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Abstract

Modern algorithms for RGB-IR facial recognition—
a challenging problem where infrared probe images are
matched with visible gallery images—leverage precise and
accurate guidance from curated (i.e., labeled) data to
bridge large spectral differences. However, supervised
cross-spectral face recognition methods are often extremely
sensitive due to over-fitting to labels, performing well in
some settings but not in others. Moreover, when fine-
tuning on data from additional settings, supervised cross-
spectral face recognition are prone to catastrophic forget-
ting. Therefore, we propose a novel unsupervised frame-
work for RGB-IR face recognition to minimize the cost and
time inefficiencies pertaining to labeling large-scale, multi-
spectral data required to train supervised cross-spectral
recognition methods and to alleviate the effect of forget-
ting by removing over dependence on hard labels to bridge
such large spectral differences. The proposed framework
integrates an efficient backbone network architecture with
part-based attention models, which collectively enhances
common information between visible and infrared faces.
Then, the framework is optimized using pseudo-labels and
a new cross-spectral memory bank loss. This framework is
evaluated on the ARL-VTF and TUFTS datasets, achieving
98.55% and 43.28% true accept rate, respectively. Addi-
tionally, we analyze effects of forgetting and show that our
framework is less prone to these effects.

1. Introduction

Facial recognition (FR) technology has been shown to
have far-reaching social implications, from criminal iden-
tification to unlocking personal devices. Most FR tech-
nologies rely upon visible (RGB) spectrum (0.4–0.75µm)
imagery, since conventional visible cameras are ubiquitous
and cost effective. However, RGB imagery is vulnerable to
illumination changes, making RGB-based FR ineffective in

Figure 1. Overview of our proposed method. The approach uses
clustering and matching to generate pseudo-labels, that enable the
learning of spectral invariant information through a cross-memory
bank without the need for supervision.

low-light conditions, such as nighttime. To address this lim-
itation, researchers have shifted focus to FR beyond the vis-
ible spectrum [1], such as midwave (MWIR) and longwave
infrared (LWIR) or 3–8µm, and 8–15µm, respectively. Al-
though infrared (IR) sensors have been deployed in real
world applications, most FR databases/galleries consist of
RGB images leading to reduced match scores between RGB
and IR images. There are three major challenges in advanc-
ing FR outside of the visible spectrum:

1. learning with limited data of specific size (num-
ber of images), quality (resolution), and complexity
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(co-variates), comprising multi-spectral imagery with
100+ identities,

2. the lack of annotated data and the significant time,
cost, and resources required for curation and labeling
(from challenge 1),

3. the large domain disparity (texture, color, resolution,
etc.) between RGB and IR images, making it suscepti-
ble to over-fitting.

While these problems are applicable to many cross-domain
applications, this paper addresses the three challenges in the
context of RGB-IR face recognition [11, 16, 29].

Recently, methods leveraging local face parts (or
patches) [20, 28], holistic face [13], synthesized face [31,
32], or attribute-enhanced [4, 5, 14] representations have
been developed to mitigate the divergence between corre-
sponding faces acquired from IR and RGB spectra. These
methods extensively rely on supervised learning optimiza-
tion techniques, which heavily depend on precisely curated
(labeled) information for both RGB and IR face imagery.
Although data annotation may be easier to semi-automate
for RGB imagery due to prevalence of existing tools and
data, comparable tools or data are not as widely available
for IR imagery. Therefore, the ability to learn discrimi-
native representations without needing significant amounts
of labeled data can better inform multi-spectral FR data
collections (challenge 1), and can help quickly shift ef-
fort/resources toward analyzing new data (challenge 2).

While supervised methods have achieved great success
on datasets such as [12, 21, 24], the cost and time of an-
notating such datasets is very high. Additionally, super-
vised methods, especially highly parameterized deep neural
networks, are susceptible to poor generalization and catas-
trophic interference (or forgetting) due to over-fitting to
labels. Recently, unsupervised learning (e.g., clustering)
techniques have shown promise for visible-based recog-
nition [17–19], but often exhibit reduced discriminability
compared to supervised techniques and have trouble un-
der challenging conditions like resolution differences, oc-
clusions, and spectral differences. Therefore, in this paper,
we are among the first to enhance unsupervised learning for
RGB-IR (cross-spectrum) FR (challenge 3).

