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Abstract

Image dehazing is a method to reduce the effects of haze,
dust, or fog in images in order to provide a clear view of the
observed scene. A large variety of traditional and machine
learning-based approaches exists in the literature. How-
ever, these approaches mostly consider color images in the
visual-optical spectrum. Apparently, the thermal infrared
spectrum is much less affected by haze due to its longer
wavelength. But atmospheric perturbations during long-
range observation can cause image quality degradation in
the thermal infrared (TIR) spectrum as well. In this paper,
we propose a method to generate synthetic haze for TIR im-
ages. Then, we analyze the already existing blind image
quality assessment measure Fog Aware Density Evaluator
(FADE) for its applicability to the TIR spectrum. We further
provide a comprehensive overview of the current state-of-
the-art in image dehazing and empirically show that many
approaches originally designed for visual-optical images
perform surprisingly well when applied to the TIR spec-
trum. This is shown in experiments conducted on the re-
cently published M3FD dataset.

1. Introduction

Haze and related atmospheric perturbations such as
smoke, dust, fog, mist, rain, or snow are natural phenom-
ena, in which (hydrated) aerosol particles of different sizes
are suspended in the air [7, 19]. Light beams traveling
through the air are absorbed, causing attenuation, and scat-
tered, causing diffusion (also called airlight). This results in
reduced contrast, fainted surfaces, color shift, opalescence,
obscured clarity, and intensity blur, diminishing the visibil-
ity and the object perception capability [41, 47]. The per-
formance of computer vision algorithms such as object de-
tection, tracking, and segmentation is usually affected by
the presence of haze [26, 42]. Hence, image dehazing al-

(a) VIS (b) TIR

(c) VIS (d) TIR

Figure 1. Haze visibility is shown across two spectra. Smaller
aerosol particles originating from smoke are clearly visible in the
VIS image, but mitigated by a TIR camera (a,b) [28]. Heavy fog
with larger particles affects both spectra (c,d).

gorithms can be used to provide a clear view of the scene
supporting both machine and human. However, this task is
challenging since the modeling of haze is dependent on the
often unknown scene depth, the density of the atmospheric
particles, the particle size, and the wavelength [33,40]. Fur-
thermore, the introduction of artifacts by the dehazing pro-
cess such as color distortion, over-enhancement, halo, or
blur must be avoided [1].

The visible haze effect of such aerosol particles is dif-
ferent dependent on the captured spectrum: shorter wave-
lengths in the Visual-optical (VIS) or Near-Infrared spec-
trum are more affected than longer wavelengths such as
Thermal Infrared (TIR) [19]. An example is given in Fig. 1.
There can be a range difference of up to 500 m in visibil-
ity between VIS and long-wave TIR [39]. However, rather
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large particles like water droplets or ice crystals do affect
the TIR spectrum. This leads to a degradation in visual
image quality [22] and computer vision algorithm perfor-
mance [23] that can be compared to the ones in the VIS
spectrum. Hence, dehazing algorithms suitable for single-
channel TIR images are needed, especially because most
existing literature focuses on VIS images [52].

A large variety of traditional and machine learning-based
approaches is discussed in this literature with deep neural
networks as the current state-of-the-art technique [25, 26,
48]. Nowadays, experiments are usually conducted utiliz-
ing public datasets that are affected by artificially generated
synthetic haze to provide ground-truth (GT) for supervised
learning [26, 45]. Quantitative results are calculated using
(1) full-reference Image Quality Assessment (IQA) mea-
sures such as Peak Signal-to-Noise Ratio (PSNR) or Struc-
tural Similarity (SSIM), as well as (2) no-reference blind
IQA measures such as Natural Image Quality Evaluator
(NIQE) [36] or Fog Aware Density Evaluator (FADE) [6].

Inspired by this evaluation approach, the main goal of
this work is to investigate the applicability and the perfor-
mance of traditional and deep learning-based dehazing al-
gorithms assessed with TIR images. The recently published
multi-spectral M3FD dataset [28] is used to create images
with synthetic haze in both the VIS and the TIR spectrum
for systematic comparison. This dataset is used to empiri-
cally show that FADE generalizes well on the TIR spectrum
and thus can be applied as a blind IQA measure. To con-
duct the experiments, we leverage knowledge taken from
the VIS domain by starting with color images that we con-
vert to single-channel, monochromatic VIS images as an
intermediate step, and then transfer the gathered informa-
tion to the final single-channel TIR images. After that, we
utilize traditional and deep learning-based dehazing tech-
niques proven in the VIS spectrum to provide an extensive
study on their performance when applied to TIR images.
Additionally, a test with a deep learning-based object de-
tector was performed to compare its behavior on hazy and
haze-free TIR images.

