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Abstract

Human pose estimation (HPE) is an essential component
of Driving Monitoring Systems (DMS) for real-time recog-
nition of driving behavior. To achieve this, HPE is typically
integrated with other tasks such as detection and head pose
regression, into a single lightweight model that can be eas-
ily deployed on edge-side devices. However, oversimplified
designs of lightweight HPE models may cause overfitting
on generalized samples, rendering them unable to handle
rare samples, particularly in the case of the dataset with the
imbalanced distribution. In this paper, we propose an opti-
mization scheme for a proprietary HPE task in DMS scenar-
ios. Our method involves a pose-wise hard mining strategy
to balance the pose distribution. Additionally, we introduce
an online keypoint independent grad-cam loss, which con-
strains the gradient-based activation feature map of each
keypoint prediction to its corresponding semantic region.
We evaluate our approach using a benchmark dataset for
DMS tasks and achieve outstanding results. Our code will
be publicly available1.

1. Introduction

Driver monitoring system (DMS) [8, 13] has become an
indispensable component of modern automobile safety sys-
tems, owing to their ability to enhance driving safety and
reduce the risk of accidents. In general, DMS relies on a
combination of advanced sensors and processing algorithms
to monitor driver behavior, ensuring that they remain atten-
tive and fully in control of the vehicle at all times. A critical
feature of DMS is human pose estimation (HPE), which en-
ables the real-time capture of the driver’s posture and move-
ments [4, 17, 38], including the detection and tracking of
their body joints and torso. This information is then uti-
lized to analyze the driver’s overall behavior and alert them

1https://github.com/yyguo0536/DPOSE.git

Figure 1. The illustration of driving posture in DMS: (a) the com-
mon posture in driving scenario is characterized by an unbalanced
distribution. (b) our proposed pose-wise balanced sampling strat-
egy via GMM cluster. (c) online keypoint-cam constraint to guide
the model focuses on specific keypoint regions.

if they exhibit any unsafe driving behaviors that could pose
a risk to themselves or others on the road [9, 17].

Human pose estimation (HPE) [2, 19, 34] is a funda-
mental task for human-centered relevant studies, i.e., hu-
man behavior study [3, 23], action interaction [39, 46] and
anomaly event recognition [18, 22, 31], etc. In the past
decades, the great success of deep learning techniques has
greatly boosted the performance of human pose estima-
tion [7]. However, most of the existing HPE approaches
highly rely on complex network design and large model
parameters to improve their performance. For instance,
the state-of-the-art HPE model, HigherHRNet [6], requires
over 150GMACs computational operation per frame, which
severely impedes its implementation on edge devices. To
address this challenge and promote the practical applica-
tion of HPE models, the research on lightweight models for
HPE has gradually attracted attention. As per the literature,
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Wang et al. [43] design an efficient architecture including
fusion deconvolution head and large kernel convolutions
for pose estimation. Maji et al. [21] develop YOLO-Pose
framework which integrates human detection and pose esti-
mation together to save inference time. Additionally, some
researchers have explored the loss functions to improve the
accuracy of light HPE, i.e., RLE loss [14], OKS loss [21].

Although the above-mentioned methodologies have im-
proved the performance of lightweight models at the wild
HPE task, they are not well-suited for HPE in driving sce-
narios. For driving pose estimation, the long-tail posture
distribution is a critical challenge that can greatly affect
the performance of body pose estimation, particularly for
lightweight models. This is because the lightweight model
is suffered from limited data modeling capability which
may cause the model prone to overfitting to common sam-
ples, as shown in Fig. 1 (a). For instance, when the posture
distribution is uneven, such as the long-tail distribution in
Fig. 1 (a), the light model may achieve the accurate estima-
tion in the common samples with high-frequency happen-
ing, but performs poorly in the rare pose samples. There-
fore, it is essential to address the imbalanced distribution
problem to improve the generalization capabilities of light
models in pose estimation. In addition, regression-based
one-stage HPE methods also suffered from the problem
of extremely sharing features between different keypoints
caused by the short-range specific keypoint head design.
To tackle this issue, some feature decoupling approaches
are presented [11, 41]. However, most of them decouple
the features by adding extra layers or extending the specific
head layer, and these designs are arduous to employ on the
edge device. In this work, we present an online keypoint-
cam constraint to disentangle the strong shared features be-
tween the keypoints. The design regards the prediction of
each keypoint as an independent target detection and clas-
sification task [42], therefore the online Grad-CAM con-
straint [15] can be used to guide the model pay attention to
the area corresponding to each key point.