In our proposed unsupervised cross-spectrum FR frame-
work, by clustering and matching face images correspond-
ing to the same identity from different spectra, we aim to
learn spectral invariant information without identity labels
or labeled image pairs (addressing challenge 2). The pro-
posed framework is set up with an efficient backbone ar-
chitecture that is augmented with lightweight part-based at-
tention enabling it to learn on limited amount of data (ad-
dressing challenge 1), and bridging the domain gap without
over-fitting (addressing challenge 3).

Cross-spectrum techniques (supervised and unsuper-
vised) often share parameters of early layers to process in-

puts from both spectra [20,25,27], but tend to learn spectral
specific information in later layers. Instead of two (or more)
networks with dedicated processing per spectra, we design
a singular network to learn highly localized information via
multi-part attention which acts as form of regularization
to limit the amount of spectral specific information. This
framework is optimized using a new cross-spectrum mem-
ory bank loss that exploits pseudo-labels created by com-
bining intra-spectral clustering and inter-spectral matching.
Our approach effectively learns discriminative and spectral
invariant embeddings without identity labels. This enables
us to (a) learn spectral invariance based on multi-spectral
clusters and (b) discriminatively cluster multi-spectral data
using spectral invariant embeddings.

Overall, we propose a novel unsupervised framework
(Figure 1) for RGB-IR FR with the following contributions:
(a) an efficient attention-based architecture—to focus on
more generalizable information that is significantly less
specific toward spectral specialized information,
(b) a new multi-part attention—to promote highly localized
information that limits the amount of spectral context,
(c) a new cross-spectral memory bank clustering loss—to
encourage discriminative cross-spectral clustering of iden-
tities using pseudo-labels.

This framework is extensively evaluated using both
ARL-VTF [24] and TUFTS [21] datasets, where we demon-
strate enhanced RGB-IR FR using unsupervised learning.
Moreover, we perform an important systematic study that
highlights how our framework (and in general, unsuper-
vised learning) can mitigate the effects of catastrophic inter-
ference/forgetting that are common to supervised learning.

2. Related Work
Supervised methods include RST [20], where a resid-

ual spectral transform is learned to produce domain invari-
ant representations. In [26], dictionary learning is used
to generate a sparse feature representation that is domain-
independent. But supervised methods are known to be
prone to over-fitting and need significant amounts of labeled
data to overcome domain disparity, whereas our method is
based on an efficient backbone that can learn with limited
amount of unlabeled data.

Many methods use generative adversarial networks
(GANs) to synthesize an image to another spectral domain.
Pix2Pix [15] utilizes conditional adversarial networks to
translate images from thermal to visible using a U-Net
based architecture. GANVFS [31] jointly estimates the vis-
ible features and visible image reconstruction from thermal
images using identity and perceptual objectives, to retain
discriminative face characteristics. SAGAN [3] uses a self-
attention module to capture long-range dependency infor-
mation with cycle consistency and a patch discriminator for
inter-domain synthesis. While generative models visually

336



Figure 2. The framework performs inter- and intra-spectral clustering and matching to generate an accurate dataset without using labels.
Intermediate features are extracted by the EfficientNet model and spatially divided into four equal parts. Attention for each part is calculated
independently and the final attention-refined feature map is concatenated. This feature map is optimized using the cross-memory bank loss.

show notable domain gap reduction, there is a new inter-
mediate domain gap created between synthesized and ’real‘
images leading to reduced discriminability. Our method
does not synthesize images, but uses spectral-specific paths
to learn generalizable information between domains.

