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Abstract

Thermal Infrared (IR) imagery is utilized in several ap-
plications due to their unique properties. However, there
are a number of challenges, such as small target objects,
image noise, lack of textural information, and background
clutter, negatively affecting detection of objects in IR im-
ages. Current real-time object detection methods treat each
image region separately and, in face of these challenges,
this sole dependency on feature maps extracted by convo-
lutional layers is not ideal. In this paper, we introduce a
new architecture for real-time object detection in IR images
by reasoning the relations between image regions by using
self-attention. The proposed method, IR Reasoner, takes
the spatial and semantic coherency between image regions
into account to enhance the feature maps. We integrated
this approach into the current state-of-the-art one-stage ob-
ject detectors YOLOv4, YOLOR, and YOLOv7, and trained
them from scratch on the FLIR ADAS dataset. Experimen-
tal evaluations show that the Reasoner variants perform
better than the baseline models while still running in real-
time. Our best performing Reasoner model YOLOv7-W6-
Reasoner achieves 40.5% AP at 32.7 FPS. The code is pub-
licly available.1

1. Introduction
Imaging in the visible domain requires active illumina-

tion since cameras working in this band capture the reflected
light. On the other hand, thermal infrared (IR) cameras cap-
ture the radiation emitted by objects, i.e., they do not re-
quire scene illumination, and hence they are not sensitive
to illumination conditions [42]. This makes them suitable
for applications that require detection of objects in complex
environmental conditions [41]. Autonomous driving cars,

*indicates equal contribution
1https://github.com/tlgksy/ir-reasoner

(a) Ground Truth

(b) YOLOR-P6 (c) YOLOR-P6-Reasoner

Figure 1. Ground truth (top) and visualization of class activation
maps [35] before detection head for YOLOR-P6 (bottom left) and
YOLOR-P6-Reasoner (bottom right)

smart farming, and surveillance systems are the major ap-
plication fields where previously mentioned advantages are
exploited by utilizing IR imagery standalone or fusing with
visible imagery to detect objects of interest [14].

Early efforts in IR object detection mostly relied on
hand-crafted features [19, 24, 51]. However, the represen-
tation capacity of these models is limited and they struggle
to perform well under arbitrary conditions. Like other vi-
sual tasks, deep learning has also revolutionized IR object
detection. The existence of large-scale datasets such as the
ImageNet [10] and Microsoft Common Objects in Context
(MS-COCO) [31] facilitated research in visible imagery.
This research has also been adapted into IR domain and sev-
eral Convolutional Neural Networks (CNN) based methods,
using similar architectures with state-of-the-art approaches
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in visible imagery, have been proposed [27]. While some
of the IR object detectors combine the visible and IR im-
agery through a fusion architecture [29,48], the others work
solely on IR images [14, 39]. In this work, we use only IR
imagery since most of the applications contain only thermal
cameras.

Previous works [14, 27, 29, 39, 48] focused on achiev-
ing good performance in public IR datasets such as FLIR
ADAS [13] and KAIST Multispectral Pedestrian [20].
However, these approaches solely depend on convolutional
features and lack the ability to consider possible semantic
and spatial relations between different image regions. Ex-
traction of high-quality convolutional features could not be
possible at all times, especially in challenging conditions
such as small-sized target object, image noise, and back-
ground clutter [42] and relying only on convolutional archi-
tectures results in unreasonable predictions. These obser-
vations lead the way to transformer-based detectors [2, 36]
that have an ability to extract relations between image re-
gions. However, as they are computationally demanding,
they are infeasible in applications that require real-time pro-
cessing. Autonomous driving is as an example application
area where obtaining detection at high frame rates is vital.

To address the mentioned challenges, while still allowing
real-time operation, we propose a visual reasoning based
one-stage IR object detection architecture. The proposed
architecture takes into consideration semantic and spatial
coherency between image regions. Figure 1 shows the class
activation maps before detection head for YOLOR-P6 and
its proposed Reasoner variant. The baseline model have
strong activations because of the visual similarity to traf-
fic lights captured by the convolutional layers around the
apartment windows. On the other hand, these activations
are attenuated by the reasoner model and the ones on the
left-hand side, where there are many objects of interest such
as as traffic signs and lights, are amplified. We integrated
our Reasoner approach to the recent state-of-the-art one-
stage object detector models: YOLOv4-P6 [3], YOLOR-
P6 [47] and YOLOv7-W6 [46]. All the models then have
been trained from scratch on FLIR ADAS [13] dataset. Pre-
trained weights were not used to eliminate any bias. We
provide a comparative analysis of the proposed Reasoner
variants with the baselines quantitatively and qualitatively.