Our contributions are (1) the generation of synthetic
haze in the TIR spectrum based on depth images calcu-
lated in the VIS spectrum using the Multi-scenario Multi-
Modality Benchmark to Fuse TIR and VIS for Object De-
tection (M3FD) [28], (2) the experimental analysis of the
applicability of the blind IQA measure FADE to TIR im-
ages, and (3) a comprehensive analysis of traditional and
machine learning-based methods applied to TIR images.

The paper is organized as follows: related work is pre-
sented in Section 2. Our proposed method for the genera-
tion of synthetic haze in IR images is presented in Section 3.
The applicability of the blind IQA measure FADE to TIR
images is analyzed in Section 4. Experimental results are
described in Section 5. We conclude in Section 6.

2. Related Work
Dehazing: the Atmospheric Scattering Model

(ASM) [32, 33] is the key foundation for most de-
hazing approaches, describing a hazy image I(x) as
I(x) = J(x)t(x) + A(1 − t(x)) with J(x) being the
haze-free image, t(x) = e−βd(x) being the transmission
matrix with the atmosphere scattering coefficient β, and A
being the airlight. Many dehazing methods exploit ASM by
estimating t(x), A, and J(x), using prior- [4, 14, 50, 51] or
learning-based approaches [5, 25, 29, 48], being the last the
most prominent currently. Some end-to-end learning-based
methods incorporate ASM, directly minimizing the recon-
struction error on the haze-free image [25]. Alternatively,
image enhancement methods are also employed [40, 41]
especially in the gray-valued TIR spectrum [52].

Surveys: many surveys [1, 13, 26, 41, 47] investigate de-
hazing in the VIS spectrum from various aspects such as the
dehazing algorithms, relevant datasets, or suitable evalua-
tion measures. Some authors propose modified versions of
prior-based algorithms for TIR spectrum [9, 55, 59] without
properly comparing the performance to other dehazing tech-
niques. Al Mansoori et al. [31] is the only identified survey,
which investigated both prior-based and learning-based de-
hazing algorithms in the TIR spectrum. However, impor-
tant information is missing such as fine-tuning or transfer-
learning of the deep learning techniques to the TIR spec-
trum. Furthermore, just private data was used for the exper-
iments. Therefore this work investigates the performance
of various promising dehazing techniques in the TIR spec-
trum including image enhancement, prior-based dehazing,
and learning-based dehazing.

Creation of hazy datasets: multiple authors [13,26,45,
46] provide relevant information on the creation of synthetic
hazy images from non-hazy real images in the VIS spec-
trum. However, nearly no literature exists, in which the gen-
eration of synthetic haze in the TIR spectrum is discussed.
Yan et al. [55] generate synthetic haze in the TIR spectrum
using pix2pix image translation [15]. This approach can
be trained to map scene appearance in the VIS spectrum to
images in the TIR spectrum. In the past, this method was
used to generate large datasets for learning single object
tracking in the TIR spectrum [58] or multi-modal person
re-identification [21]. Following a similar approach, Yan. et
al. [55] map hazy VIS images to hazy TIR images, but the
results are not convincing as haze severely disturbs the al-
ready hard problem of VIS-TIR image translation. There-
fore this work proposes an improved approach for creating
the synthetic haze in the TIR spectrum by leveraging the
ASM similar to the proposed approach of Li et al. [26] in
the VIS spectrum. The lack of training data in the TIR spec-
trum may affect supervised deep learning for dehazing, but
transfer learning can provide a solution to this problem by
leveraging the prior training on VIS images and fine-tuning
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the model on a smaller volume of TIR images [11].
Blind IQA: early successful approaches for blind