Most work in unsupervised face recognition is adapting a
labeled source dataset to an unlabeled target dataset, known
as unsupervised domain adaptation (UDA). A popular idea
is to perform feature space alignment where the distance
between domains is minimized by learning a transforma-
tion from source to target domain [2, 7, 8]. Fully unsu-
pervised learning has been explored in tasks such as per-
son re-identification (ReID) where no labels are assumed.
Methods such as BUC [17] and GAM [18] use bottom-
up clustering to find identity matches and use a memory
bank to optimize the network, where each image is consid-
ered a singleton cluster at the start. However, such meth-
ods have not studied inter-domain clustering, being prone
to cluster intra-domain instances at early stages of train-
ing, thereby increasing the domain gap in the feature space.
SpCL [10] uses self-paced contrastive learning framework
that utilizes a hybrid memory to gradually generate reliable
clusters. However, the lack of attention and high number
of parameters results in inferior performance compared to
our method. In addition, the cluster quality criterion also

introduces noise in the cluster labels. Our method uses high
confident clusters, and an efficient network with fewer pa-
rameters to learn discriminative features from less data.

3. Methodology

Figure 2 depicts our cross-spectral framework that has
three distinct components: attention-based feature extrac-
tion, clustering and matching, and cross memory bank opti-
mization. First, RGB and IR images are clustered indepen-
dently to form intra-spectral clusters. Then, RGB clusters
are matched with IR clusters using inter-spectral matching.
Pseudo-labels are used to optimize the network using the
cross-spectral memory bank loss and multi-part attention.

3.1. Preliminaries

We denote RGB and IR training samples as XRGB =
{xrgb

1 , xrgb
2 , . . . , xrgb

n } and XIR = {xir
1 , xir

2 , . . . , xir
n } ,re-

spectively. Pseudo-labels generated by the clustering algo-
rithm are denoted as YRGB = {yrgb1 , yrgb2 , . . . , yrgbn } and
YIR = {yir1 , yir2 , . . . , yirn }. Initially, the labels are initial-
ized to -1, indicating not clustered. We aim to learn a map-
ping ϕ(xi; θ) that is discriminative and invariant to the spec-
tra, where θ are the learnable parameters.
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3.2. Clustering and Matching

We adopt the challenging setting where no intra- or inter-
spectral labels are available during the training phase. First,
we utilize DBSCAN [6] (density-based clustering) to gen-
erate the initial set of cluster sample labels within spectra
(i.e., RGB and IR separately). The cosine distance metric is
used to quantify cluster similarity. DBSCAN performs su-
perior to K-means as it only picks samples in spatially high
density areas, while also allowing clusters to be any shape
(vs K-means which assumes convex shapes). While DB-
SCAN overlooks many training samples in the initial phase,
our lightweight attention-based network is adept at learning
efficiently from the limited data present.

After obtaining the pseudo-labels for each spectra, inter-
spectral matching is used to solve the association problem
between RGB clusters and IR clusters. For each RGB clus-
ter, we rank each sample in that cluster to all the IR clusters
according to the cosine distance metric. The most common
cluster that the RGB matches to is assigned as the matching
cluster. In the first box of Figure 2, the matching process is
shown where RGB cluster 2 has five samples in the cluster,
and four out of five (1,2,3 and 4) have IR cluster 2 as the top
match according to the distance metric. Hence, IR 2 is as-
signed to RGB cluster 2 (the cluster numbers are arbitrary).
To ignore noise and draws, we only consider matches where
majority of the votes are for the same cluster.

Finally, after some training (Section 3.4), this clustering
and matching process can be repeated to help generate ad-
ditional pseudo-labels for training.

3.3. Multi-Part Attention (MPA)

To match faces across spectrum, it is vital to learn a
mapping that is robust to spectral changes. Intermediate
features have been shown to better transfer between spec-
tral domains for FR [20]. Given the intermediate feature
maps from a backbone convolutional network, we employ
a new multi-branch attention-based architecture that con-
sists of four 1 × 1 convolutional layers and four weighting
parameters α. This helps to further emphasize highly local-
ized information that is robust to spectral differences. We
use a truncated EfficientNet [30] backbone (only 851.81K
parameters and 255.43 MMac computational complexity)
to balance network depth and width. Formally, given an
image, the MPA refined feature maps are given by

ϕ(x) = concat{F 1
refined(x), . . . , F

4
refined(x)} (1)

Eq. 1 combines four local part-refined representations

F p
refined = αpσ{W ∗ F p

EN (x)} ⊙ F p
EN (x), (2)

where F p
EN for p ∈ 1, 2, 3, 4 denotes the four equal parts of

FEN pertaining to: hair (part 1), forehead (part 2), nose

and ears (part 3), and chin (part 4). The ∗ operator de-
notes convolution and ⊙ denotes element-wise multiplica-
tion. Both EfficientNet and locally weighted part-based at-
tention models—parameterized by αp and W— are also op-
timized.