2. Related Work
Object Detection: The use of Convolutional Neural

Networks and the ImageNet challenge were major mile-
stones in object detection [26]. Object detection tasks can
be categorized into generation of region proposals and ob-
ject classification for each region proposal. Detectors which
handles these tasks in two separate frameworks are called
two-stage object detectors. These architectures perform bet-
ter in accuracy, but they are more computationally complex,

prohibiting their use in real-time applications and embbed-
ded devices. R-CNN [38] and its variants are pioneers of
two-stage object detectors. One-stage object detectors per-
form both tasks in a single feed-forward fully convolutional
network. These frameworks can achieve real-time inference
speed, albeit with lower accuracy. Single Shot MultiBox
Detector (SSD) [33] and You Only Look Once (YOLO) [37]
are prominent examples [5]. EfficientDet [40] and YOLO
variants [3, 45–47] are popular successors of one-stage net-
works. The YOLO family has been constantly being up-
dated taking the state-of-the-art methods into account and
they are optimized for an effective implementation. Hence,
in this work, YOLO variants are selected as the baseline
models.

Reasoning: There are several studies in the literature
aiming to mimic human visual reasoning ability [4, 7, 8, 17,
34, 49, 52]. In [7], spatial and semantic relationships be-
tween objects are modelled using a spatial reasoning ap-
proach, where extracted object instances are fed into an-
other CNN for context reasoning. Gated Recurrent Unit
(GRU) is used to update spatial memory cells. In [17] a
relation module, inspired by attention module [43], is used
to improve instance recognition performance and to pre-
vent duplicate bounding boxes. Spatial memory [7] is im-
proved by attaching a global graph-reasoning module in [8].
DETR [4] approach is notable for being the first to success-
fully use transformers for object detection. A transformer
encoder and decoder is added on top of a standard CNN
model with a usage of bipartite matching loss. Several stud-
ies [30, 32, 50, 53] improves performance and efficiency of
DETR which increases popularity of using attention-based
deep learning models in literature. SWIN Transform is
a general-purpose vision Transformer backbone that com-
putes attention within a local window [34]. To capture over-
lapping regions between windows (image locations), win-
dow partitioning shifts gradually along the hierarchy of the
network. This method achieves linear complexity instead
of the original quadratical complexity with increasing im-
age size. In this work, we used transformer encoder-like
module for acquiring reasoning ability from learned feature
maps.

IR Object Detection: In the earlier works, hand-crafted
features were used [19,24,51] for IR object detection, while
most of the recent work is based on deep learning. In mul-
tiple papers, pre-trained visible imagery networks are fused
with IR imagery person detection datasets for successful
transfer learning [16, 23, 25, 44]. Also, some studies shows
that visible domain object detectors can be adapted to be
used in IR domain [6, 11, 28]. In [14], authors augmented
thermal images by extracting saliency maps from IR im-
agery which improved the IR detector performance. In [22],
YOLO-based models’ performances are compared for the
FLIR ADAS dataset and UAV TIR video detection.
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Figure 2. Overall architecture of the proposed reasoner model

3. Proposed Method
A general diagram of the proposed method is shown

in Figure 2. First, convolutional features are extracted by
the backbone. Then, multi-scale feature maps from dif-
ferent layers of the backbone are collected and concate-
nated at the neck. The reasoning layer extracts the seman-
tic and spatial relationships between image regions subse-
quently. The reasoning features are concatenated with the
only-convolutional ones and fused. Finally, class probabil-
ities and bounding boxes are predicted by the head using
improved feature maps.

3.1. Baseline Models

YOLO [37] is a single-stage lightweight, real-time,
CNN based object detection model. It divides the image
into S × S grids, where each grid is responsible for de-
tecting objects in the corresponding grid. After the ini-
tial detections, non-maximal suppression is used to elim-
inate multiple bounding boxes for the same object [37].
YOLO achieves high accuracy and speed by detecting ob-
jects at multiple scales and using anchor boxes to simplify
the bounding box prediction task.

