their ability to capture and learn sophisticated interac-
tions between features from different input modalities.

Following recent work [27, 30], we use two arithmetic-
based operators: (1) element-wise addition and (2) element-
wise multiplication, presented in Equation 1 and Equation 2
respectively. To further enrich our set of experiments, we
use two learnable fusion operators: (1) multi-modal factor-
ized bilinear pooling and (2) bilaterally-guided fusion, il-
lustrated in Figure 1. We implement the aforementioned
fusion operators using convolutional layers in order to keep
our architecture fully convolutional. We use ReLU as the
main activation function, a padding value of 1, a kernel size
of 3 in all of our convolution operations, and batch normal-
ization.

Fadd = Irgb + Ithermal (1)

Fmul = Irgb · Ithermal (2)

4.3. Enhanced Sigmoid Gating

In order to enhance the robustness of fusion operators
in multi-modal training, we introduce a novel fusion gating
mechanism that relies on the sigmoid function. The gating
mechanism is shown in Equation 3. The sigmoid-based gat-
ing mechanism, which is simple yet effective, is designed to

Figure 1. Left: A diagram illustrating the bilaterally-guided fusion
"BGF" operator. Right: A diagram illustrating the multi-modal
factorized bilinear pooling "MFB" fusion operator.

learn the significance of each modality on a per-pixel basis
before performing the multi-modal fusion operation.

Gσ = Convc−→c(σ(I))
I = I · Gσ

(3)

The gating mechanism is performed by feeding an input
modality I, either an RGB or thermal input, into a sigmoid-
activated point-wise convolution operation while preserv-
ing the number of channels of the input modality. The re-
sulting sigmoid gate produces a probability value for each
pixel, indicating its importance. The gate Gσ is comprised
of probability values ranging from 0 to 1, where a value of
1 indicates a significant pixel and a value of 0 indicates in-
significance. The higher the pixel probability, the higher its
significance. Finally, the probability gate Gσ is multiplied
by the original input via point-wise operation. The multipli-
cation will result in keeping the values of significant pixels,
but more importantly, diminishing the values of insignifi-
cant pixels.

For RGB-thermal fusion, this gating mechanism proves
quite effective as thermal and RGB images are complimen-
tary to each other (Thermal sensors perceive well at night,
while RGB sensors do not. RGB sensors perceive well
when there is little variance between foreground and back-
ground, while thermal sensors do not. etc.). In addition,
since there is a 1 : 1 mapping between RGB pixels and cor-
responding thermal pixels, the gating mechanism can reli-
ably learn the significance of each pixel in each modality.

5. Experiments
In this section, we present the results of applying both

fixed and learnable fusion operators as an early fusion tech-
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nique for RGB-T data to perform the task of 2D object de-
tection. We first provide our detailed experimental setting in
5.1, then we provide a quantitative analysis of early sensor
fusion in 5.2, followed by reporting results of an enhanced
fusion method in 5.3. Moreover, we qualitatively analyze
in 5.4 the performance of our trained detectors on a set of
chosen scenarios from the City Scene dataset. Lastly, we
provide an analysis of inference time in 5.5 by benchmark-
ing our detectors on three different computing platforms.

5.1. Experimental Setting

To assess the performance of employing early sensor fu-
sion mechanisms, we train and evaluate two different mod-
els on the City Scene RGB-T dataset on the task of 2D ob-
ject detection with a special focus on the ’Car’ class. The
City Scene dataset contains a total of 1968 samples: each
sample corresponds to a registered pair of RGB and ther-
mal images along with their corresponding 2D annotations.
We use a 75/25 split on the dataset, where 1562 samples are
used for training and 406 are used for validation.

We perform our experiments using two variants of the
TOOD [11] object detector, each variant contains a differ-
ent backbone network, namely, ResNet-50 [17] and Con-
vNeXt [26]. Backbone networks are pre-trained on Ima-
geNet [8]. We freeze the first stage of ResNet-50 while
keeping the remaining three stages trainable. We do not
freeze any stage in ConvNeXt. Both variants of TOOD are
trained using the SGD optimizer, with an initial learning
rate of 0.01, a momentum of 0.9, and a weight decay of
0.0001. Models are trained for 12 epochs, and we report
the best-performing checkpoint out of the 12. We use aver-
age precision (AP%) with 50% intersection-over-union as a
quantitative metric to assess detection accuracy, along with
providing precision-recall curves. Moreover, we provide a
qualitative analysis of scenes chosen from the City Scene
dataset.

