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Abstract

As the development of autonomous driving technology
continues, pedestrian safety is becoming an increasingly
important issue. The ability of an autonomous car to ac-
curately predict whether a pedestrian will cross the road
is essential for ensuring their safety, as the vehicle can
slow down in time or stop to avoid any potential acci-
dents. However, predicting pedestrian behavior is a com-
plex task influenced by various environmental and contex-
tual factors. To deal with this issue, we propose a novel
method, Crossing Intention Prediction based on feature Fu-
sion modules (CIPF) that combines eight different input fea-
tures extracted from both pedestrians and vehicles through
three fusion modules using RNN layers and attention mech-
anisms. We demonstrated state-of-the-art performance of
prediction accuracy in the PIE dataset, which is the most
widely used for pedestrian crossing intention prediction. We
also demonstrated the superiority of the performance of our
CIPF network through qualitative and quantitative analy-
sis. In particular, we also performed ablation studies on the
verification of the effectiveness of the eight input features,
the validity of VGG encoders, and performance compari-
son of our CIPF over time by adjusting the prediction time.

1. Introduction
The emergence of autonomous driving technology [12]

has led to a growing focus on pedestrian safety and trans-
portation convenience. One of the key technologies to
achieving these goals is the ability to predict whether pedes-
trians will cross or not cross. Using the prediction results,
the autonomous vehicle can slow down or stop to prevent
any accidents related to pedestrians [27, 35]. However, pre-
dicting pedestrian behavior is not easy because the inten-
tion of humans is unclear, and there are many external fac-
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Figure 1. The concept of the pedestrian crossing intention pre-
diction. Our proposed model, CIPF, which takes input features
observed from m frames before to the current time t and passes
them through three fusion modules - the observational, contextual,
and convolutional modules - to extract the prediction results of
whether the pedestrian will cross or not cross at future time t+n.
For prediction, we define three frames: experimental start, critical,
and crossing frames.

tors [3, 41, 42] that influence their behavior, such as inter-
action with other pedestrians, traffic signs, road congestion,
and vehicle speed. These external factors may affect the fu-
ture actions of pedestrians in the traffic environment. As a
result, anticipating crossing intentions in advance is signifi-
cantly challenging.

Some datasets for predicting pedestrian behavior includ-
ing videos recorded by on-board cameras equipped in ve-
hicles have been publicized. With datasets, their prediction
models have also been provided as a baseline. The baseline
models include Standard-TRI Intent Prediction (STIP) [16]
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using graph convolution techniques and Pedestrian Vehicle
Interactions in Dense Urban Centers (Euro-PVI) [2] through
interactions with vehicles for predicting pedestrian trajec-
tories, and Trajectory Inference using Targeted Action pri-
ors Network (TITAN) [22] for anticipating future pedestrian
behavior. Among the datasets, the most widely used dataset
is the Pedestrian Intention Estimation (PIE) dataset [25] and
there have been proposed prediction models based on the
PIE dataset. The models depend on which features are used
as inputs that are selected from the annotations or derived
from visual information in input videos, how to combine
them in their network architecture, and whether the atten-
tion mechanism is applied or not. As a result, recent stud-
ies [21, 32, 40, 43] have focused on how much the perfor-
mance of prediction accuracy is improved by their own dis-
tinct combination method from the diverse feature modali-
ties. However, these approaches are still limited due to the
complex factors that influence pedestrian behavior, which
can be visually observed in the videos. In addition, there is
a lack of neural networks that can fully accommodate the
diversity of input features.

To overcome these previous limitations, in this paper,
we propose a novel fusion approach using all available in-
put features for anticipating pedestrian crossing intention.
Our proposed network, Crossing Intention Prediction based
on feature Fusion modules (CIPF), consists of three types
of Fusion Modules (FM). FM fuses a total of eight input
features, including both non-visual and visual features, as
shown in figure 1. Each feature employed a different pro-
cess based on its attributes. The non-visual features are pro-
cessed by an observational module, while the visual features
including contextual properties are processed by a contex-
tual module composed of a CNN and an RNN. The vi-
sual features without contextual properties are processed by
a convolutional module composed of a 3D convolutional
network and 3D max-pooling, followed by a flatten layer
and an FC layer. By efficiently combining multiple feature
inputs, our CIPF outperforms the state-of-the-art methods
with a prediction accuracy of 91% on the PIE dataset which
is the most commonly used for pdestrian behavior research.