In summary, we present a simple yet effective HPE
framework which specific optimized for DMS scenarios,
termed DPOSE. Our contributions can be summarized as
follows:

1. We present a uniform sampling strategy for the un-
even distribution of driving poses. The GMM model is
leveraged to perform clustering statistics on the driving
posture, and the observed coefficients for each cluster
are used for uniform sampling during HPE training.

2. We introduce an online keypoint-cam guidance for
each keypoint inference. In our method, each keypoint
from different body parts is regarded as a multi-object
detection and classification task. Then the gradient-
based classification activation map is leveraged to de-

couple the casually shared features in keypoint-wise.

3. We evaluate the proposed framework on the SOTA
benchmark dataset, and achieve outstanding perfor-
mance.

2. Related Works
Although human pose estimation is crucial to DMS, ex-

isting relevant works routinely utilize the proposed HPE
models directly [9, 17], instead of optimizing them for in-
vehicle scenarios. In the following, we partitioned the re-
lated works section into three categories that we deemed
relevant to this research: (1) The top-down based HPE ap-
proaches; (2) bottom-up based HPE approaches, and (3)
CAM applications for computer vision.

2.1. Top-down HPE

The top-down HPE commonly employs a hierarchical
scheme to detect humans first, and then estimate a single
human pose sequentially from the image. The popular de-
tection methods, i.e., YOLO [28], and Faster-RCNN [29],
are coupled with top-down HPE. This allows the model to
concentrate on improving the accuracy of keypoint locating.
There are various works about top-down HPE presented in
the past decades, that significantly boost the performance
of HPE. For instance, Hourglass [25], PoseNet [27], Sim-
pleBaseline [44], and HRNet [35], etc., have demonstrated
their superior ability for HPE. However, this two-stage
paradigm is computationally intensive and significantly in-
creases the computation time. This causes them difficult to
implement practically in edge devices.

2.2. Bottom-up HPE

The bottom-up HPE achieved rapid development in the
past decades. Typically, classical bottom-up based methods
capture the potential identity-free keypoints first and then
assign them to individual humans by the relative relation-
ship between the keypoints. For the recent optimization of
bottom-up HPE, the researchers mainly focus on the assign-
ment of the keypoints to individual person and solving the
scale variance of different individuals in the same scene.
For instance, Cao et al [5] pioneeringly presented Deep-
Pose that associates the extracted keypoints via predicting
part affinity fields. Kocabas [12] then introduced PRN net-
work, which combines the detection task and pose estima-
tion task together to replace the keypoint assignment pro-
cess. Luo et al [20] presented a scale-adaptive heatmap re-
gression (SAHR) method to normalize the variant instance
on large scale.

One-stage HPE: To further boost the computational ef-
ficiency of bottom-up HPE, the researchers propose one-
stage solutions. For instance, CenterNet [50] and Direct-
Pose [37] are the pioneering work for single-stage HPE that
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directly regress the object coordinate position end-to-end.
On this basis, researchers have proposed several methods
to improve the one-stage regression HPE performance, es-
pecially for lightweight models. Maji et al. [21] modify
the yolo-series network to YOLO-Pose by adding the extra
keypoints head and designing OKS loss for keypoint regres-
sion.

Feature decoupling for HPE: Indeed, the HPE task can
be inherently regarded as a multi-object detection task in
that each joint is an individual instance. Thus, each key-
point is expected to have its specific feature representation,
rather than using universal shared features between key-
points. Current researchers improve the feature expression
ability of each keypoint via feature decoupling strategies.
For instance, Wei et al. [36] statistically analyzed the corre-
lation between different body parts from the training dataset
using mutual information and accordingly split them into
several groups with separate prediction heads. Geng et al
[11] presented an adaptive convolution design to disentan-
gle the keypoint representations respectively. KAPAO [24]
regards the specific keypoints and set of semantically rele-
vant keypoints (i.e., pose) as objects within a single-stage
detection framework.