5.2. Evaluation of Early Sensor Fusion

In Table 1, we report the results of training two vari-
ants of the TOOD 2D object detector with four different fu-
sion operators. These fusion operators are grouped into two
subcategories: (1) arithmetic-based fusion operators, and
(2) learnable fusion operators. The arithmetic-based opera-
tors are (1) element-wise addition (ADD) and (2) element-
wise multiplication (MUL). The learnable operators are
(1) multi-model factorized bilinear pooling (MFB) and (2)
bilaterally-guided fusion (BGF). We specify two baselines
in our comparison: (1) RGB-only and (2) thermal-only. In
each of these baseline models, only one modality is fed to
the detector. The choice of our baseline models helps us
find the delta of performance between uni- and multi-modal
settings.

We first assess our baselines: RGB-only and thermal-

only detectors, which represent the uni-modal setting. As
observed in Table 1, thermal-only consistently outperforms
RGB-only with a considerable margin when using both
ResNet-50 and ConvNeXt with a delta performance of
(+28.6%) and (+38.5%), respectively. This finding ren-
ders thermal-only a more suitable modality in the 2D object
detection task as thermal data is independent of light and is
prone to extreme light conditions as opposed to RGB sen-
sors. This result is expected as one-third of the validation
set of the City Scene dataset is taken in poor lighting condi-
tions.

We aim to enhance the performance of the detector by
integrating the data from both modalities. In the first set of
fusion experiments, we train and evaluate a TOOD [11] 2D
object detector with a ResNet-50 [17] backbone network.
Applying early-fusion results in a large performance boost
compared to the RGB-only baseline, with a maximum of
(+31.3%) increase for element-wise multiplication, and a
minimum of (+22.1%) increase for multi-modal factorized
bilinear pooling. Furthermore, both arithmetic-based fu-
sion operators outperform the thermal-only baseline, with
a (+1.9%) increase for element-wise addition and (+2.7%)
increase for element-wise multiplication. Fusing RGB with
thermal with the multi-modal factorized bilinear pooling re-
sults in a (−6.5%) decrease in the average-precision metric,
while bilateral-guided fusion results in a (+2.1%) increase.
With the exception of multi-modal factorized bilinear pool-
ing, RGB data can contribute to the increase of the overall
performance of an object detector. The best-performing de-
tector fused both modalities by applying element-wise mul-
tiplication to reach an average precision of 75.4%.

In our second set of fusion experiments, we train and
evaluate a TOOD [11] 2D object detector with a Con-
vNeXt [26] backbone network. Compared to the RGB-only
baseline, all fusion operators are showing large performance
boosts following the same trend of training with ResNet-
50. Both arithmetic-based fusion operators resulted in de-
creased performance when compared to the thermal-only
baseline. However, multi-modal bilinear fusion and bilat-
eral guided fusion both showed a performance increase of
(+3.3%) and (+2.2%), respectively, showing the superior-
ity of learning-based fusion operators. Multi-modal bilin-
ear fusion helped the best-performing detector to achieve
71.8% average precision.

In Figure 2, we plot the precision-recall curves for all
fusion operators, grouped by the corresponding backbone
network. Consistent trends are observed with the superior-
ity of fusion operators to both baselines in the majority of
experiments.

5.3. Evaluation of Enhanced Sigmoid Gating

In Table 2, we demonstrate the performance of the en-
hanced sigmoid gates that are incorporated with the already
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Object
Detector

Backbone
Network

Fusion
Operation

Average Precision
Car (AP50)

∆ from
Thermal-only

∆ from
RGB-only

TOOD ResNet50

RGB 44.1% -28.6% -
Thermal 72.7% - +28.6%

ADD 74.1% +1.9% +30.0%
MUL 75.4% +2.7% +31.3%
MFB 66.2% -6.5% +22.1%
BGF 74.8% +2.1% +30.7%

TOOD ConvNeXt

RGB 30.1% -38.5% -
Thermal 68.6% - +38.5%

ADD 64.0% -4.6% +33.9%
MUL 67.7% -0.9% +37.6%
MFB 71.9% +3.3% +41.8%
BGF 70.8% +2.2% +40.7%

Table 1. Contrasting 2D detection accuracy, i.e. average precision, of four different early fusion operators.