The mainstream for predicting pedestrian crossing inten-
tion involves collecting data from the pedestrian and vehi-
cles during past observations in specific frames and using
the data to anticipate crossing intention at a future point in
one or two seconds, as shown in figure 1. Our proposed
model also follows this protocol. The experimental start
frame is defined as the beginning of the pedestrian obser-
vation, and the critical frame is defined as the start of the
prediction period. The interval between the experimental
start frame and the critical frame is defined as the observa-
tional length, and the prediction time is defined as the inter-
val from the critical frame to the crossing frame when the
pedestrian takes action to cross or not cross the street.

Our main contributions are summarized as follows:

• We propose a novel feature fusion model, CIPF, which
utilizes eight input modalities with a systematic com-
bination mechanism.

• We verify the effectiveness of CIPF by achieving per-
formance outperforming the state-of-the-art methods
on the PIE dataset through extensive experiments.

• We provide ablation studies analyzing the effects of
eight features, validating the visual encoder, and com-
paring performance by adjusting the prediction time.

• We introduce the qualitative analysis of prediction re-
sults with pedestrian crossing intention.

2. Related Work
To improve pedestrian safety, considerable research has

been devoted to developing pedestrian crossing intention
prediction. For the pedestrian crossing intention prediction
dataset, the JAAD (Joint Attention in Autonomous Driving)
dataset [28] was first introduced, providing annotations for
behavioral analysis of pedestrians at the point of crossing.
And it proposed 2D CNN-based baseline approaches for
pedestrian crossing intention prediction. [10] showed adopt-
ing human pose-based features with 2D CNN features could
improve pedestrian crossing intention prediction. However,
the JAAD dataset is limited in that most pedestrian samples
have the intention of crossing.

To solve the drawback, [25] introduces a large-scale
dataset named PIE (Pedestrian Intention Estimation). To
consider the temporal context of crossing behavior, it pro-
posed LSTM network combines visual information and
past trajectory information. In [14], the dataset was ana-
lyzed by human experiments to identify which visual fea-
tures correlate to pedestrian crossing intention. The anal-
ysis showed that locations of designated crosswalks, ori-
entations of pedestrians, locations with regard to curbs,
and whether pedestrians look at the traffic are good predic-
tors of intention. In addition, it demonstrated that consid-
ering intention values from human experiments improves
the prediction performance of crossing intention with a
single RNN model. Further improving prediction perfor-
mances, [26] studied SF-GRU (Stacked with multilevel fu-
sion GRU), which fuses five different pieces of informa-
tion, including pedestrian appearance, surrounding context,
poses, bounding boxes, and ego-vehicle speed. Many stud-
ies also have shown that temporal context is essential for
crossing intention prediction that adopts recurrent layers
such as LSTM [3, 19, 30]. Further, an attention mecha-
nism [20] is adopted, which can focus on specific parts
of input features, thus better for analyzing sequential in-
put [13, 15, 23, 29, 36, 37]. Recently, given the success of

3667



Bounding Box Pose Ego-vehicle 
Speed

Local Context Global Context Scene Context Local Box Local Surround

GRU

+

GRU

+

GRU

GRUGRU GRU

+

CNN CNN CNN

GRU

Conv3D Conv3D

Maxpooling3D Maxpooling3D

Flatten Flatten

+

+

FC FC

FC Crossing Intention

Observational Module Contextual Module Convolutional Module

Attention

Attention

Attention

Attention

𝑷𝒐𝒃𝒔 𝑺𝒐𝒃𝒔 𝑳𝑪𝒕𝒆𝒙 𝑮𝑪𝒕𝒆𝒙 𝑺𝑪𝒕𝒆𝒙 𝑩𝒄𝒐𝒏𝒗 𝑹𝒄𝒐𝒏𝒗𝑳𝒐𝒃𝒔
15x112x11215x112x11215x51215x51215x512

