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Abstract

Recent advances in imaging technologies have enabled
the usage of infrared spectrum data for computer vision
tasks previously working with traditional RGB data, such
as re-identification. Infrared spectrum data can provide
complementary and consistent visual information in situa-
tions of low visibility such as night-time, or adverse environ-
ments. However, the main issue that prevents the training of
multi-modal systems is the lack of available infrared spec-
trum data. To this end, it is important to create systems that
can easily adapt to data of multiple modalities, at inference
time. In this paper, we propose a domain generalisation ap-
proach for multi-modal vehicle re-identification based on
the recent success of meta-learning training approaches,
and evaluate the ability of the model to perform to unseen
modality data at testing time. In our experiments we use
RGB, near-infrared and thermal-infrared modalities using
the RGBNT100 dataset and prove that our meta-learning
training configuration can improve the generalisation abil-
ity of the trained model compared to traditional training
settings.

1. Introduction

Vehicle Re-identification (ReID) is an important and
challenging task in the computer vision literature for vi-
sual surveillance applications. A large number of models
for ReID problem have been proposed [1,16,20,26,41], ex-
ploring various architectures, deep metric learning methods
and image enhancement techniques. The vast majority of
ReID approaches have been based on visible spectrum vi-
sual data, as traditional RGB sensors have been the most

Figure 1. Vehicle images selected from the RGBNT100 [19]
dataset. Three vehicles are captured in visible, near-infrared and
thermal-infrared spectrum modality.

common ones for surveillance scenarios. However, one of
the main factors preventing the applicability of such sys-
tems is their poor performance under low illumination con-
ditions, at night time, in foggy weather or dark scenes. To
this end, infrared spectrum imaging sensors -including near
infrared and thermal infrared- have been recently deployed
in surveillance applications. For instance, unlike RGB sen-
sors, thermal sensors can provide consistent 24h high qual-
ity visual imagery, overcoming the aforementioned chal-
lenges.

Vehicle ReID for infrared or multi-modal data is still
relatively understudied due to the scarcity of infrared im-
agery and lack of large training datasets in these modali-
ties. This is ultimately due to the significantly higher cost
of thermal sensors compared to normal visible light sen-
sors, despite their advantages to provide more robust and
consistent visual information. Training multi-modal ReID
systems would ideally require availability of labelled data
from all the modalities, which is usually not possible or ex-
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pensive. To overcome this limitation, we aim to develop a
system that can generalise to data coming from modalities
that have not been used at training phase.

This generalisation across modalities is however chal-
lenging to be achieved in practice, due to the fundamen-
tal differences between the physical phenomena involved in
image capturing in each modality. In particular, the vis-
ible light spectrum is the segment of the electromagnetic
spectrum that the human eye can view, which corresponds
to wavelengths from 0.4 to 0.7µm and this range is called
visible light. Common RGB sensors visualise this infor-
mation by measuring the reflected energy of the objects in
the scene and provide information similar to what we as
humans would process. On the other hand, infrared spec-
trum imagery depends on the emitted energy from objects
and potential absorption/emission from the background. In
particular near-infrared (NIR) sensors can capture near in-
frared light of 0.78 to 3µm wavelength, reflected by sub-
jects. This type of representation is not affected by low il-
lumination, shadows, and occlusions due to bad weathers.
Similar to NIR, thermal-infrared (TIR) imagery measures
the radiant temperature of the objects and refers to electro-
magnetic waves between 3 and 20µm. The main difference
between TIR and NIR is that TIR measures emitted energy,
whereas the NIR measures reflected energy, closer to how
to visible spectrum is visualised.