IQA extract image features using Natural Scene Statistics
(NSS) [37]. The basic idea is to model scene statistics
of visually appealing images and learn to distinguish be-
tween distorted and good-quality images. Different variants
of features and related machine-learning approaches exist
in the literature. Among the most prominent ones are: (1)
NIQE [36], (2) BLind Image Integrity Notator using DCT
Statistics (BLIINDS-II) [44], (3) Blind/Referenceless Im-
age Spatial Quality Evaluator (BRISQUE) [35], (4) Per-
ception based Image QUality Evaluator (PIQUE) [38], or
(5) Blockiness and Luminance Change (BALC) [57]. They
all do not measure haze specifically but image quality in
general. Deep learning-based methods came up recently
that also measure rather a generic image quality [49, 56].
However, only very little literature is available for blind
IQA in dehazing [6, 17, 34] and this related work con-
siders the VIS spectrum only. Some authors measure
rather generic image distortions such as color shift, con-
trast, or sharpness and utilize them to determine the level
of haze [17, 34]. Such image properties cannot be trans-
ferred from the VIS to the TIR spectrum easily. However,
there is one approach called FADE that is based on NSS [6].
Since NSS features do generalize quite well across the spec-
tra [12], we utilize FADE for our studies in this paper.

3. Dataset Preparation
In this section, we first describe the datasets used in this

paper and then we present the proposed approach to gener-
ate synthetic haze in the TIR spectrum.

3.1. Description of the Datasets

The datasets chosen to assess the dehazing performance
of the tested methods are: (1) O-HAZE [2], (2) NH-
HAZE [2], (3) the Synthetic Objective Testing Set of the
Realistic Single Image Dehazing (RESIDE SOTS) [26], and
(4) M3FD [28]. Table 1 shows their default characteristics.
The first three were selected since they contain images from
the VIS spectrum in several different scenarios with real or
synthetic haze in different heaviness.

Only the multi-spectral M3FD dataset has TIR images,
which are pixel-precisely aligned to the VIS images. How-
ever, M3FD is no dehazing dataset. Hence, we add syn-
thetic haze as described in Section 3.2, which is common
practice in the field [26,45]. In the context of O-HAZE and
NH-HAZE, the haze was created by a haze-generation ma-
chine [3]. For RESIDE, the haze was created using ASM
with random values in predefined ranges for A and β, after
calculating the depth field using a monocular depth estima-
tor [26]. Due to limited memory, O-HAZE images were
downscaled to 25% of their original size. Single-channel
TIR images are represented as three-channel arrays to di-

Original datasets
I II III IV

Number of images 45 55 500 4,200
Spectrum VIS ✓ ✓ ✓ ✓

TIR ✓
Haze No haze ✓

Real ✓ ✓
Synthetic ✓
Homogeneous ✓
Non-homogeneous ✓ ✓

Table 1. The default characteristics of the datasets employed in the
experiments of this work: (I) O-HAZE, (II) NH-HAZE, (III) RE-
SIDE SOTS, and (IV) M3FD.

Class Train Validation Test

People 9,216 1,192 1,069
Car 14,467 1,939 1,890
Other Vehicle 1,382 153 173

Table 2. Number of class instances per split in M3FD.

rectly feed them to deep neural networks pre-trained for
RGB images. As an additional test, all datasets in the VIS
spectrum were converted to three-channel gray-scale im-
ages to investigate the impact of monochromaticity on the
dehazing methods.

Regarding the object detection task mentioned in Sec-
tion 1, M3FD was split: (1) 0.9/0.1 (3780 / 420 im-
ages) for DehazeFormer [48] and All-in-One Dehazing Net-
work (AOD-Net) [25] that we use in Section 5; and (2)
0.8/0.1/0.1 (3360 / 420 / 420 images) for the task of object
recognition, being the testing sets the same and the training
set in (1) equal to the training set plus the validation set in
(2). The dataset classes were organized into three classes:
(1) ’person’, (2) ’car’, and (3) ’other vehicles’ (’bus’ and
’truck’ classes). The classes ’motorcycle’ and ’lamp’ were
not numerous enough for being employed in this work. Ta-
ble 2 shows the resulting number of instances of each class.
Note that the number of images containing a certain class is
quite balanced, at least for the classes ’person’ and ’car’.