15x256

15x256

15x256

15x256

15x768

15x768

15x256
15x256

Figure 2. The overview of the our proposed framework. CIPF is divided into the three modules for eight input features:
Pose(Pobs), Bounding Box(Lobs), Ego-vehicle Speed(Sobs), Local Context(LCtex), Global Context(GCtex), Scene Context(SCtex),
Local Box(Bconv), Local Surround(Rconv). The observational module sequentially stacks pose, bounding box, and ego-vehicle speed
features. The contextual module takes in local context, global context, and scene context inputs extracted by CNN encoder. Finally, the
convolutional module utilizes C3D encoder for local box and local surround features. Each module is recurrently processed using GRU
layer and extracted crossing intention prediction output through an attention module.

transformers in many applications, some researchers have
accepted transformer models [17, 18, 33], which benefit
from reducing training time compared to LSTM, at the same
time, improving the pedestrian crossing intention prediction
performances. Instead of extracting visual context by con-
volution, [16] utilizes graph convolution to infer the spa-
tiotemporal relationships how objects in the scene are re-
lated. The method builds a spatiotemporal scene graph and
applies it to segmented object instances in video frames.
To this end, they devised pedestrian-centric and location-
centric graphs to extract rich features from observed frames.
In [8], graph convolutional autoencoders are adopted to em-
bed visual features of the pedestrian or scene objects to the
graph.

3. CIPF: Crossing Intention Prediction Net-
work based on Feature Fusion Modules

We propose a novel prediction model, Crossing Inten-
tion Prediction based on feature Fusion Modules (CIPF), as

shown in figure 2. CIPF is a network that predicts pedes-
trian crossing intention in advance by combining eight in-
put features. CIPF is divided into three modules - the ob-
servational module, contextual module, and convolutional
module - each of which receives separate inputs and is con-
figured to process input values differently. Ultimately, the
outputs from each module are fused to predict crossing in-
tention.

3.1. Model Input Acquisition

3.1.1 Observational Module

There are three inputs used in observational module: pose
and bounding box of pedestrian and speed of ego-vehicle.
These three features are stacked in GRU layer, starting with
the pose feature. The Pose feature Pobs is defined as:

Pobs = {pt−m
i , pt−m+1

i , ..., pti}, (1)

where pose keypoints are generated using Openpose [5, 6,
31, 34], which estimates the pose of a person by captur-
ing 18 keypoints joints from the mouth, neck, shoulders,
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elbows, wrists, hips, knees, ankles, eyes, and ears. The 18
keypoints are represented by a 36-dimensional vector, pi,
where each keypoint is composed of 2D coordinates. Ob-
servational length, m, which means the number of observed
frames, is set to 15. The Bounding Box feature Lobs is de-
fined as:

Lobs = {lt−m
i , lt−m+1

i , ..., lti}, (2)

where li = [x1, y1, x2, y2] ∈ R4 is a 2D bound-
ing box which means the coordinates determined by top-
left ([x1, y1]) and bottom-right ([x2, y2]) of each pedestrian.
As bounding box consists of 4 coordinates, the dimension
of Lobs is determined as m × 4. The Ego-vehicle Speed is
defined as:

Sobs = {st−m
i , st−m+1

i , ..., sti}, (3)

where si refers to the speed of the ego-vehicle, and this fea-
ture is already included in the annotations of the PIE dataset.
This means that it was generated using the sensor of the
ego vehicle at the time of data acquisition. However, in the
JAAD dataset, there is no speed information available, and
only vehicle action information is provided. Therefore, this
feature cannot be used in the JAAD dataset.

3.1.2 Contextual Module

In the context module, the inputs utilized are comprised of
three types of contexts: local context, global context, and
scene context. Each of these context input features is ob-
tained by extracting the input features using an ImageNet
pre-trained VGG19 network as the backbone CNN with
maximum pooling layer. Then, each of these features is re-
cursively processed using a GRU. The outputs of the three
GRUs are concatenated and combined into a single output,
which is then fed into an attention mechanism. The Local
Context feature LCtex is defined as:

LCtex = {lct−m
i , lct−m+1

i , ..., lcti}, (4)