3.4. Cross-spectral Memory Bank Optimization

To optimize our network without ground truth labels, we
make use of a memory bank matrix M that has dimension
size of number of clusters × feature embedding size. M
stores cluster centers produced from both IR and RGB sam-
ples, i.e., centroid of all cross-spectral instances assigned to
that particular cluster. We define the cross-spectral pseudo-
labels (cluster labels) assigned by the clustering and match-
ing as Y = {y1, . . . , yn} and the unique cluster labels in
Y as β = {β1, . . . , βNc

} where Nc is the number of clus-
ters. Therefore, M = {Mβ1

,Mβ2
, . . . ,MβNc

} contains the
cluster centers with size Nc.

Let βi denote the cluster index in which xi is assigned
for i = 1 . . . n. The probability that image xi belongs to a
cluster βi is given by

P (βi|xi) = softmax{(Mβi
· ϕ(xi; θ))/τ} (3)

where τ is a temperature parameter of the distribution set to
0.1. Feature embeddings ϕ(xi; θ) for i = 1 . . . n are opti-
mized via stochastic gradient based updates of parameters
θ. Then, the optimized embeddings are used to update the
memory bank M . Therefore, the objective function is to
minimize the cross entropy as,

JMBL = −
n∑

i=1

log{P (βi|xi)}. (4)

4. Experimental Results
4.1. Datasets

ARL Visible-Thermal Face Dataset (ARL-VTF) [24]
contains 395 identities (295 in the training set, 100 in the
testing set) with over 500,000 thermal and visible images.
The dataset has two gallery sets: subjects without eye-
glasses G VB0- and subjects including glasses G VB0+.
The query/probe set has three different conditions: base-
line, expression and eyeglasses. For baseline thermal im-
agery in the probe set, we have P TB0, P TB-, and P TB+,
where ‘0’ denotes subjects without glasses, ‘-’ denotes sub-
jects who have glasses but are not wearing them, and ‘+’
denotes subjects that have glasses and are wearing them.
For expression thermal imagery, we have P TE0 and P TE-
probe sets. The naive ‘VGG16’ baseline method simply ex-
tracts deep features from a VGG backbone network [23]. As
a ground-truth baseline method (GT Vis-to-Vis), the query
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Table 1. Baseline and Expression verification performance is compared with Blue indicating best unsupervised performance and cyan
indicating best supervised performance.

Gallery G VB0- Gallery G VB0+
Probes Method AUC EER 1% FAR 5% FAR AUC EER 1% FAR 5% FAR

BA
SE

L
IN

E
PR

O
B

E
SE

T
S

P TB0

VGG16 [23] 61.37 43.36 3.13 11.28 62.83 42.37 4.19 13.29
Pix2Pix [15] 71.12 33.80 6.95 21.28 75.22 30.42 8.28 27.63
GANVFS [31] 97.94 8.14 75.00 88.93 98.58 6.94 79.09 91.04
SAGAN [3] 99.28 3.97 87.95 96.66 99.49 3.38 90.52 97.81
RST [20] 99.76 2.30 96.84 98.43 99.87 1.84 97.29 98.80
DPIT [9] 99.99 0.15 100.00 100.00 100.00 0.12 100.00 100.00
MPA (OURS) 99.92 1.28 98.55 100.00 99.93 1.08 98.83 100.00