3.2. Adding Synthetic Haze to Real TIR Images

The simplest approach for creating synthetic hazy im-
ages from non-hazy images in the VIS spectrum is by em-
ploying ASM. Therefore, we need the image and its related
depth map. The first step is to estimate the depth d(x) re-
garding the input image J(x) using a monocular depth es-
timator E(x). β is set accordingly to the chosen strength
of scattering. Similar to β, A needs to be set to the desired
color and intensity. The hazy image I(x) and t(x) can be
obtained using ASM (see Section 2) [26].

461



JIR(x) JVIS(x)

d(x)

t(x)

I'(x)

d(x) = mde(JVIS(x))

t(x) = e- β*d(x)

using ASM:

I'(x) = JIR(x)*t(x)+A*(1-t(x))

I(x)I(x) = I(x)*s(x)+g(x)

s(x) g(x)

Figure 2. Proposed approach for creating synthetic hazy images
for the TIR spectrum from non-hazy images. The monocular depth
estimator (mde) is adopted from [61].

The novel approach of this work for adding synthetic
haze to real TIR images requires only a few additional steps.
An overview is given in Fig. 2. We start with the haze-
free aligned images JVIS and JTIR. The depth map from the
VIS image is utilized. We use the state-of-the-art method
DIFFNet [61] for monocular depth estimation (mde) in the
VIS spectrum. t(x) can then be obtained by setting β to
the desired strength of scattering. After selecting A, the
hazy image ITIR(x) can be computed using ASM and the
input TIR image JTIR. Adding noise ensures that the gen-
eration is more realistic since the presence of haze usually
results in a lower signal-to-noise ratio and thus noise be-
comes more apparent. We do not consider fixed-pattern
noise here since this is usually handled by Non-Uniformity
Correction (NUC) [30]. Inspired by several discussion on
modeling noise in the TIR spectrum [16, 20], we propose
a combined use of speckle noise s(x) and Gaussian noise
g(x). While the additive noise is subject to a Gaussian dis-
tribution with zero mean and a variance of 0.025, the mul-
tiplicative speckle noise is subject to a Rayleigh distribu-
tion [27].The speckle noise is then injected multiplicatively
and the Gaussian noise is injected additively to the hazy im-
age as seen in Fig. 2.

To avoid halo effects that appear in the images after
adding synthetic haze, the Gaussian blur was applied as a
post-processing step. For VIS images, β was chosen be-
tween [0.6, 1.8] using a uniform distribution and A between
[0.7, 1.0] also in an uniform distribution. Figure 3 shows
some created samples using the described approach and pa-
rameters. For TIR, β was chosen between [0.6, 1.8] using
a uniform distribution and A from a uniform distribution
whose lower bound was 0.1765, derived from the best re-
sults for dehazing TIR images in the work of Fang et al. [9],
while the upper bound was 0.588, derived from the most

Figure 3. Samples from M3FD with respective synthetic haze in
the VIS spectrum (colored/monochrome).

Figure 4. Samples from M3FD with respective synthetic haze in
the TIR spectrum.

common value of the histogram of a hazy TIR image in the
work of Zheng et al. [59]. Figure 4 illustrates a few samples
using the described approach and parameters for the TIR
spectrum.

4. Blind Image Quality Assessment
To the best of our knowledge, the only blind IQA mea-

sure in the literature specifically designed for dehazing is
FADE [6]. It is based on NSS and was originally intro-
duced for VIS imagery. Since then, several authors adopted
it for quantitative evaluations comparing state-of-the-art ap-
proaches [1, 10, 24]. It has never been tested on TIR im-
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agery, yet. Instead, existing literature for TIR image dehaz-
ing relies on full-reference IQA measures such as PSNR or
SSIM [31] just like most of the related work in the VIS spec-
trum [25, 26, 40, 48]. We now analyze the FADE measure
for its applicability to both the VIS and the TIR spectrum.