2.3. CAM Applications

CAM [49] is able to generate the coarse class activation
maps highlighting the visual attention region that is respon-
sible for the network’s decision. It is thus widely used in
the field of model interpretability [47] and weakly super-
vised learning [1]. Grad-CAM [33] is the extension of CAM
which consider the gradient information of the specific clas-
sification. Many existing methods employ the Grad-Cam
in the field of weakly supervised learning because it can
roughly locate image foreground regions only relying on
classification information. For instance, Li et al [15,16] pre-
sented a novelty trainable guided attention inference frame-
work to segment the target object only supervised classifica-
tion labels to generate the corresponding network attention
map. Wang et al [40] introduced a CAM-loss to improve the
discriminative feature representation of the backbone. Xie
et al. [45] recently employ the class-agnostic activation map
to contrastive learning, to further reduce the requirements
of the supervision information of detection/segmentation
tasks. Inspired by Grad-CAM’s success on computer vision
tasks, we propose a specific keypoint-cam guided decou-
pling constraint similar to [16], to improve the representa-
tive capability of the backbone network.

3. Method
Fig 2 illustrates the overall framework of our proposed

method for light HPE model training. In the following sec-
tion, we first introduce the architecture of our network in
Sec. 3.1. Then, a GMM-based pose statistical method is

presented in Sec. 3.2 to reduce the distribution bias of the
training dataset in posture-wise. Thirdly, we give the de-
tails of our backbone feature decoupling design in Sec. 3.3.
Finally, in Sec. 3.4 we summarize our training loss of the
whole framework.

3.1. Architecture

Let I denote the input target image that includes a driver
with the specific posture in the driving scenario, and K de-
notes the number of interest keypoints. The learnable pa-
rameters of the backbone network can be denoted as θ. The
backbone θ extracts the feature maps F i

c×h×w in different
scales from I , where i indicates the i − th layer of back-
bone and c× h× w denote the channel number and spatial
resolution respectively. Following the backbone network,
the specific head layer ϕd, ϕp is to achieve the detection
task and pose estimation task separately.

To improve the computational efficiency possibly, we
consolidate the human detection and pose estimation task
in a single-stage to eliminate the reliance on the keypoint
association module which is similar to the prior [21]. Im-
age I firstly feed into the backbone network θ to extract the
fundamental shared features. Subsequently, two individual
head layers are connected to the output of the backbone. In
the training stage, the positive potential samples are selected
via a strategy like YOLOX which is anchor-free framework.
The formulation of the detection and pose estimation can be
intuitively denoted as:{

B,P
}
= D(I|ϕ, θ) (1)

where B and P stand for the driver bounding box and
pose output, respectively. The bounding box output B is
composed by (xcenter, ycenter, xwidth, yheight, cb), and
pose coordinate position P is represented by

{
(xk, yk, ck),

k = 1, ...,K
}

, where K indicates the number of keypoints.
Similar to the prior bottom-up methods, we also adopt the
center offset-based method to estimate the bounding box
and pose accurate position.

In our framework, a GMM-based posture statistical dis-
tribution model is first trained and utilized to balance sam-
pling the training dataset, which can mitigate the long-tail
data distribution problem and improve the model perfor-
mance on rare driving postures. Secondly, to further decou-
ple the shared features between each keypoints, the class-
agnostic activation maps can be leveraged to constrain and
reduce the incorrect causally associated relationship with
each other keypoint. Ideally, the corresponding gradient-
guided CAM is supposed to activate the foreground im-
age region while suppressing background regions. Thus, a
pixel-wise posture online grad-cam is employed for back-
bone feature extraction, to disentangle the selected fore-
ground and relative background features. As shown in Fig
2, the specific keypoint prediction is randomly selected and
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Figure 2. Overall framework of the proposed DPOSE.

computed its corresponding loss, then the gradient map Gi

in the target interest layer Gi via loss backpropagation wise-
product to the feature map F i to generate the corresponding
CAM map.