Figure 2. Right: Precision-Recall curves for TOOD with ResNet-50 as a backbone network. Left: Precision-Recall curves for TOOD with
ConvNeXt as a backbone network. All plots aim to contrast the detection accuracy of fusion operators versus baseline models.

proposed fusion operators. Sigmoid gates show significant
improvements when added to the TOOD ResNet-50 exper-
iments, as both learnable fusion operators, namely multi-
modal factorized bilinear pooling and bilateral guided fu-
sion, with staggering (+9%) and (+5%) increases in detec-
tion accuracy, respectively. Meanwhile, the sigmoid gates
have shown less impact on arithmetic-based fusion opera-
tors, with a (-2%) decrease for element-wise addition, and
a (+0.5%) increase for element-wise multiplication. Af-
ter adding the sigmoid gates to TOOD with the ResNet-50
backbone network, the best-performing model has changed
from element-wise multiplication which scored 75.4%
AP50 to bilateral-guided fusion, scoring 79.8%, achieving

a (+4.4%) increase.

Furthermore, we add the sigmoid gates to the TOOD
detector with ConvNeXt backbone network. From Ta-
ble 2, we observe an increase of average precision for both
arithmetic-based fusion operators, addition and multiplica-
tion, of (+7.6%) and (+1.8%) respectively. When incorpo-
rated with learnable fusion operators, sigmoid gates results
in a slight decrease in average precision for both multi-
modal factorized pooling (-0.2%) and bilateral-guided fu-
sion (-0.7%). To conclude this analysis, we note the impor-
tance of carefully selecting the appropriate fusion operators
when using sigmoid gates in multi-modal sensor fusion.
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Backbone
Network

Fusion
Op.

Sig. Gates Sig. Gates
✓

∆

ResNet50

ADD 74.1% 72.1% -2.0%
MUL 75.4% 75.9% +0.5%
MFB 66.2% 75.2% +9.0%
BGF 74.8% 79.8% +5.0%

ConvNeXt

ADD 64.0% 71.6% +7.6%
MUL 67.7% 69.5% +1.8%
MFB 71.9% 71.7% -0.2%
BGF 70.8% 70.1% -0.7%

Table 2. Demonstrating the performance boost that results from
adding the sigmoid gated mechanism to the fusion operators. The
experiments are conducted on the TOOD object detector with two
different backbone networks. Experiments are compared based on
their average precision (AP50).

5.4. Qualitative Analysis

In this subsection, we aim to showcase and qualitatively
analyze the performance of the fusion operators. We put
RGB and thermal images side-by-side and visualize the
bounding boxes on top of them. We visualize groundtruth
bounding boxes with a green color and the predictions with
a red color. We filter all bounding boxes with a minimum
area of 150 pixels to simplify the visualization. Also, we
apply a minimum detection confidence score of 40% for all
detectors.

In Figure 3, we choose a day frame from City Scene [10]
dataset. Our first baseline, RGB-only, does not perform
well on this frame, predicting only two true positives out of
five cars, as well as predicting one false positive. This per-
formance reflects the detection accuracy in Table 1 and Fig-
ure 2. Our second baseline, thermal-only, performs slightly
better, by predicting three out of five cars. Fusing both
modalities using the bilinear-guided fusion results in detect-
ing all five cars in this frame. Moreover, when observing
the confidence scores of all three detectors, we find that the
fusion-based detector produces the most confident bound-
ing boxes, as four out of the five bounding boxes have a
confidence score over 90%.

We also choose a night frame from the City Scene dataset
and visualize the results in Figure 4. Our first baseline,
RGB-only, does not perform well by predicting three cars
out of six in addition to one false positive. Our second
baseline, thermal-only, detects all six, but with relatively
low confidence scores. The use of bilinear-guided fusion
results in the detection of all six cars in this frame, with all
detections having confidence scores above 90%. This high-
lights the effectiveness of multi-modal training to leverage
the strengths of multiple sensors which produces more ac-
curate and confident detections.