This analysis is conducted as follows: we use the four
public datasets O-HAZE [2], NH-HAZE [3], RESIDE [26],
and M3FD [28]. The three pure VIS datasets O-HAZE,
NH-HAZE, and RESIDE come with GT for dehazing, i.e.,
image pairs are provided with a clear image Igt and a hazy
image Ihazy for each scene. We generate such image pairs
for M3FD using the approach described in Section 3.2 to
create synthetic haze. A higher FADE value indicates a
higher level of haze. Hence, FADE follows the principle the
lower the better. We can assume that if the measure works
as expected, a hazy image should produce a higher FADE
value than a clear image. To quantify this, we calculate the
difference in the FADE values for given image pairs:

∆FADE(Ihazy, Igt) = FADE(Ihazy)− FADE(Igt) (1)

According to the assumption, we can expect that a value
of ∆FADE larger than zero indicates a correct behavior of
FADE as a blind IQA measure for dehazing. Within each
dataset, we calculate ∆FADE for each image pair and av-
erage the results. ∆FADE follows the principle the higher
the better. The results for the considered datasets are shown
in Fig. 5 top left. We split M3FD in VIS and TIR. Further-
more, we split M3FD TIR in with and without artificially in-
jected noisy since NSS-based IQA measures are quite sen-
sitive to noise and thus the experiment may be biased to-
wards the artificial noise. Hence, we receive six different
datasets in the plot. The colored dots represent the mean
value and the vertical lines represent the standard deviation
within each dataset. The averaged ∆FADE values for all
datasets are consistently above zero. The artificial noise af-
fects the FADE measure quite strongly, but still the ∆FADE
value is clearly above zero. So, it seems that FADE works
well as a blind IQA measure for dehazing. Please note that
since FADE is based on NSS [6] and the synthetic haze gen-
eration is based on ASM [45], i.e., different mathematical
foundations, we do not expect any undesirable correlation
or stochastic dependence in our experiment here.

The plots in Fig. 5 show that this desired behavior is
achieved by FADE only. We compare FADE with other
blind IQA measures not specifically designed for dehazing:
NIQE [36], PIQUE [38], BRISQUE [35], BLIINDS-II [44],
and BALC [57]. Since these measures follow the principle
the lower the better, we calculate their ∆-variants analo-
gously to FADE. The plots show that ∆FADE is the only
measure consistently above zero. Hence, we conclude that
FADE can be a suitable blind IQA measure for dehazing in
both the VIS and the TIR spectrum. Note that we introduced
∆FADE only to analyze the usefulness of FADE.

5. Experiments and Results
5.1. Algorithms

Six dehazing algorithms were selected: (1) Contrast
Limited Adaptive Histogram Equalization (CLAHE) [62],
(2) Multi-Scale Retinex with Chromaticity Preservation
(MSRCP) [43], (3) Dark Channel Prior (DCP) [14], (4) Fast
Visibility Restoration (FVR) [51], (5) AOD-Net [25], and
(6) DehazeFormer [48]. CLAHE and MSRCP are promi-
nent image enhancement approaches already employed for
dehazing [52,54]; DCP and FVR present well-known prior-
based dehazing techniques; AOD-Net is a notorious light-
weighted, real-time learning-based technique [25, 60]; and
DehazeFormer, specifically the DehazeFormer-b, recently
outperformed most previous state-of-the-art methods [48].

5.2. Experimental Setup

A grid search was implemented to optimize the parame-
ters of CLAHE, DCP, and FVR for each dataset and spec-
trum, using SSIM as optimization criterion. For CLAHE,
a tile size of 8 by 8 was set. The clip limit was chosen by
the grid search, being limited in the range of [1, 10], with
a step size of 1. CLAHE was also applied channel-wise.
For DCP, a patch size of 15 and a restriction of the lower
bound of 0.15 was chosen, while ω was limited in the range
of [0.3, 0.9], with a step size of 0.1. For FVR, the window
size sv was set to 61, while p was limited in the range of
[0.3, 0.9], with a step size of 0.1.

The deep learning models were fine-tuned on the TIR
images of the M3FD dataset with added synthetic haze. For
both models, we utilize the pre-trained weights for dehazing
in the VIS spectrum. The 0.9/0.1 train-validation-test-split
was used as mentioned in Section 3.2. The default train-
ing strategy of the AOD-Net implementation was used to
fine-tune the AOD-Net. Adam was used as an optimizer
with a learning rate of 0.0001. A batch size of 8 was used
to train the model for 30 epochs. Our training strategy for
DehazeFormer-b strictly follows the authors’ training on the
outdoor RESIDE training dataset [48].