The image surrounding pedestrians including crosswalks,
traffic lights, and intersection signs is an essential element
for predicting pedestrian behavior contextually. Therefore,
lci refers to an RGB image of 224 × 224 pixels cropped at
1.5 times the size of the bounding box of pedestrian. The
input feature vector extracted as (m, 512) is then processed
through a max pooling layer with a 14 x 14 kernel to ob-
tain an (m, 256) vector, where m represents the observation
length. The Global Context feature GCtex is defined as:

GCtex = {gct−m
i , gct−m+1

i , ..., gcti}, (5)

where gci refers to the semantic segmentation values ex-
tracted using the pre-trained DeepLabV3 model from the
Cityscapes Dataset [39]. By utilizing the extracted seman-
tic map values, global scene or road information can be

mainly employed. Similar to local context, the features are
extracted as an (m, 256) vector and combined with a con-
catenation operation. The Scene Context feature SCtex is
defined as:

SCtex = {sct−m
i , sct−m+1

i , ..., scti}, (6)

where sci, the scene context, means the entire image, not
just the area around the pedestrian. Similar to other context
features, the entire image is resized to 224x224 pixels and
processed through a (14, 14) kernel with padding by set-
ting their output dimension to equal for fusing with other
contextual features.

3.1.3 Convolutional Module

A convolutional module consists of two inputs: local box
and local surround. Both inputs are extracted through a
Convolutional 3D network (C3D), and the dimension of im-
ages is decreased(112 → 56 → ... → 4) by repeatedly
feeding through max-pooling layers. Eventually, the fea-
tures are arranged through a flatten layer, resulting in a one-
dimensional array of data. The Local Box feature Bcon is
defined as:

Bconv = {bt−m
i , bt−m+1

i , ..., bti}, (7)

where bi means an image feature that is generated by crop-
ping image the same as the size of a bounding box, padding
it, and then resizing the long side of the cropped image to
match the desired output size. The remaining parts of the
image are zero-padded. The last output of feature is then
fed through five C3D networks with max-pooling layer, and
then through a flatten layer to adjust its size for concatena-
tion with other features. The Local Surround feature Rcon

is defined as:

Rconv = {rt−m
i , rt−m+1

i , ..., rti}, (8)

where ri is an image cropped to 1.5 times the size of the
bounding box as local context feature, however, the central
area corresponding to the bounding box coordinates is neu-
tral grayed out to keep only the surrounding context of the
bounding box. This allows the utilization of information
from the pedestrian’s surrounding area. C3D is applied in
the same way as for the local box feature to concat with bi.

3.2. Recurrent Module

To consider the temporal context of input features, we
used gated recurrent unit (GRU) [9], which is a simpler
layer than LSTM [24, 38] Recursion for the equation of
GRU, the variables at the jth level of the stack are described
as follows,

ztj = σ(xt
jW

xz
j + ht−1

j Whz
j + bzj ), (9)
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rtj = σ(xt
jW

xr
j + ht−1

j Whr
j + brj), (10)

h̃t
j = tanh(xt

jW
x
j + (rtj ⊙ ht−1

j )Wh
j + b), (11)

ht
j = (1− ztj)⊙ ht−1

j + ztj ⊙ h̃t
j , (12)

where σ(·) is the logistic sigmoid function, xt
j is the input

feature at time step t, W are weights between two units, rtj
and ztj are reset and update gates at time step t, respectively;
ht−1
j and ht

j represent the hidden state at the previous time
step and current time step, respectively.

3.3. Attention Module

The attention mechanism [20] is adopted to focus on spe-
cific parts of input features, thus better for analyzing input
features. The output vector of the attention module is de-
fined as below:

βattention = tanh(Wc[hc : hm]), (13)

hc =
∑
st

αthst , (14)

where Wc is a weight matrix, m is the observation length,
hm is the last hidden state of the encoder, hc is the sum
of all attention weighted hidden states, hst is the previous
hidden state of the encoder, and αt is the attention weight
vector. The attention weight vector is defined as below:

αt =
exp(score(hm, h̃s))∑T

st=1 exp(score(hm, h̃st))
, (15)

where score(hm, hst )=hT
mWphs is the content-based func-

tion and Wp is a trainable weight matrix.