3.2. GMM-based Clustering for Pose Balance Sam-
pling

As shown in Fig. 1, the driver’s posture is not uniformly
distributed in the daily driving scenarios, which can sig-
nificantly limit the performance of human pose estimation
models, especially for light models. This is because the
light model is suffering from limited data modeling ability,
which may overfit into the common samples, i.e., general
posture in driving HPE tasks. Thus, it is important to bal-
ance the posture distribution in the training dataset while
including the diverse range of postures to improve the HPE
performance. To this end, we present a pose-wise balanced
sampling strategy to mitigate the negative impact on the
performance of HPE. Considering that there is a relative
similarity or even repetition between human postures, the
driver’s posture can be summarized into several subgroups.
Such posture groups can be represented by a mixture of
Gaussian models. In this way, various types of postures can
be parameterized and statistically counted, then the uniform
sampling strategy can be performed according to the statis-
tical number during the model training stage. Furthermore,
it also benefits for hard sample mining to help improve the
model performance.

In order to effectively cluster the body poses and reduce

the interference caused by the position change of the human
body in the image, the coordinate position of each key point
is first normalized into an offset relative to the center of the
human body frame as follows.

P̂k = Pk(xk, yk)− B(xcenter, ycenter) (2)

The normalized pose representation can be regarded as
a random vector following a multivariate Gaussian distribu-
tion with mean µ and a covariance matrix Σ. Let ωj > 0
indicates the dominance of an observation Pj as suggested
in [10]. The GMM model is then trained with normalized
postures and clusters the posture samples into N categories
as: {

Pj

}
= G

{
P|µj ,Σj , πj

}
, j = 1, ..., N (3)

where µj ,Σj , πj are the mixtures parameters: µj and Σj

are the feature distribution representation of j − th compo-
nent, πj is the mixing coefficients satisfying

∑N
j=1 πj = 1.

The observed data is sampled via the weights provided by
the GMM model.

3.3. Keypoint-CAM Decoupling Constrain

As we discussed in Section 2, the feature decoupling be-
tween the different joint keypoints can improve the HPE
accuracy. However, current feature decoupling designs re-
quire to increase the network layer to split the keypoints’
features in physics which increases the complexity of the
network. Besides, these methods do not improve the feature
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expression of the backbone. To solve this issue, we design
a separate pose Grad-CAM constraint directly working on
the backbone feature maps in a regularized bootstrapping
manner. As detailed description in Fig. 2, each keypoint es-
timation can be regarded as a separate regression task, thus
grad-cam mechanism can be utilized to extract their indi-
vidual attention region on the shared feature maps from the
backbone. In this way, the different keypoint is able to lo-
calize their own interest region to disentangle the feature
maps.

In this paper, we adopt the online Grad-CAM mecha-
nism similar to [15] to generate the trainable attention map
according to the input samples within each training itera-
tion. Each keypoint’s gradient is computed from its corre-
sponding visible ground-truth mask ck, and we can subjec-
tively capture the gradient map from the interest layer of the
network. The computed gradient map can be regarded as the
neuron importance weights responsible for the network out-
put of the keypoint. The computation of the gradient map is
defined as:

Gc,u,v
i =

∂(ĉk − ck)

∂f c,u,v
i

(4)

where Gc,u,v
i denotes the gradient map in i − th layer,

and {c, u, v} indicate the channel and spatial index which
is consistent to the interest feature maps f c,u,v

i . Once ob-
tained the importance weights represented by Gc,u,v

i , it is
then element-wise product to the feature maps to generate
the attention map covered on the keypoint-affected region.