The Yolov5m model [18] was used for the M3FD TIR
dataset in the object detection task. The pre-trained weights
from the COCO dataset were taken as a baseline. The model
was fine-tuned on M3FD using the non-hazy GT TIR im-
ages with the default training strategy and 0.8/0.1/0.1 split.

We use the full-reference IQA measures PSNR and
SSIM [53], as well as the blind IQA measure FADE [6]
to evaluate the dehazing performance. Additionally, the
task-driven metric mean Average Precision (mAP) over all
classes [8] was employed for the object detection analysis.

5.3. Experimental Results

The experiments are conducted in three steps: (I) de-
hazing color and gray-scale VIS images as a reference, (II)
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Figure 5. ∆FADE as calculated by Eq. 1 is the only blind IQA measure consistently above zero for all considered public datasets. This
indicates that FADE [6] can be a suitable blind IQA measure for dehazing in both the VIS and the TIR spectrum.

dehazing TIR images, and (III) improvement in object de-
tection by using dehazed TIR images as input. SSIM and
PSNR are always measured in reference to the clear non-
hazy GT image. In addition, we use FADE and mAP as
described in Section 5.2.

5.3.1 Dehazing VIS Images

Table 3 shows the dehazing performance for each evaluated
approach, each dataset, each IQA measure, and both types
of input images, i.e. color or gray-scale VIS. Most dehazing
methods achieve an improvement compared to the original
hazy images according to all three measures. In general, the
prior-based methods perform better than the learning-based
ones. The results for the gray-value images are comparable
and seem to highly correlate with the results for the color
images. From these results, it can be deduced that most
methods do not seem to be affected by monochromaticity.
This is interesting since DCP uses a prior based on multi-
channel color images. We expect this to be the result of the
duality between DCP and Retinex [10] with the differences
in performance originating from different parameterization.
FADE generally seems to correlate with image properties
such as brightness, saturation and contrast, which could ex-
plain the superior performance of MSRCP and AOD-Net.

The results on NH-HAZE show worse performance in
both SSIM and PSNR compared to O-HAZE. This is prob-
ably due to NH-HAZE having a more dense and less
homogeneous haze compared to O-HAZE. Simple image
enhancement techniques like CLAHE, FVR and MSRCP
seem to be superior in such hazy environments. The perfor-
mance of the learning-based techniques could be explained

by the fact that both O-HAZE and NH-HAZE are not very
ASM-conform, meaning that haze strength and distribution
are not as dependent on the scene depth.

Differently to the experiments on the O-HAZE and NH-
HAZE datasets, various dehazing methods are able to al-
most fully restore the clear images from the hazy images
in the RESIDE SOTS dataset. This is most likely the case
because the RESIDE SOTS dataset is more ASM-conform
concerning both the dependence on haze strength and the
distribution of the scene depth. DehazeFormer was trained
on and optimized for this dataset, which is expected to be
the reason for its outstanding performance. The results on
M3FD seem to be somewhat similar to those on RESIDE
SOTS, arguably because the haze in both datasets was syn-
thetically created using a similar technique. DehazeFormer
is not able to significantly outperform the other techniques,
scoring the third-best performance after DCP and FVR,
presumably because it was not fine-tuned for this specific
dataset. Again, no negative effect of monochromaticity on
the various techniques can be observed.

Even though FADE was designed for VIS imagery [6],
we cannot see a clear correlation between FADE and the
full-reference IQA measures SSIM and PSNR in this ex-
periment. Furthermore, Table 3 shows that FADE does not
seem to generalize across datasets.

5.3.2 Dehazing TIR Images

Table 4 shows the dehazing performance on M3FD TIR.
Most methods achieve an improvement in image quality.
It can also be observed that fine-tuning the deep learning
models is highly necessary. Specifically notable is that the
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Method
SSIM ↑ PSNR ↑ FADE ↓

color gray color gray color gray

O-HAZE
None 0.576 0.591 13.77 14.63 1.919 2.573
CLAHE 0.677 0.697 14.11 14.90 1.291 1.860
MSRCP 0.605 0.618 12.02 12.48 0.518 0.769
DCP 0.685 0.718 16.94 18.74 0.681 1.142
FVR 0.697 0.717 17.09 18.02 0.621 1.104
AOD 0.554 0.603 14.98 16.01 0.535 0.938
DF 0.640 0.689 16.12 18.49 0.762 0.789