4. Experiment
4.1. PIE dataset

To verify the effectiveness of the proposed method, ex-
periments have been conducted on Pedestrian Intention Es-
timation (PIE) dataset [25]. The dataset is most widely used
for predicting pedestrian crossing intention. The dataset
was recorded during the daytime with a dashboard cam-
era in downtown Toronto, Canada. Videos were recorded
with HD format (1920 × 1080) 30FPS per 10 minutes, so
the total video length of six sets is 6 hours. In addition,
the OBD (On-Board Diagnostics) sensor was attached in-
side the ego-vehicle, measuring speed of vehicle, heading
direction, and GPS coordinates. The dataset provides 1,842
tracks of pedestrians who are close to the road. Each track
contains annotations of the pedestrian in frame sequences,
such as a bounding box and a crossing status, whether the

Property

FPS(Frames per Second) 30
Length of each chunk 10min
Total number of frames 909K
Total number of annotated frames 293K
Number of pedestrians with bounding boxes 739K
Total number of pedestrians 1,842
Crossing intention and do cross 512
Crossing intention and don’t cross 898
No crossing intention to cross 430

Table 1. Proporties of the PIE dataset

pedestrian is crossing the road or not in the given frame.
Related to crossing intention, the tracks are divided into
four classes. 1) Pedestrians who intend to cross and ac-
tually cross (512 tracks). 2) Pedestrians who intend to cross
but do not actually cross (898 tracks). 3) Pedestrians who
have no intention of crossing but actually cross (2 tracks).
4) Pedestrians who have no intention of crossing and do
not actually cross (430 tracks). In the experiments, tracks
were randomly divided into three sets; 48% (880 tracks)
of the training set, 39% (719 tracks) of the testing set, and
13% (243 tracks) of the validation set, respectively. Table 1
shows detailed properties of the PIE dataset.

4.2. Evaluation Metrics

To compare the performance of our proposed model with
previously developed models, we utilized the five widely
used metrics in pedestrian crossing intention prediction
field: accuracy (ACC), area under the ROC curve (AUC),
precision, recall, and F1 score.

Accuracy measures how accurately the model predicts
the binary classification problem of crossing intention, de-
fined as follows,

ACC =
TP + TN

TP + TN + FP + FN
, (16)

where TP represents the quantity of true positive samples,
TN represents the quantity of true negative samples, FP rep-
resents the quantity of false positive samples, and FN rep-
resents the quantity of false negative samples, respectively.

F1 score is the harmonic mean of the precision and re-
call, defined as follows,

F1 =
2× precision× recall

precision+ recall
, (17)

AUC is the base area of the ROC (Receiver Operation
Characteristic) curve defined as follows [4],

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1|
, (18)
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Model Visual Encoder Features ACC AUC F1 Precision Recall

SingleRNN [14] VGG + GRU P,L, S,B,R 0.76 0.64 0.45 0.63 0.36
MultiRNN [1] VGG + GRU P,L, S,B 0.86 0.80 0.73 0.80 0.67
SFRNN [26] VGG + GRU P,L, S,B,R 0.83 0.77 0.68 0.72 0.64
PCPA [15] C3D + GRU P,L, S, LC 0.86 0.85 0.77 0.70 0.85

I3D + GRU P,L, S, LC 0.87 0.86 0.79 0.75 0.84
VGG + GRU P,L, S, LC 0.87 0.86 0.77 0.75 0.79

MCIP [11] C3D + GRU P,L, S, LC,GC 0.86 0.86 0.78 0.72 0.85
I3D + GRU P,L, S, LC,GC 0.85 0.81 0.74 0.76 0.71

VGG + GRU P,L, S, LC,GC 0.89 0.87 0.81 0.81 0.81
CIPF(Ours) VGG + C3D + GRU P,L, S, LC,GC, SC,B,R 0.91 0.89 0.84 0.85 0.83

Table 2. Prediction performance comparison on PIE dataset. For each model, the visual encoder and input features are introduced, and
their performance is compared. The abbreviation of input feature is as follows. {P: Pose, L: Bounding Box, S: Speed of ego-vehicle, LC:
Local Context, GC: Global Context, SC: Scene Context, B: Local Box, R: Local Surround}

where f is a predictor that returns the probability of cross-
ing intention, 1[f(t0) < f(t1)] denotes the indicator func-
tion that returns 1 if f(t0) < f(t1) otherwise 0, D0 is a
set of negative samples and D1 is a set of positive samples.
A higher AUC indicates that the model is capable of effec-
tively distinguishing between the different classes.