Ai = ReLU

( C∑
c=1

Gc
i ⊙ f c

i

)
(5)

We should note that the backward of keypoint confidence
loss (ĉk−ck) will not update the network parameters, and it
is only leveraged to obtain the importance weights to gener-
ate the attention map. We then normalize the attention map
to range (0, 1) using sigmoid function:

Ai =
1

1 + exp
(
− ω(Ai − σ)

) (6)

where ω and σ denote the thermal weights to adjust the
scale and contrast of the attention map. To regularize boot-
strap the attention map focuses on the specific body part re-
gion, we then generate the corresponding keypoint heatmap
from its position labels and employ it as a constraint to the
attention map. The generated keypoint heatmap Hk is de-
fined as:

Hk = exp

(
−

(
(xk, yk) − µk(x, y)

)2
2σ2

)
(7)

In order to enforce the network concentrate on the corre-
sponding body part of k− th keypoint, the termed attention
loss Latt is denoted as:

Latt = ∥Hk −Ak∥2 (8)

By minimizing the attention loss Latt, the network learns
to focus on the different triggered visual regions contribut-
ing to the keypoints without any extra network parameters.

3.4. Training Loss

In this section, the details of the loss function are intro-
duced to train the model. Overall, the proposed network
consists of two tasks: human detection and pose estimation.
Note that, the detection task is mainly leveraged to filter the
potential positive sample for HPE. And we clarify the loss
design in two individual parts.

Detection loss For the detection task, the bounding box
coordinate is regressed in the manner of (xm

center, ymcenter,
xm
width, ymheight), which is the position offset relative to the

center and the height and width of the target bounding box.
The ambition of detection is to maximize the Intersection
over Union (IoU) between the predictions and the ground-
truth labels. Therefore, IoU based loss function including
its variant form is popular and widely used for detector
training, i.e., GIoU [30], DIoU [48]. In our implementation,
we utilize the DIoU loss to supervise the human detection
training. Its formulation is denoted as:

Lbox = (1−DIoU(B, B̂)) (9)

In addition to the bounding box regression, the
classification-based confidence prediction is supervised as:

Lbc =

K∑
k=1

BCE(ĉk, 0/1) (10)

Pose loss Recently, there are several excellent loss func-
tions about pose keypoints proposed, i.e., RLE loss, and
OKS loss. Indeed, most of these approaches improve the
performance of the HPE model by modeling the distribu-
tion of each keypoint. For instance, RLE loss utilized the
flow model method to estimate the exact uncertainty of the
keypoint with its specific mathematical distribution. OKS
loss assumes that each keypiont’s possible distribution con-
forms to Gaussian distribution, and adopts the uncertainty
of the keypoint derived from prior knowledge to constrain
the HPE learning. However, this distribution-based con-
straint can not effectively reflect the distance error when the
predicted coordinate bias is beyond the prior range. Con-
sidering the limited modeling capability of the lightweight
model, we leverage the OKS loss for pose coordinate train-
ing. Its formulation is derived as:
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Lkpts =

K∑
k=1

(
1− exp

(
(x̂k − xk)

2 + (ŷk − yk)
2

2s2σk

))
(11)

where (x̂, ŷ) is the keypoint coordinate prediction and
(x, y) is ground-truth label. σk denotes the prior uncer-
tainty value which is the same as the evaluation metric of
the previous works. In addition to the coordinate output,
a confidence estimation is accompanied by presenting the
target object have the corresponding keypoint or not as Eq
12.

Lpc =

K∑
k=1

BCE(ĉk, 0/1) (12)

In summary, the total loss includes the above presented
loss in this section and our proposed decoupling regularized
constrain Latt. The final training loss is:

Lall = λ1Latt+λ2Lbox+λ3Lbc +λ4Lkpts+λ5Lpc (13)

where λ1 = 5, λ2 = 1, λ3 = 1, λ4 = 1, λ5 = 1 in our
experimental setting.

4. Experiments
4.1. Materials and Evaluation Metrics

We demonstrate our approach with the public benchmark
datasets for the driving scene: Drive&Act dataset2 which is
a state-of-the-art multi-modal benchmark for action recog-
nition in automated vehicles. The dataset consists of 12
hours of video data in 29 long sequences recorded from 17
different persons. We randomly selected 33.6K images in-
cluding the driver bounding box and 17 keypoints in coco
format as the training dataset and test dataset. Among them,
the training dataset contains around 26.9K images from 13
persons, while the test dataset contains the left 6.7K images
from 4 persons. We follow the standard evaluation met-
ric and use OKS-based metrics for MPPE. We report aver-
age precision with different thresholds: mAP, AP0.75, and
mAR.