The significant differences in the ways of visualising the
different modalities induce high domain discrepancy among
them. In other words, the modality heterogeneity of the in-
put visual data translates into significant domain gap be-
tween their distributions in the embedding space. There-
fore, building a model that has such a strong generalisa-
tion ability to deal with multiple data modalities is an ex-
tremely challenging task. Model-agnostic meta-learning
[7,17] approaches have recently emerged to address the do-
main shift problem for visual data in deep neural architec-
tures. Such a problem refers to the distribution shift be-
tween a set of training (source) data and a set of test (target)
data. In this paper, we apply meta-learning training strat-
egy to achieve generalisation across three visual modalities:
visible (RGB), NIR and TIR. To do this, we iteratively use
two of the three modalities as source domains, and keep one
held-out to be used as target domain. The meta-learning
training configuration separates the source domains into
meta-train and meta-test domains and it is designed to sim-
ulate the train-test cross-domain generalisation functional-
ity. We prove that meta-learning training settings indeed
increase the out-of-distribution generalisation of the model
compared to the typical training process baseline, keeping
traditional single back-propagation.

The main contributions of this paper are summarised be-
low:

• We propose a simple yet novel ReID framework for

vehicle ReID in unseen visual modalities, that works
effectively when no training data for the target modal-
ity is available.

• We apply for the first time a meta-learning train-
ing strategy for domain generalisation across visual
modalities and we demonstrate that meta-learning can
address their significant domain discrepancy.

• We provide a systematic examination of the perfor-
mance of our ReID system using three different visual
modalities, RGB, NIR and TIR which are common in
video surveillance settings. This evaluation demon-
strates that meta-learning provides and up to 4.9% im-
provement in rank−1 and 3.1% improvement in mAP
against our baseline when performing on a completely
unseen visual modality.

2. Related Work
As an emerging research topic, vehicle ReID has at-

tracted great efforts [12, 14, 23, 25, 49] in the computer vi-
sion community with most works focusing on visible light
spectrum ReID data. Below we provide literature review
for multi-modal ReID, domain generalisation and meta-
learning related work.

Multi-modal Visible-Infrared ReID As multi-modal
ReID research evolves, several works have been proposed
to deal with the heterogineity of RGB and infrared modal-
ities [4, 10, 34, 36–40], focusing mainly on person ReID
data. Few recent multi-modal approaches have also been
proposed for vehicle data [8, 11, 13, 19, 27]. Generative
adversarial network (GAN) architectures have been em-
ployed to create a unified generalised embedding space
[4, 8, 10, 34, 36] aiming to produce modality-invariant rep-
resentations. Recent approaches [11, 27] have also pro-
posed transformer-based frameworks for multi-modal vehi-
cle ReID aiming to reduce feature deviations towards modal
variations by learning intra- and inter-modality informa-
tion. Although these approaches propose systems working
with diverse modalities simultaneously, they do not con-
sider ReID applied to unseen modality data at inference
time.

Domain Generalisation Domain generalisation is an es-
sential research topic, as it examines the ability of the
trained model to perform on data from different distribu-
tions than the training data, aka. out-of-distribution (OOD)
generalisation [31, 42, 44]. Without access to target do-
main data, training a model that can work effectively in
any unseen target domain data is arguably one of the hard-
est problems in research community. Researchers have ap-
proached it with a wide range of methods related to aligning
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source domain distributions for domain-invariant represen-
tation learning [21,22], augmenting source data with image
generation [8,46,47], or exposing the model to domain shift
during training via meta-learning [6, 17, 30]. Particularly
for ReID, models by default address heterogeneous settings
since training and testing identities are completely different,
which automatically imposes the domain shift issue. Fur-
ther than that, cross-dataset ReID has also gained interest
[3,43,45,48] with the objective to generalize a ReID model
trained on source camera views to target camera views in-
stalled in a different environment. However, the application
of generalisation methods to tackle the domain-shift across
visual modalities [38] -for example across RGB, infrared,
thermal, radar sensor data- is still widely understudied.