NH-HAZE
None 0.432 0.445 11.40 2.020 1.844 2.403
CLAHE 0.552 0.571 11.89 12.39 1.187 1.671
MSRCP 0.511 0.524 10.62 11.03 0.650 0.904
DCP 0.493 0.514 13.01 13.75 0.636 1.068
FVR 0.519 0.532 13.17 13.76 0.549 0.993
AOD 0.409 0.434 11.85 12.40 0.496 0.836
DF 0.465 0.498 12.11 13.20 1.237 1.250

RESIDE SOTS
None 0.813 0.824 15.92 16.03 1.762 2.025
CLAHE 0.842 0.856 16.44 16.66 1.121 1.401
MSRCP 0.785 0.800 14.86 15.09 0.644 0.803
DCP 0.919 0.930 21.63 20.72 0.746 0.976
FVR 0.912 0.927 21.51 21.48 0.810 1.058
AOD 0.892 0.908 19.55 19.66 0.659 0.770
DF 0.990 0.988 38.58 33.80 0.732 0.811

M3FD VIS
None 0.851 0.854 15.75 15.94 3.190 3.335
CLAHE 0.899 0.902 16.75 17.03 2.103 2.400
MSRCP 0.799 0.800 14.20 14.48 1.196 1.379
DCP 0.936 0.937 19.96 19.75 1.587 1.989
FVR 0.931 0.930 19.33 19.22 1.524 1.854
AOD 0.893 0.894 17.51 17.42 1.314 1.482
DF 0.928 0.926 20.19 20.05 1.923 2.067

Table 3. Dehazing performance on each considered dataset. None
indicates that no dehazing was performed. AOD stands for AOD-
Net and DF stands for DehazeFormer. AOD-Net and Dehaze-
Former were originally trained with VIS data and we did not con-
duct any fine-tuning here.

fine-tuned DehazeFormer outperforms all other metrics by
a large margin. Figure 6 shows that while most methods
seem to improve the contrast slightly, the fine-tuned De-
hazeFormer improves the image and especially the sky re-
gion the most. FADE reacts in an unexpected way: accord-
ing to Table 4, AOD-Net† performs best, although the qual-
itative evaluation in Fig. 6 definitely contradicts this obser-
vation. This behavior could be explained by its focus on
both image brightness and contrast. As seen in Fig. 5, the
artificially injected noise in the TIR images leads to better
FADE values. This could be explained by noise introduc-
ing pseudo-contrast to the image. The good FADE value
of the noise-amplifying MSRCP approach further confirms

Method SSIM ↑ PSNR ↑ FADE ↓

None 0.839 19.01 2.448
CLAHE 0.839 19.23 1.877
MSRCP 0.609 13.82 1.050
DCP 0.861 19.01 1.931
FVR 0.855 19.27 1.713
AOD-Net† 0.601 12.97 0.857
AOD-Net⋆ 0.848 19.65 1.836
DehazeFormer† 0.755 16.14 1.042
DehazeFormer⋆ 0.945 28.04 1.778

Table 4. Average performance on M3FD TIR. None indicates that
no dehazing was performed. The learning-based method with a †

has the default training and with ⋆ has been trained with TIR data.

Figure 6. Image samples taken from M3FD TIR after the use of
dehazing techniques. The learning-based method with a † has the
default training and with ⋆ has been trained with TIR data.

this assumption. The adaption of FADE and the related NSS
to the TIR spectrum [12] should be investigated.

In addition to the presented experiments, the images
from M3FD were grouped according to the haze levels
that were synthetically added and individual tests were
performed for each haze level. Table 5 shows the best-
performing techniques on M3FD TIR for each metric and
type of input image for different levels of haze. We can ob-
serve that the haze level negatively affects the performance
of all dehazing techniques. FADE again reacts in an unex-
pected way to the introduction of artificial noise: heavier
haze improves the FADE values, which could be the result
of pseudo image contrast introduced by noise. Most notable
is the excellent and robust performance of the fine-tuned
DehazeFormer even for heavy haze. However, it should be
noted that fine-tuning was performed within the dataset.