4.2. Implementation Details

We compare our proposed method with several different
categories of state-of-the-art pose etimation methods, in-
cluding heatmap-based methods, i.e., light-openpose [26],
movenet [32], regression-based method, Yolo-Pose [21].
We implement all the compared methods following their de-
fault parameter settings in the same environment, including
the same training set, and the same testing set. We adopt

2https://driveandact.com/

Yolo-Pose as our baseline model cause of its high computa-
tional efficiency.

The training data is augmented by random image mir-
roring, color contrasts random transformation, etc. follow-
ing the previous similar research [21]. We implemented the
networks using the Pytorch library and trained on Nvidia
1080Ti hardware. We utilized the Adam optimizer to train
the model 350 epochs and the initial learning rate is set to
1× e−4 and dropped by a factor of 10 after 250 epochs.

4.3. Ablation Study

We conduct an ablation study for the critical component
in our proposed framework. To effectively discuss the im-
pact of the proposed GMM-based balanced sampling strat-
egy and the different combinations of loss functions on the
accuracy of pose estimation, we individually analyze the
presented method with different combination schemes as
shown in Table 1. Firstly, we only implement the baseline
model with detection and pose loss, and then we gradually
increase our proposed GMM-based sampling strategy and
pose cam loss to compare the performances. Note that, the
cluster number setting is 20 in the following GMM based
balanced sampling in Table 1.

Table 1. The quantitative performance of driving pose estimation
on the Drive&Act dataset for different ablation settings.

Baseline
Balanced
sampling Keypoint-CAM mAP AP0.75 mAR

✓ - - 0.761 0.855 0.847
✓ ✓ - 0.824 0.930 0.881
✓ - ✓ 0.798 0.897 0.869
✓ ✓ ✓ 0.836 0.949 0.893

Figure 3. The comparisons result on specific keypoints.

Compared to the baseline model, the proposed balanced
sampling strategy greatly improves the accuracy of the HPE
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Figure 4. Qualitative results of the selected samples from Drive&Act. It visually compares the Grad-CAM feature map from specific
keypoints with the baseline model and our proposed method.

task, which increases the mAP to around 0.75. Meanwhile,
only leveraging online keypoint-cam constraints increase
the mAP metrics around 0.37 benefitting from its specific
keypoint attention guidance and feature decoupling ability
for the shared features from the backbone. Furthermore, the
simultaneous use of balanced sampling strategy and online
keypoint-cam guidance can further improve the accuracy of
HPE.

In practical applications, human limbs have a wider spa-
tial variation, which is relatively more difficult to predict.
Fig. 3 illustrates that our proposed method is more effec-
tive for boosting the keypoints with large variance than the
baseline model.

4.3.1 GMM-Based Balance Sampling

Regarding the above results that the balanced sampling
strategy significantly impacts the performance of HPE, we
then discuss the influence on different settings of balanced
sampling as presented in Table 2. The number of categories

in GMM clustering for the driving posture is artificially set.
In order to verify the best set of cluster num, we increase the
number setting from 8 to 20 with 4 steps. Initially, the quan-
titative performance of HPE is consistent with the cluster
number increasing. However, the HPE accuracy decreases
with the cluster number increase after 16. We attribute this
to that excessive pose sampling strategy may affect the per-
formance of the model on common distribution samples.

Table 2. The quantitative performance of driving pose estimation
on the Drive&Act dataset for different GMM cluster settings.

mAP AP0.75 mAR
Baseline 0.761 0.855 0.847
Cluster:8 0.812 0.914 0.879
Cluster:12 0.837 0.922 0.885
Cluster:16 0.851 0.935 0.898
Cluster:20 0.824 0.930 0.881
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Table 3. Driver pose estimation results on the Drive&Act dataset for the comparison methods.