Meta-learning Recently, meta-learning has been a fast-
growing area with applications to many computer vision
tasks [6,7,17,18,24,28,30,43], and it is based on exposing
the model to domain shift among available source domains
during training, expecting that the trained model will then
be able to deal with domain shift in unseen domains at test-
ing time. Although this type of methodology has been dis-
cussed decades ago [33] in the literature, MAML [7] was a
major paper that explicitly suggested the separation of train-
ing data into meta-train and meta-test tasks and trained a
single shared source model using multiple source tasks for
few-shot classification. Meta-learning has been also used
for domain generalisation [2, 3, 18, 43], by making use of
source domains to imitate the domain shift that the model is
going to face at testing time. Meta Face Recognition (MFR)
[9], proposes a loss function employing distances of hard
samples, identity classification and the distances between
domain centers. However, simply enforcing alignment of
the centers of training domains does not necessarily align
their distributions and may lead to undesirable effects, such
as aligning different class samples from different domains.
Meta-Learning Domain Generalization (MLDG) [17] pro-
poses to generate domain shift during training by synthesiz-
ing virtual domains within each batch. Although promis-
ing results have been demonstrated in training generalis-
able models, to the best of our knowledge, meta-learning
approaches have not yet been applied for multi-spectral vi-
sual domains.

3. Proposed Method
In this section, we describe the algorithmic pipeline of

our meta-learning based framework for multi-modal do-
main generalisation for vehicle ReID. Figure 2 depicts the
training and testing processes of the proposed framework.
At training phase, we select two out of the three available
modalities to be used as source domains, and iteratively
assign each one of them as meta-test and meta-train do-
main. The meta-learning training configuration simulates

the train-test cross-domain generalisation functionality. At
testing phase, the trained model is exposed to data from
a completely unknown visual modality. Our hypothesis is
that the meta-learning training settings are going to create
a model with the generalisation power to perform ReID on
unseen modality imagery.

3.1. Backbone architecture

Regarding our architecture, a ResNet50 convolutional
backbone network is used, followed by Adaptive Average
Pooling (AAP) [13] and Batch normalization (B-norm) lay-
ers. At the top of the network there is an embedding fully
connected FCemb that project the input images into a multi-
dimensional embedding space and a classification fully con-
nected FCcls layer which is detached at testing phase. The
input channels of ResNet50 architecture are typically 3,
which matches with the RGB imagery format. For NIR and
TIR inputs, which consists of only one channel per pixel,
the 1-channel information is copied to the 3 channels to fit
the architecture rrequirements.

3.2. Loss Functions

In this section, we provide the mathematical analysis of
the loss function components, first for the metric learning
part and then for the classification part.

Given a set of input images, after passing them through
the network, we get feature representation vectors and clas-
sification vectors X and C, respectively. During training,
we employ both metric learning, using the Ranked-list Loss
(RLL) function [35], applied to X embeddings, and cross-
entropy [23] with label smoothing generalisation [32] for
classification applied to C classification vectors.

Ranked-list Loss RLL is selected for metric learning due
to its simplicity and state-of-art performance in ReID as
structured metric learning loss function [13, 35].

In a batch of size B there are Z vehicle identity classes
and M samples per class, B = M × Z. Given a set of
embeddings X = {xi

c |c = 1, ..., Z, i = 1, ...,M} each
sample acts as anchor sample, having M − 1 positive pair
samples and (Z − 1) ×M negative pair samples in total.
Given two distance margins a and m, RLL aims to ensure
that the separation between negative samples is greater than
a, and the separation between the positives is less than a −
m. Let the set of positive and negative pair samples that
produce non-zero loss for an anchor sample xi

c, are Pc,i =

xj
c | j ̸= i, dij > (a − m) and Nc,i = xj

k | k ̸=
c, dij < a respectively, where dij =∥ xi−xj ∥2 denotes
the euclidean distance between two samples. The positive
and negative loss equations are:

Lp(x
i
c) =

1

| Pc,i |
∑

xj
c∈Pc,i

dij − (a−m) (1)
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Figure 2. An overview of training and testing phases of the proposed framework. For the sake of visualisation, we have selected the RGB
and NIR sets as source domains (meta-train V 1 and meta-test V 2, respectively) and the TIR set as target domain. During training, the
model parameters are saved in a temporary copy and then updated using the loss computed from meta-train domain data, Lmeta−tr . Then,
we use the updated temporary model to compute the meta-test loss Lmeta−te. Finally, the summation of the meta-train and meta-test loss
L is used to update the original model towards a generalisable direction that performs well on meta-train and meta-test domains. This
training configuration that simulates the train-test domain shift evaluation is expected to create a model which is able to generalise well to
unseen target domains (in this case: TIR domain set) .