Figure 6 shows such a sample with a heavy haze level. In
the hazy image, it is hard to identify any objects except for
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Method
SSIM ↑ PSNR ↑ FADE ↓

Light Heavy Light Heavy Light Heavy

None 0.895 0.784 21.29 17.09 2.561 2.257
CLAHE 0.903 0.770 21.42 17.32 1.992 1.673
MSRCP 0.706 0.502 13.78 14.0 1.296 0.781
DCP 0.920 0.803 20.69 17.57 2.053 1.743
FVR 0.922 0.785 21.29 17.72 1.812 1.528
AOD† 0.598 0.592 13.08 12.86 0.942 0.725
AOD⋆ 0.896 0.794 22.26 17.42 1.871 1.713
DF† 0.788 0.723 17.11 15.4 1.148 0.937
DF⋆ 0.972 0.919 29.83 26.8 1.745 1.756

Table 5. Average performance on M3FD TIR with different haze
levels. None indicates that no dehazing was performed. AOD
stands for AOD-Net and DF stands for DehazeFormer. Each deep
learning-based method with a † has been trained with VIS data and
with a ⋆ with TIR data.

one person. Most techniques are only marginally able to re-
move the haze. MSRCP performs well in qualitative terms,
while the fine-tuned DehazeFormer performs well in both
qualitative and quantitative terms. The MSRCP improves
the perceptual quality of the image by improving the varia-
tion of lightness in local image regions, but it also amplifies
the image noise. The fine-tuned DehazeFormer model is
the technique that restores the image the best probably due
to its strong Transformer backbone.

5.3.3 Dehazed TIR Images for Object Detection

Object detection performance can be used as an indicator of
dehazing quality [26]. The last experiment considers using
dehazing techniques as a pre-processing step in an object
detection task with the pre-trained YOLOv5 object detector
fine-tuned on the non-hazy M3FD TIR dataset. The ob-
ject detector confirms the observations made in the previ-
ous experiments, as there is a correlation between dehaz-
ing quality and object detection performance. However,
while MSRCP improved the perceptual quality, the object
detector performs poor on the related dehazed images prob-
ably due to the amplified image noise. Table 6 shows the
results of the task-driven evaluation for all classes. Con-
sidering mAP@.50 and mAP@0.50-.95, the DehazeFormer
outperforms all other techniques. The fine-tuned Dehaze-
Former also outperforms the other methods on each indi-
vidual class, namely ’people’, ’car’ and ’other vehicles’. It
is able to nearly close the gap to the non-hazy GT.

Figure 7 shows the distance from both the upper (i.e.,
object detection on non-hazy images) and the lower base-
line (i.e., object detection on hazy images) of the evalua-
tion. Dehazing methods between the two lines improve the
object detection performance. Most methods do so. An ex-
ception is MSRCP: the change in image appearance or the
noise amplification seem to disturb the object detection.

Input mAP@.5 ↑ mAP@.5-.95 ↑

Hazy 0.838 0.583
Non-Hazy GT 0.915 0.645

A
ft

er
de

ha
zi

ng

DehazeFormer⋆ 0.902 0.630
DehazeFormer† 0.866 0.601
AOD-Net⋆ 0.849 0.593
AOD-Net† 0.828 0.557
FVR 0.859 0.597
DCP 0.860 0.599
CLAHE 0.853 0.594
MSRCP 0.813 0.554

Table 6. Object detection performance of YOLOv5 given by mAP
using dehazing techniques on M3FD for both clear images and
after dehazing. † indicates training on VIS and ⋆ on TIR data.

Figure 7. Task-driven evaluation using dehazing as pre-processing
step on M3FD for object detection (mAP@.50). The lower and
upper baseline are produced by hazy images and the non-hazy GT.

6. Conclusion

We presented an approach to generate synthetic haze in
TIR images using aligned VIS-TIR image pairs as provided
by the M3FD dataset. We then demonstrated that the blind
IQA measure FADE originating from the VIS spectrum has
some potential to be applied to TIR images. In a survey-like
evaluation, we showed that the Transformer-based method
DehazeFormer performs best on the M3FD dataset in de-
hazing TIR images. The margin is large as shown with
two full-reference IQA measures SSIM and PSNR. Further-
more, TIR images dehazed with DehazeFormer provide a
good input for object detection using YOLOv5 according
to the mAP. FADE is applicable to the TIR spectrum, but
some results are unexpected and need further analysis.
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