YOLOv4 [3] is a novel architecture that can maintain
FPS rate with high accuracy. The succes of YOLOv4 relies
on the CSPDarknet53 backbone, Spatial Pyramid Pooling
(SPP) and Path Aggregation Network (PAN) techniques.
The novel backbone network is called CSPDarknet53 which

combines a modified Darknet architecture with cross-stage
partial connections. The SPP method pools information
across multiple kernel sizes simultaneously, in order to ac-
quire both fine and coarse information. Additionally, in or-
der to increase detection efficiency, the PAN leverages in-
formation from layers near the input by transmitting fea-
tures from various backbone levels. Also, several new Bag
of Freebies (BoF) strategies are used such as CutMix and
Mosaic data augmentation, DropBlock regularization, and
class label smoothing. In this work, YOLOv4-P6 architec-
ture has been used for implementation.

YOLOR [47] is a unified network that combines implicit
and explicit knowledge conjointly. Explicit knowledge cor-
responds to the shallow layers of the network, whereas im-
plicit knowledge corresponds to the deeper layers of the net-
work. The authors states that implicit knowledge assists
explicit knowledge to perform tasks effectively. Further-
more, the model is capable of learning general representa-
tions, namely multi-task learning model. The goal is to rep-
resent various task in a unified architecture. YOLOR per-
forms comparable performance over other state-of-art mod-
els within real-time inference. In this work, we selected
YOLOR-P6 model for reasoning layer fusion which is de-
rived from YOLOv4-P6-light [3].

YOLOv7 is a recent update to YOLO family and it is
reported to have an accuracy of 56.8% AP in MS COCO
dataset while running at 30 FPS on NVIDIA V100 GPU
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[46]. It has four principal improvements over the baseline
YOLOv4 [3, 45] and YOLOR [47] as follows:

• Extended Efficient Layer Aggregation Network
(ELAN) layer structure produces easier-to-optimize
gradients where it facilitates learning various features.

• Network depth and width are scalable with a
concatenation-based model that maintains the proper-
ties of the initial design and optimal parameters.

• Re-parameterization planning generates a more robust
model by averaging the model weights.

• Auxilary heads are combined in the middle of the net-
work to improve predictions.

In this work, we selected YOLOv7-W6 model as a baseline
for reasoning integration.

3.2. Reasoning Module

3.2.1 Reasoning Layer

In this work, a transformer encoder-like module is used as
a reasoning layer (Figure 2). Sub-layers of the reasoning
layer are as follows:

Flatten: This layer converts the input grid (H×W ×C)
into a sequence (HW × C) as expected by the multi-head
attention layer.

Positional Encoding: Fixed sinusoidal positional en-
codings are calculated as shown in Eq. 1 and added to the
input feature embeddings to encode order information of the
image regions.

PE(i,2j) = sin( i

100002j/dfeature
)

PE(i,2j+1) = cos( i

100002j/dfeature
)

(1)

where i is the position of the grid in the sequence, j is
the feature depth index, and dfeature is the same with the
feature depth.

Multi-Head Attention: This layer models the semantic
relationships between image regions. Multi-head attention
employs parallel self-attention, which is based on query,
key, and value.

Self-attention allows the query of a single grid cell to
search the potential correlation with others in the sequence
via the keys. The comparison of the query and key pairs
yields the attention weight for the value, while the inter-
action of the attention weight and the value determines how
much focus should be placed on other parts of the sequence,
i.e., the image while representing the current cell.

Query (Q), key (K) and value (V) matrices are calcu-
lated by weighing the input sequence with corresponding
weight matrices (WQ, WK, WV). Then, attention is cal-
culated using these values as shown in Eq. 2, where X is
the input.

Q = XWQ

K = XWK

V = XWV

Attention(Q,K,V) = softmax(QKT

√
dk

)V

(2)

where dk is the dimension of the query and key matrices.
The scaled dot product is used to compare query and key
matrices [43]. The attention weights indicate where to look
in the value matrix ,i.e., they learn to distinguish valuable,
informative and relevant parts of the image while encoding
the current grid. Also, the grid cell, which represents a re-
gion of an image, is encoded by taking a summation of value
matrix columns weighted by normalized attention weights.

Instead of using a single self-attention function, multi-
head attention is implemented [43]. Parallel projections of
query, key and value matrices are used to compute multi-
ple self-attention functions. Using multi-head attention, the
model can jointly attend to catch different types of informa-
tion from various representation subspaces. The attention
of headi is calculated by Eq. 3.