P TB-

VGG16 [23] 61.14 41.64 2.77 16.11 57.61 44.73 1.38 6.11
Pix2Pix [15] 68.77 38.02 6.69 20.28 52.11 48.88 2.22 4.66
GANVFS [31] 99.36 3.77 84.88 97.66 87.34 18.66 7,00 29.66
SAGAN [3] 99.63 2.66 91.55 98.88 89.24 19.49 16.33 41.22
RST [20] 99.83 1.95 96.00 99.48 99.03 4.79 85.56 95.86
DPIT [9] 100.00 00.0 100.00 100.00 97.97 0.66 100.00 100.00
MPA (OURS) 99.62 4.35 91.31 96.70 98.28 6.96 69.29 89.44

P TB+

VGG16 [23] 59.52 42.60 4.66 6.00 78.26 29.77 3.88 21.33
Pix2Pix [15] 59.68 41.72 3.33 3.33 67.08 36.44 2.68 11.11
GANVFS [31] 87.61 20.16 20.55 44.66 96.82 8.66 46.77 83.00
SAGAN [3] 91.11 17.43 22.33 55.66 97.96 7.21 60.11 88.70
RST [20] 99.28 5.32 89.21 94.79 99.97 0.73 99.47 100.00
DPIT [9] 99.91 1.94 96.84 100.00 100.00 0.32 100.00 100.00
MPA (OURS) 96.97 9.77 55.89 83.04 99.80 1.95 93.51 99.56

E
X

PR
E

SS
IO

N
PR

O
B

E
SE

T
S

P TE0

VGG16 [23] 61.40 41.96 3.40 12.18 62.50 41.38 4.60 13.25
Pix2Pix [15] 69.10 35.98 7.01 16.44 73.97 31.87 7.93 19.60
GANVFS [31] 96.81 10.51 70.41 84.00 97.73 8.90 74.20 86.80
SAGAN [3] 98.46 6.44 81.11 92.49 98.89 5.60 84.23 93.94
RST [20] 98.95 3.61 92.61 96.88 99.01 3.57 92.69 96.93
DPIT [9] 99.79 2.39 96.49 98.31 99.70 2.33 96.52 98.29
MPA (OURS) 99.15 4.67 89.52 95.47 99.25 4.46 90.73 95.80

P TE-

VGG16 [23] 63.26 42.34 4.66 16.28 59.33 43.17 2.04 8.00
Pix2Pix [15] 68.78 36.24 7.75 18.06 51.05 49.11 2.26 4.95
GANVFS [31] 98.66 5.93 73.17 92.82 83.68 22.41 6.77 22.13
SAGAN [3] 99.30 3.84 82.55 97.44 86.12 21.68 9.88 31.62
RST [20] 99.83 2.27 95.66 99.48 99.48 3.05 89.45 98.07
DPIT [9] 99.88 0.81 99.47 99.87 99.77 2.92 95.33 98.87
MPA (OURS) 99.62 3.00 90.98 98.47 98.97 5.05 73.30 94.70

images (IR) are replaced with the corresponding RGB im-
ages. While the dataset also contains different pose condi-
tion, matching clusters across varying poses is very chal-
lenging, and hence we do not address it in this work.

TUFTS [22] provides thermal-visible face images of 113
identities from more than 15 countries and a 0.52 male-to-
female identity ratio. For this setting, we select baseline and
expression images from the training set with 315 visible and
315 thermal images. We split the dataset with 63 identities
in the training set and 50 identities in the testing set. For
both the probe and gallery sets, we have 250 images each.

By employing both large- and small-scale datasets, we il-
lustrate the robustness of our method with respect to dataset
size, number of identities, and ethnic diversity.

4.2. Evaluation Metrics

Algorithm performance is measured using Area Under
the Curve (AUC), equal error rate (EER), and True Positive
Rate (TPR) at False Acceptance Rate (FAR) metrics. We
evaluate TPR at 1% FAR and 5% FAR.

4.3. Implementation Details

For our backbone network, we use a EfficientNet-B0
model truncated at layer 4 having only 851.81K parame-
ters and 255.43 MMac. The multi-part attention model only
contains 50.63K parameters and 2.48 MMac computational
complexity. By experimentation, we found that intermedi-
ate features at layer 4 are more transferable and faster to
converge. The learning rate is set to 1e−4 with the RM-
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(a) Varying EPS on the TUFTS dataset. (b) Varying EPS on the ARL-VTF dataset.