Figure 3. A day frame from the City Scene [10] dataset. The frame
is fed into both baselines (RGB-only and thermal-only) as well as a
fusion method (BGF). Green boxes correspond to the groundtruth.
Red boxes correspond to predictions. Each bounding box has an
index from 0 to N . Confidence scores (%) of bounding boxes are
positioned to the left of each box’s index.

Figure 4. A night frame from City Scene [10] dataset. The frame is
fed into both baselines (RGB-only and thermal-only) as well as a
fusion method (BGF). Green boxes correspond to the groundtruth.
Red boxes correspond to predictions. Each bounding box has an
index from 0 to N . Confidence scores (%) of bounding boxes are
positioned to the left of each box’s index.

5.5. Inference Time and Benchamrking

In order to study the computational cost of the differ-
ent fusion operations and the proposed enhanced gating
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Object
Detector

Input
Modality

Goose Xavier TX2

sec fps sec fps sec fps

TOOD w/ ResNet50

RGB-only 0.06 17.46 0.77 1.29 1.34 0.74

Thermal-only 0.06 17.46 0.77 1.29 1.34 0.74

ADD 0.06 17.57 0.78 1.28 1.34 0.74

ADD w/ Gating 0.06 17.34 0.78 1.28 1.35 0.73

MUL 0.06 17.65 0.77 1.29 1.34 0.74

MUL w/ Gating 0.06 17.34 0.78 1.28 1.35 0.73

MFB 0.06 16.54 0.82 1.22 1.44 0.69

MFB w/ Gating 0.09 16.95 0.84 1.20 1.45 0.70

BGF 0.06 16.20 0.95 1.05 1.78 0.56

BGF w/ Gating 0.06 16.05 0.96 1.14 1.81 0.55

TOOD w/ ConvNeXt

RGB-only 0.06 16.18 0.89 1.12 1.62 0.62

Thermal-only 0.06 16.18 0.89 1.12 1.62 0.62

ADD 0.06 16.29 0.89 1.12 1.62 0.62

ADD w/ Gating 0.06 15.53 0.90 1.11 1.65 0.60

MUL 0.06 15.88 0.89 1.12 1.63 0.61

MUL w/ Gating 0.06 15.53 0.90 1.11 1.63 0.61

MFB 0.06 15.51 0.94 1.06 1.73 0.58

MFB w/ Gating 0.07 14.99 0.95 1.05 1.75 0.57

BGF 0.07 14.94 1.07 0.94 2.06 0.49

BGF w/ Gating 0.07 14.43 1.08 0.93 2.09 0.48

Table 3. Inference time and benchmarking results on NVIDIA GeForce RTX 3090, Jetson Xavier, and Jetson TX2. The reported results
include inference time in seconds (sec) and the total number of frames-per-second (fps).

method, we benchmark the inference speed of TOOD with
ResNet50 and ConvNext backbones when applying the dif-
ferent fusion operations. The benchmarking experiments
were conducted on three different computing platforms:

• Goose: Powerful computing machine equipped with
an NVIDIA RTX 3090 GPU (10496 cores).

• Xavier: NVIDIA Jetson Xavier edge computing plat-
form (512-Core Volta GPU).

• TX2: NVIDIA Jetson TX2 edge computing platform
(256-Core Pascal GPU).

The benchmarking results are given in Table 3. The re-
sults confirm the statement that learnable fusion operators
(MFB and BGF) have a higher computational requirement
and thus higher inference latency than arithmetic fusion op-
erators. However, the results also show that the utilization
of our proposed enhanced sigmoid gating adds negligible
overhead to the fusion operators.

6. Conclusion

In this paper, we contribute an improvement to the City
Scene RGB-Thermal MOT Dataset by registering RGB and
thermal frames, making the dataset an important resource
for RGB-thermal fusion research. In addition, we conduct
experiments to study the efficacy of different existing arith-
metic and learnable fusion methods for the task of object
detection using thermal and RGB images. We propose a
novel enhanced sigmoid gating method to enhance the fu-
sion performance of thermal and RGB images, and report
the results of applying this mechanism to both arithmetic
and learnable fusion methods. Finally, we benchmark the
inference speed of the proposed fusion operators on three
different computing platforms with different specifications
and show that the proposed enhanced gating adds negligible
overhead.
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