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

Then, each head’s attentions are concatenated and pro-
jected once again with a weight matrix WO to calculate
multi-head attention, as shown in Eq. 4.

MultiHead(Q,K,V) = Concat(head1, ...)W
O (4)

Skip Connections: There are two skip connections in
the reasoning layer. Residual skip connections improve
backpropagation [15], and the original information is prop-
agated to the subsequent layers.

Normalization: There are two normalization layers in
the reasoning layer. Besides skip connection, Layer normal-
ization [1] is utilized in the reasoning layer. This is another
key factor helping with easier convergence by alleviating
the internal covariate shift [21].

MLP: Output of the multi-head attention layer is fed into
the MLP layer, which creates a new representation of the
reasoning information. MLP layer consists of two linear
layers and a ReLU non-linearity in between as in Eq. 5

MLP (x) = max(0, xW1 + b)W2 + b2 (5)

where W1 and W2 are weight matrices and b1 and b2
are biases.

Rearrange: This layer converts the flatted sequence data
(HW×C) into three-dimensional grid format (H×W×C
as object detection head expects, where H is height, W is
weight and C is channel.
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3.2.2 Concat Layer

The output of the reasoning layer is concatenated with
the original neck output only-convolutional features in this
layer wich ensures the reusability of only-convolutional fea-
tures [18]. With the help of this compound usage strategy,
the network can exploit complementary information avail-
able in features extracted by only-convolutional layers and
the the reasoning layer.

3.2.3 Fuse Layer

This layer fuses the concatenated features by a 1×1 convo-
lutional layer. Following this layer, feature maps improved
by visual reasoning are fed into the detection head to gen-
erate bounding boxes and class probabilities for each grid
region.

4. Experiments
4.1. Dataset

This research utilizes RAW IR images, on the other
hand, only 1.4% frames in amongst the whole IR datasets
are RAW frames [9]. Publicly available Teledyne FLIR
ADAS v2 Dataset provides both 8-bit enhanced and 14-bit
RAW IR images for the development of thermal object de-
tection systems. This dataset contains 26,442 fully anno-
tated 640 × 512 frames with 520,000 bounding box anno-
tations across 15 different object categories [13]. Addition-
ally, this dataset comes with pre-classified train, validation
and test splits. We used the 14-bit RAW thermal images
during training and testing. We used only the car, person,
sign, light, and bike classes as the instance numbers of the
other classes are negligible such as the dog class has only
four instances and the deer class has only eight instances in
the train set.

4.2. Implementation Details

The experiments have been conducted on a system hav-
ing 4 NVIDIA Tesla V100 GPUs with a batch size of 8
images per GPU. During the training, the default hyper-
parameter set and default augmentations (except color aug-
mentation) have been used. 14-bit RAW thermal images
have been normalized into the range [0-1] at the prepro-
cessing stage by dividing all the pixel values with 214 − 1.
All models are trained from scratch without using any pre-
trained weights until they converge.

4.3. Evaluation Metrics

The most frequently used evaluation metric in object de-
tection is “Average Precision” [12] which is a measure of
average detection performance under various recall values.
However, the mean AP method is used as a final evaluation
metric for predicted box localization and performance over

whole object categories. The localization performance of
the predicted box is evaluated using the Intersection over
Union (IoU). If the IoU between the ground truth box and
the predicted box is greater than a predefined threshold, the
prediction is marked as a successful detection. Otherwise, it
is missed detection [54]. Mean Average Precision metrics
across three different threshold values AP50, AP75 and AP
and three different scales APS , APM and APL for small
(< 322 pixels), medium (322 to 962 pixels) and large ob-
jects (> 962 pixels) have been used for evaluation. AP50

and AP75 indicates that the predicted bounding box is con-
sidered a correct detection if it has an IoU greater than or
equal to 0.50 and 0.75 respectively, with the ground truth
bounding box. AP indicates that precision is averaged be-
tween 0.50 (coarse localization) and 0.95 (perfect localiza-
tion) IoU thresholds.