Ln(x
i
c) =

1

| Nc,i |
∑

xj
k∈Nc,i

a− dij (2)

Finally the RLL loss, Lrll, is computed by summing Lp and
Ln:

Lrll(X) =

∑C
c=1

∑Z
i=1 Lp(x

i
c) + Ln(x

i
c)

CZ
(3)

Classification Loss As classification loss function, we
employ cross-entropy [23] with label smoothing regulariza-
tion [32], denoted as Lcls(.) applied to C classification vec-
tors. Adding classification has been proved effective in in-
creasing the discriminative power of the model and leading
to faster convergence in ReID frameworks [1].

3.3. Meta-learning Training

The training process of the proposed system is explained
in Algorithm 1. During the training process, B input im-
ages are sampled from each of the K source domains, de-
fined as V i, i = 1, ...,K. In our settings, domains corre-
spond to different visual modalities. Passing the input im-
ages through the network, we get the sets of feature repre-
sentation vectors and classification vectors for each domain:
Xi, Ci, i = 1, ...,K, respectively.

To perform the meta learning process, we first copy the
original model parameters and update them using the loss
computed from meta-train data, Lmeta−tr. Then, we use the
updated model with Θ′ parameters to compute the meta-test
loss Lmeta−te. Finally, the summation of the meta-train and
meta-test loss L is used to update the original model towards
a generalisable direction that performs well on meta-train
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Algorithm 1 Meta-learning Training for Generalisation
across Visual Modalities.

Input
Source domains D = [D1, D2, ..., DK];
Architecture: model; Batch size B;
Hyper-parameters α, β, λ;

Output
Learned parameters: Θ̂

1: Initialize parameters Θ
2: repeat:
3: Initialize the gradient accumulator: GΘ ← 0
4: for each Di, (meta-test domain) in D do:
5: for each Dj , i ̸= j (meta-train domain) in D do:
6: Sample V j = [vj1, v

j
2, ..., v

j
B ] from Dj domain

7: Compute Xj , Cj ← model(V j ; Θ)

8: Compute Lmeta−tr ← Lrll(X
j) + Lcls(C

j)

9: Compute Θ′ ← Θ− β∇ΘLs

10: Sample V i = [vi1, v
i
2, ..., v

i
B ] from Di domain

11: Compute Xi, Ci ← model(V i; Θ′)

12: Compute Lmeta−te ← Lrll(X
i) + Lcls(C

i)
13: end for
14: GΘ ← GΘ +∇ΘLmeta−te + λ∇ΘLmeta−tr

15: end for
16: Update model parameters Θ← Θ− αGΘ

17: until convergence

and meta-test domains.

4. Experiments
In this section, we present the experimental set up and

analyze the results of our experimental process.

4.1. Baseline

As baseline for our experiments, we consider the same
model architecture, trained with a single back-propagation
by the summation of metric learning and classification loss
components (Ltotal = Lrll + Lcls) from all the source do-
mains, without the integration of meta-learning training. By
keeping the same source-target domain data separation, we
ensure that the baseline is exposed to the same training set
as our proposed approach. The baseline training pipeline is
described in Algorithm 2. The purpose of setting this base-
line is to evaluate the effect of meta-learning compared to
conventional training for ReID when facing an unseen vi-
sual domain in the closest possible settings and model.

4.2. Datasets

For our experiments we use the RGBNT100 benchmark.
RGBNT100 is a subset of RGBN300 [19] dataset which
is currently the only dataset designed for vehicle ReID

Algorithm 2 Baseline Model Training.