4.3. Experimental Setting

The proposed our novel algorithm was implemented on
8 GPUs with Nvidia RTX A6000 and AMD EPYC 7513
32-core processors with tensorflow environment. CIPF was
trained using RMSProp optimizer with a learning rate of
5× 10−5 during 300 epochs on PIE dataset. Also, we used
GRUs with 256 hidden units for observational and contex-
tual modules and C3D networks for convolutional module.
We also included a dropout of 0.5 after the attention block
for preventing overfitting and added an L2 regularization
with 0.0001 to the last fully connected layer.

4.4. Performance Comparison

In this section, we compared the performance results
of our novel CIPF network with five other benchmarks
for pedestrian crossing intention prediction models. Sin-
gleRNN [14] is an encoder-decoder structure using RNN,
which combines bounding box and ego vehicle speed into a
single vector that is fed through the encoder. Then, the last
hidden state passes through an FC layer, and it is concate-
nated with the crossing intent value to become the input of
the decoder. MultiRNN [1] has the advantage of outputting
uncertainty in predictions through Bayesian modeling, al-
lowing for some understanding of incorrect predictions in
uncertain situations. Stacked with Multilevel Fusion RNN
(SFRNN) [26] is a network based on stacked RNNs, where
the upper layer RNNs receive the hidden states of the lower
layer RNNs as input. Then, the hidden states from the lower
layers are combined with other input data and passed to the

higher layers. Pedestrian Crossing Prediction with Atten-
tion (PCPA) [15] extracts local context images using C3D
network and applies temporal, modality attention mecha-
nisms. Multi-Stream Network for Pedestrian Crossing In-
tention Prediction (MCIP) [11] divides five inputs, includ-
ing a segmentation map, into non-visual and visual mod-
ules, and applies an attention module to extract crossing in-
tention.

Table 2 shows a performance comparison of the five
benchmark models and our proposed model based on visual
encoder and input features at a future point in one second.
SingleRNN, MultiRNN, and SFRNN used VGG for feature
extraction and did not include contextual input. PCPA and
MCIP experimented with C3D, I3D [7], and VGG as visual
encoders, and did not include convolutional features. Our
proposed CIPF received all eight features, where some of
the visual features are extracted using VGG, and others are
encoded with C3D, achieving the highest prediction accu-
racy of 91%.

4.5. Qualitative Results

As shown in Figure 3, this is a visualization of pedes-
trian crossing intention prediction results. The observation
started from the t-15 frame, continued until the t frame, and
then anticipated the pedestrian crossing intention at time t.
The actual behavior of the pedestrian was then compared
at the future t+1 frames. The green boxes in case 1 in-
dicate predictions of pedestrians with a crossing intention,
while the red boxes in other cases indicate predictions of
pedestrians without a crossing intention. In particular, case
3 shows an instance where the initial prediction was a cross-
ing intention, but then correctly predicted a lack of crossing
intention. In case 4, the model incorrectly predicted that
the pedestrian would not cross in the next frame t+1 even
though the pedestrian does cross.
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Figure 3. The qualitative results of CIPF. This is the predicted result based on the observation from the t-15 frame to the t frame. The
green boxes indicate predictions of an intention to cross, while the red boxes indicate predictions of no intention to cross.

4.6. Ablation Studies

4.6.1 Effectiveness of Input Features

To demonstrate the contributions of each eight input fea-
tures, we examined an ablation study while excluding one
of the inputs on the proposed algorithm. As presented in
Table 3, the eight input features, the bounding box had the
greatest impact on the accuracy, which is 6.3% lower than
the baseline performance. Since the bounding box coordi-
nates represent the location of pedestrians, it can be seen
that the pedestrian’s location plays the most crucial role in
improving the accuracy of crossing intention. The feature
that had the most negligible impact on the prediction ac-
curacy were scene context and global context only 1% and
1.3% respectively lower than the baseline performance. In
the case of scene context, it did not even include the im-
age around the pedestrian, but the whole image, so it did
not significantly impact the prediction. Moreover, in the
case of global context, since the whole road environment
was semantically mapped, not only the target pedestrian but
also various noise factors such as trees or buildings were
included, which contributed little to improving prediction
accuracy. In addition, it was experimentally proven that the

order of features that had less impact on the accuracy was
local box < local context < local surround < speed < pose.
It can be observed that the input features of the observa-
tional module have a more significant impact on the accu-
racy, while those of the contextual module has less impact.