4.4. Results

The comparison of the performances of baseline meth-
ods and Reasoner variants are presented in Table 1 in terms
of average precision (AP) and frames-per-seconds on a sin-
gle Tesla V100 GPU in a single batch. According to the
results, Reasoner variants incorporating semantic relation-
ship information increase the performance in terms of AP,
AP50, and AP75 for all the models in question. In partic-
ular, AP50 increases by 4.5, 4.4 and 1.0 percentage points
in YOLOv4-P6, YOLOR-P6 and YOLOv7-W6 models re-
spectively with the proposed Reasoner variants. AP anal-
ysis in terms of different object sizes are also provided in
this table. While the Reasoner variants exhibit better per-
formance for all object size types impact of the Reasoner
variants is the highest for small objects as indicated by the
APS metric. As the proposed model increases the num-
ber of parameters, its computational complexity is higher,
reflected by their lower FPS values in comparison to their
counterparts. On the other hand, the impact is not large to
disallow real-time operation for most applications. Among
different models, YOLOv7-W6 is the best performing one
amongst the baseline models. The Reasoner variant of this
model improves the accuracy, and it is the best-performing
model overall, with 40.5% AP and running at 32.7 FPS.

Figures 3, 4 5 show sample detection results on 14-bit
RAW test images of FLIR ADAS dataset for YOLOv4-P6,
YOLOR-P6 and YOLOV7-W6 and their Reasoner variants.
All sample RAW images enhanced with Contrast Limited
Adaptive Histogram Equalization (CLAHE) [55] for visual-
ization. While baseline YOLOv4 could not detect the right-
most two signs in purple bounding boxes in Figure 3, rea-
soner alternative successfully detects the both. As the IR
object signature of such signs are not obvious the reasoner
module helps detection by the incorporation of semantic
and spatial properties. In Figure 4, baseline YOLOR-P6
mispredicts a traffic light on the building exterior, while the
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Table 1. Comparison of Reasoner models with their baseline detectors.

Detector Size FPS # params AP AP50 AP75 APS APM APL

YOLOv4-P6 1280 25.0 126M 26.3% 40.4% 28.2% 21.5% 41.9% 91.8%
YOLOv4-P6-Reasoner 1280 20.6 146M 29.1% 44.9% 31.0% 24.5% 43.8% 92.9%

YOLOR-P6 1280 33.7 37M 36.4% 53.1% 39.9% 32.2% 49.1% 92.9%
YOLOR-P6-Reasoner 1280 28.1 43M 39.4% 57.5% 44.2% 35.2% 50.8% 93.6%

YOLOv7-W6 1280 44.1 80M 39.5% 57.5% 44.0% 35.9% 49.1% 94.7%
YOLOv7-W6-Reasoner 1280 32.7 96M 40.5% 58.5% 44.8% 37.2% 47.8% 94.9%

Figure 3. Ground truth (left), YOLOv4-P6 (middle) and YOLOv4-P6-Reasoner results (right) for a sample image.

Figure 4. Ground truth (left), YOLOR-P6 (middle) and YOLOR-P6-Reasoner results (right) for a sample image.

Figure 5. Ground truth (left), YOLOv7-W6 (middle) and YOLOv7-W6-Reasoner results (right) for a sample image.

Reasoner variant is not mistaken for this particular case, as
YOLOR-P6-Reasoner may not be expecting a traffic sign
whose size is bigger than other signs and traffic lights. In
Figure 5, there is a partially occluded group of people in

blue bounding boxes on the right-hand side. YOLOv7-W6
predicts them as a bike (orange), a car (green) and a person
(blue), while YOLOv7-W6 successfully predicts two per-
sons. On the other hand, it fails to detect the child as IR
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signatures of the persons get mixed up.

5. Conclusion

While deep learning approaches have shown great suc-
cess in object detection, they have limitations when it comes
to considering semantic and spatial relations between im-
age regions. This is particularly true in cases where im-
ages contain small objects, image noise, and background
clutter, as is often the case with IR imagery. To overcome
these limitations, transformer-based detectors have been in-
troduced, which have an ability to extract relations between
image regions. In this study, we proposed a novel rea-
soning module that incorporates a transformer encoder-like
module to capture reasoning ability from feature maps ex-
tracted from convolutional layers. Experimental evaluation
of the proposed method on the thermal 14-bit RAW FLIR
ADAS dataset indicates that the proposed reasoner module
increases the performance in terms of AP metrics over base-
lines while still running in real-time and the increase is par-
ticularly pronounced for small objects.
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