Input
Source domains D = [D1, D2, ..., DK];
Architecture: model; Batch size B;
Hyper-parameters α;

Output
Learned parameters: Θ̂

1: Initialize parameters Θ
2: repeat:
3: Initialize the gradient accumulator: GΘ ← 0

4: for each Di, in D do:
5: Sample V i = [vi1, v

i
2, ..., v

i
B ] from Di domain

6: Compute Xi, Ci ← model(V i; Θ)

7: Compute Ltotal ← Lrll(X
i) + Lcls(C

i)

8: GΘ ← GΘ +∇ΘLtotal

9: end for
10: Update model parameters Θ← Θ− αGΘ

11: until convergence

that includes cropped vehicle images from diverse vision
sensors. RGBNT100 is designed for three-spectral vehi-
cle ReID among visible, near-infrared and thermal-infrared
modalities. It contains aligned image triples from 100 ve-
hicles for the three modalities captured by eight triples of
RGB-NIR-TIR cameras. Each vehicle is captured by 2 to
8 sensor views and the number of captures of each vehicle
varies from 50 to 200. 50 vehicles are used for training and
the other 50 for testing, which translates into 8675 image
triplets for training and another 8575 for testing along with
1715 queries.

In our experimental settings, since two modalities are
used as source domains and the held-out third one as tar-
get domain, the parameter K in Algorithms 1 and 2 is equal
to 2.

4.3. Evaluation Metrics

In ReID settings, the model is evaluated by ranking each
gallery sample according to its similarity to the query sam-
ple, in the form of a sorted list. The two most widely used
evaluation metrics in ReID are the mean average precision
(mAP ) and the rank-k scores. The rank-k score denotes
the possibility that at least one true positive is ranked within
the top k positions of the list. For mAP , the mean of all
queries’ average precision (AP ) is computed, also known
as the area under the Precision-Recall curve. In particular,
the AP is computed for each query as:

AP =

∑n
k=1 P (k)× gt(k)

Ngt
(4)
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Figure 3. Qualitative results for one query image from each target domain modality from the RGBNT100 [19] dataset. For each query,
there is a sequence of 10 gallery images corresponding to the ranking results produced by our models, using the baseline trained models
(at the top) and the meta-learning trained models (at the bottom). Vehicles surrounded by green box denote the same vehicle as the probe
(true positive), otherwise it is surrounded by a red box (false positive).

where n is the number of samples in the gallery set and Ngt

is the number of positive samples in the gallery set. P (k)
is the fraction of true positives in the top k ranked gallery
samples and corresponds to the precision at the kth position
of the results. gt(k) is an indicator function that equals to 1
if the kth result is correctly matched and 0 otherwise. The
mAP is then computed over all queries’ AP as:

mAP =

∑Q
q=1 AP (q)

Q
(5)

In the above equation, Q denotes the total number of
queries.

4.4. Implementation Details

Our implementation was done in PyTorch [29]. As back-
bone, we adopt the ResNet50 architecture, pretrained on
ImageNet [5]. The weights of FCemb and FCcls layers
are randomly initialised. Also, the dimensionality of the
embedding vectors is 512 and the embeddings are L-2 nor-
malised before the loss computation. All images are re-
sized to 128 × 128. Following the implementation details
in [19], for data augmentation, standard random cropping
and horizontal flipping are applied during training and the
Adam [15] optimizer is used with weight decay equal to
0.0005 and a momentum of 0.9. The batch size is 32, con-
sisting of Z = 8 identity classes and M = 4 images per
class for each domain.

Learning rates, β and α, for the inner and the outer loop,
are set to 10−4 and 3.5× 10−5, respectively. Finally, the λ
weighting factor is set to 0.4 for the cases of RGB and TIR
target domains and to 0.2 for the NIR target domain (see
subsection 4.5.1).

4.5. Results

In order to simulate the unseen visual domain scenario,
a leave-one-out domain setting is applied. In every exper-
iment two domains are used for training and one is left as
unseen for testing. This is repeated three times using the
RGBNT100 dataset so as to examine all possible combi-
nations. Each time the model is evaluated according to its
ability to perform ReID using data from the target (unseen)
domain. Tables 1, 2 and 3 show our system’s performance
against the baseline settings. Each table corresponds to a
different source-target domain selection among the RGB,
NIR and TIR data modalities.