Figure 3. Analyzing the effects of EPS for spatial-based density clustering.

(a) ROC curves on the TUFTS dataset. (b) CMC curves on the TUFTS dataset.
(c) Effect of embedding sizes.

Figure 4. Performance on the TUFTS dataset.

SProp optimizer. The images are resized to 224 × 224 and
the batch size is set to 16. All experiments are done using
the PyTorch framework and trained on one NVIDIA RTX
2080 Ti GPU with 11GB video memory.

4.4. Clustering Density Analysis for Training

Including as much correct data is essential for unsuper-
vised training, even though DBSCAN can help address less
confident clusters. Therefore, we analyze the effects of pa-
rameter epsilon (EPS) that controls the neighbourhood ra-
dius on the validation set. Figure 3 shows that if EPS is
too low, all data is considered noise, while if it is too high,
all data is in a single cluster. Figures 3a and 3b demon-
strate that an EPS value between 0.5 and 0.7 retains correct
clusters (green), avoids incorrect classifications (red), and
minimizes data point skipping (orange). Therefore, we set
our EPS to 0.6 for our experiments.

4.5. Quantitative Results

Table 1 presents results on the ARL-VTF dataset on the
face-verification task. The first row section uses probe set
P TB0 with galleries G VB0- and G VB0+. All methods
(except our proposed work) uses full ground truth label su-
pervision for training. Compared to GAN methods such
as Pix2Pix, GANVFS, and SAGAN, our method achieves
greater than 10% improvement in TPR @ 1% FAR and sub-
stantial decrease in EER with a maximum of 9.77 across

all settings. Compared to supervised state-of-the-art, our
method performs comparably to DPIT [9] and outperforms
RST [20] in certain conditions (e.g., P TB0 and G VB0+)
with a 100% TPR @ 5% FAR and 1.08 EER. Similar per-
formance trends are seen on different probe and gallery sets.

Figure 4 compares performance on TUFTS with other
attention models using the proposed backbone network and
objective functions in this work. Our method outperforms
CBAM in Figure 4a, with a 12.3% improvement in TPR
@ 1% FAR and a increase of 8.43 in AUC. Our method
also surpasses the recent state-of-the-art LKA by 11.20 in
TPR @ 1% FAR and 7.13 in EER. The single-path at-
tention achieves a TPR @ 1% FAR of 39.30%, while the
multi-part attention achieves the highest score of 43.28%.
These trends are consistent in Figure 4b, where our method
achieves the highest rank-1 accuracy of 83.60% and mAP
(mean Average Precision) of 64.63.

4.6. Embedding Size

In Figure 4c, we compare embedding sizes by varying
the number of kernels in the 1 × 1 convolutional filter. We
find that increasing the dimensionality (upto 65856) does
not result in any performance improvement. Moreover, in-
creasing the number of parameters also poses the risk of
over-fitting. Reducing filters to obtain a 10976 dimen-
sional embedding results in under-parametrization and infe-
rior performance. We determine that an embedding size of
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Figure 5. Ranking results (top-10) on the TUFTS and ARL-VTF dataset where green border denotes correct matches and red border
denotes incorrect matches. Supervised methods (row 1 and 3) are consistently biased towards eye-wear, skin color, etc. whereas our
unsupervised method (row 2 and 4) mitigates those biases by focusing on distinct features of the face.

(a) DBSCAN (right) only clusters confident clusters, essential for training on limited data, unlike K-means (left) which incorrectly
classifies RGB images belonging to different identity. Less opaque images denote not belonging to any clusters.

(b) Unlike K-means (left), DBSCAN (right) prevents incorrect clustering by not grouping all images with eye-wear into one cluster.

Figure 6. T-SNE representation of the embeddings and clustering analysis. Image border is cluster labels and label is ground truth ID.
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21952 produces optimal results, while also being compact
enough to facilitate deployment in real-world applications.
Compared to supervised RST [20], we have a 7x reduction
in embedding size (21952 vs 160000).