Method Backbone Input Size Params(M) Gflops(G) mAP AP50 AP75 mAR

Heatmap-based
MoveNet MobileNetV2 256×256 1.91 0.86 0.874 0.975 0.938 0.926

LightOpenPose MobileNetV1 368×460 2.72 14.62 0.887 0.925 0.980 0.906

Regression-based

Yolo-Pose DarkNet-0.125 480×480 0.63 1.26 0.795 0.978 0.881 0.866
Yolo-Pose DarkNet-0.125 640×640 0.63 2.23 0.761 0.978 0.855 0.847
Yolo-Pose DarkNet-0.25 640×640 2.47 8.24 0.888 0.988 0.952 0.921

Ours DarkNet-0.125 480×480 0.63 1.26 0.871 0.978 0.963 0.917
Ours DarkNet-0.125 640×640 0.63 2.23 0.851 0.987 0.935 0.898
Ours DarkNet-0.25 640×640 2.47 8.24 0.902 0.989 0.965 0.939

4.3.2 Keypoint-CAM Visulization

In this section, we visually compare the feature maps be-
tween the cam-constrained and baseline models as shown in
Fig. 4. The left two columns indicate the input image and
selected keypoints heatmap separately, and the right two
columns present the Grad-CAM-based feature map visual-
ization of our method and baseline model. In Fig. 4, the top
two rows show the left wrist keypoints and the bottom two
rows show the right wrist keypoints, which we consider the
wrist estimation is relatively important for the DMS task.
With the keypoint-cam constraint, the HPE model concen-
trates on the specific-affected regions related to the target
keypoint, and filters out the irrelevant information. This en-
hances the anti-interference ability of the model, thereby
improving the keypoint accuracy of the HPE model.

4.4. Comparison with SOTA Methods

We have compared our proposed method to the existing
heatmap-based and regression-based HPE approaches. As
shown in Table 3, our method achieved competitive results
compared with the existing heatmap-based approaches,
while our method leverages fewer model parameters. We
should note that the MoveNet in our reimplementation re-
quires the prior body bounding box to preprocess the input
images. In addition, our method outperformed the com-
pared SOTA regression-based methods. Overall, the pro-
posed method retains the lightweight design of the model
while ensuring HPE accuracy, especially for DMS-related
tasks, which can be combined with other related tasks into
a unified model without affecting other task indicators.

5. Discussion and Conclusion

We present a simple yet effective framework for driving
posture estimation. Our main findings are that our method:
1) effectively captures the diverse driving posture in the
DMS task via the distribution statistical sampling strategy,
which reduces the negative effect of the long-tail distribu-
tion for HPE; 2) is robust and stable to capture the driver’s
pose and not susceptible to irrelevant information benefit-
ting from the individual online keypoint-cam guidance. 3)

is readily integrated with other downstream tasks in DMS,
i.e., detection, head pose regression, etc., and not barely in-
creases the model computation.

In our framework, the balanced sampling scheme greatly
augments the hard and rare driving posture and improves the
model performance. As shown in Fig. 1, we have found that
the accuracy of the HPE prediction is strongly correlated
with the frequency of the posture in the training dataset.
This is attributed to the regression-based HPE approaches
highly relying on the various diversity of the posture, oth-
erwise, the model is prone to overfitting to some common
poses. More specifically, the coordinate regression model
does not establish a mapping relationship between the im-
age domains, but a high-dimensional nonlinear mapping re-
lationship between the image domain and the coordinate do-
main, which makes the lightweight model more susceptible
to the influence of uneven data distribution and suffering
from the common-mean posture overfitting problem cause
its limited modeling ability. Our balanced sampling design
can effectively reduce the above issues and ensures that the
pose estimation is more stable and robust.

In the visual comparison of feature maps, the keypoints’
feature are readily coupled together, which may lead to
the model learn the wrong association information between
each other. This also is a critical reason why the model is
prone to overfit to the common group of postures. In con-
trast, the keypoint-cam constraint decouples the feature as-
sociation by guiding the model concentrates on the potential
attention region of each keypoint, as shown in Fig. 4.

In conclusion, we introduce optimized sampling for the
problem of uneven distribution of attitude samples, and put
forward targeted constraints on the overfitting problem that
is prone to occur in lightweight models. In addition, our
solution can be quickly and conveniently integrated with
DMS-related downstream tasks with rarely additional com-
putation to the model. We suggest our proposed balanced
sampling strategy and online-cam constraint have a general
contribution to the regression task of the lightweight model.
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