It can be seen that meta-learning training configuration
provides consistent improvement over the baseline under all
source-target selection settings. As an example, in Figure 3,
qualitative results are also provided for 3 different queries
(3 different vehicles), one for each target domain. Given
one query image for each target domain, we visualise the
ranking results provided by the corresponding model.

Among the three source-target domain selection, TIR
target domain shows the lowest performance and this re-
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Figure 4. The mAP and rank−1 performance for different values
of λ for the cases of RGB, NIR, and TIR target domains.

Target: TIR
Source: RGB, NIR mAP R-1 R-5 R-10

Baseline 18.6 40.9 47.3 50.8
Meta-learning Model 19.9 42.3 50.7 56.2

Table 1. The performance of our system on RGBNT100 [19]
dataset. The model is trained on the training sets of RGB and NIR
modalities (source domains) and then it is tested on the testing set
of TIR modality (target domain). λ parameter is set to 0.4.

Target: NIR
Source: RGB, TIR mAP R-1 R-5 R-10

Baseline 23.7 40.6 45.7 49.0
Meta-learning Model 24.9 45.5 49.9 52.9

Table 2. The performance of our system on RGBNT100 [19]
dataset. The model is trained on the training sets of RGB and TIR
modalities (source domains) and then it is tested on the testing set
of NIR modality (target domain). λ parameter is set to 0.2.

Target: RGB
Source: NIR, TIR mAP R-1 R-5 R-10

Baseline 30.2 53.9 59.3 61.8
Meta-learning Model 33.3 58.4 63.9 66.9

Table 3. The performance of our system on RGBNT100 [19]
dataset. The model is trained on the training sets of NIR and NIR
modalities (source domains) and then it is tested on the testing set
of RGB modality (target domain). λ parameter is set to 0.4.

flects to the radical difference in visualising the TIR spec-
trum by measuring the emmitted object energy compared
to RGB and NIR sensor data which measure the reflected
object energy. This fundamental difference in the nature of

the modalities renders the source-target generalisation even
harder.

4.5.1 Tuning λ parameter

We are evaluating the effect of λ factor that controls the
magnitude of meta-train loss Lmeta−tr in the final loss sum-
mation in Algorithm 1. Figure 4 demonstrates the mAP
and rank−1 scores for different values of λ for each target
domain settings. λ parameter is set to 0.4 for the RGB and
TIR and to 0.2 for the NIR target domain. Observing the
results in Figure 4, it seems that the addition of Lmeta−tr

does not affect significantly the performance and λ is not
a critical parameter, but provides a moderate improvement,
especially in the rank−1 scores. This can be explained by
the fact that even in the case of λ = 0 the meta-train domain
has indirectly contributed in the Lmeta−te computation.

5. Conclusions & Future Work
In this work, we propose a domain generalisation frame-

work for multi-modal vehicle ReID based on meta-learning
training configuration. The visual modalities considered for
this system involve RGB, NIR and TIR and we examine the
ability of the ReID model to perform on a previously unseen
modality, while evaluating the contribution of meta-learning
techniques to achieve domain generalisation. The experi-
mental analysis show that our proposed framework provides
consistent improvement under all source-target domain se-
lection settings in RGBNT100 benchmark. This proves the
potential of meta-learning training to create a more general-
isable ReID model compared to a model with conventional
metric learning training.

Normally meta-learning methods require multiple source
domains, that would allow multiple combinations of meta-
train - meta-test domains. In our case that was not pos-
sible due to the dataset construction and only two source
domains were available in our settings. The presence of
more source modalities, even synthetic ones [8], would al-
low to examine the full potential of meta-learning training
in across-modality generalisation. Also, another future di-
rection for this work would be to experiment with different
backbone models and more multi-modal ReID benchmarks,
once available.
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