4.7. Qualitative Results

Figure 5 showcases ranking results on the TUFTS and
ARL-VTF dataset. The first and third row presents results
using full supervision (supervised) and second and fourth
row presents results using no ground-truth labels (Ours). In
most cases, our method is capable of retrieving all images
(including those with and without sunglasses), whereas su-
pervised learning exhibits greater separability between cor-
rect matches and exhibits bias towards retrieving subjects
with similar skin tone/eyewear, resulting in inferior perfor-
mance. Figure 6 shows the intra-spectral clustering perfor-
mance with K-means (left) and DBSCAN (right). Cluster
labels are denoted by image borders, and image label is the
GT (ground truth) label. As is evident, DBSCAN prevents
the incorrect clustering of subjects , particularly where eye-
wear is present, which is crucial when learning on limited
data. K-means introduces noise in the clusters, resulting in
incorrect clusters that are detrimental for training.

4.8. Catastrophic Interference

Catastrophic interference (or forgetting) is the phenom-
ena where trained models forget previously learned infor-
mation on a dataset after learning new information from
another dataset. While both supervised and unsupervised
methods are prone to this interference, in this section, we
analyze the degree of interference in our approach using un-
supervised and supervised learning. In Table 2, we first per-
form unsupervised learning (USL) on the TUFTS dataset
achieving a TPR @ 1% FAR of 43.28%. Then, we test it on
the ARL-VTF dataset without any fine-tuning and achieve
TPR of 76.09%. Next, we fine-tune it on the ARL dataset
(again, without using any labels) and notice an improve-
ment up to 91.80%. If we test this model back on the
TUFTS dataset, we actually notice an improvement from
43.28% to 44.52% which shows that unsupervised learning
of features not only helps mitigate forgetting, but also trans-
fers better. We repeat this experiment using the ARL-VTF
dataset as the starting point, and again see an improvement
from 98.55% to 98.73% supporting our hypothesis.

TUFTS (USL) ARL ARL (USL) TUFTS
43.28 76.09 91.80 44.52

ARL (USL) TUFTS TUFTS (USL) ARL
98.55 38.28 47.70 98.73

Table 2. Unsupervised training (USL) and cross-testing.

In Table 3, we analyze forgetting in the supervised learn-

ing setting. Again, we start off with the TUFTS dataset
and achieve a higher performance than unsupervised learn-
ing (which is expected with full ground truth labels) of
54.94%. However, we test it on the ARL-VTF without
fine-tuning on it and observe a lower performance than
USL with 74.75% TPR. Next, we fine-tune it on the ARL
dataset with full supervision but is unable to achieve a
high performance even with increasing number of training
steps and decreasing/increasing the learning rate. Testing it
back on the TUFTS dataset shows sub-optimal performance
of 34.62% which supports our hypothesis that supervised
learning quickly overfits on limited labeled data and suf-
fers from catastrophic forgetting. This is corroborated by
repeating the experiment on the ARL-VTF dataset as the
starting point and noticing a performance dip from 98.10%
to 93.59%, even though full supervision is used.

TUFTS (SL) ARL ARL (SL) TUFTS
54.94 74.75 84.01 34.62

ARL (SL) TUFTS TUFTS (SL) ARL
98.10 32.14 61.82 93.59

Table 3. Supervised learning (SL) and cross-testing.

5. Conclusion
In this work, we adopt the challenging setting of train-

ing an end-to-end model without using any intra- or inter-
spectral annotations. We employ DBSCAN to generate ini-
tial cluster labels within spectra, and then combine inter-
spectral clusters using a matching scheme. To pay attention
to distinct parts on the face that is robust to both spectra,
we employ a part-based attention module that is efficient
enough to learn using only a few correct cluster matches.
The network is optimized using a cross-spectral memory
bank that gravitates the same identity’s samples to a sin-
gle compact cluster center. Our results showcase that uti-
lizing unsupervised learning and encouraging the network
to learn and cluster similar visual patterns has helped over-
come the effect of bias, leading to better performance on
different datasets with low catastrophic interference.
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