4.6.2 Validity of Visual Encoder

We investigate the performance differences through the type
of VGG encoders to change the input features of the convo-
lutional module to be extracted with VGG instead of C3D
to prove the effect of C3D. Among eight features, CIPF
achieved state-of-the-art performance by extracting contex-
tual features and feeding them through a GRU layer, while
using C3D to extract convolutional features and repeatedly
perform 3D maxpooling. As shown in table 4, instead of us-
ing C3D to extract input features for local box and local sur-
rounds, the VGG was used to extract these features, and the
results were compared to those obtained with C3D. CIPF-
BR processed both convolutional and contextual features in
the same way by passing each of the five inputs through a
VGG and GRU unit before concatenating them and apply-
ing an attention module. CIPF-B extracted local surround
using C3D and used VGG for the remaining features, while
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P L S LC GC SC B R ACC AUC F1 Precision Recall

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.911 0.888 0.843 0.851 0.834

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.855-0.056 0.871-0.017 0.782-0.061 0.686-0.165 0.910+0.076

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.848-0.063 0.845-0.043 0.759-0.084 0.693-0.158 0.839+0.005

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.857-0.054 0.836-0.052 0.758-0.085 0.730-0.121 0.789-0.045

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.887-0.024 0.868-0.020 0.806-0.037 0.788-0.063 0.824-0.010

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.898-0.013 0.876-0.012 0.822-0.021 0.820-0.031 0.824-0.010

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.901-0.010 0.884-0.004 0.830-0.013 0.816-0.035 0.844+0.010

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.888-0.023 0.879-0.009 0.814-0.029 0.773-0.078 0.859+0.025

✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.859-0.052 0.876-0.012 0.788-0.055 0.692-0.159 0.915+0.081

Table 3. Ablation studies of CIPF based on the eight input features. The order of the input features that have the most impact
on performance is as follows: Bounding Box(L)>Pose(P)>Speed of ego-vehicle(S)>Local Surround(R)>Local Context(LC)>Local
Box(B)>Global Context(GC)>Scene Context(SC).

Model VGG C3D ACC AUC F1

CIPF-BR LC,GC, SC,B,R 0.90 0.88 0.82
CIPF-B LC,GC, SC,B R 0.90 0.89 0.83
CIPF-R LC,GC, SC,R B 0.89 0.87 0.81
CIPF LC,GC, SC B,R 0.91 0.89 0.84

Table 4. Performance comparison depending on visual encoder
type. The performance is compared according to whether local
box(B) and local surround(R) are used as C3D input in the visual
encoder or not.

MCIP CIPF

time ACC AUC F1 ACC AUC F1
4s 0.78 0.74 0.62 0.78 0.74 0.61
3s 0.79 0.77 0.66 0.80 0.80 0.7
2s 0.83 0.81 0.72 0.84 0.83 0.74
1s 0.89 0.87 0.81 0.91 0.89 0.84

Table 5. Prediction time studies for future point. For the both
two models, MCIP and CIPF, the prediction preformance from 1
second to 4 seconds later are compared with each other.

CIPF-R extracted only local box using C3D. The predic-
tion accuracy of CIPF-R was 2% lower than that of CIPF,
and both CIPF-BR and CIPF-B showed a 1% lower accu-
racy. Therefore, it has been proved that using C3D to extract
convolutional features is the most effective approach.

4.6.3 Prediction Time Studies

We evaluated our proposed model at different anticipation
times, from 1s to 4s. We compared the prediction accuracy,
AUC, and F1 performance of our proposed CIPF and the
latest prediction model, MCIP, on the PIE dataset, as shown
in Table 5. Both models showed a reduction in performance
for all three metrics as the prediction time increases, and the

interval with the most significant prediction accuracy drop
was from the 1-second later prediction to 2 seconds, par-
ticularly for CIPF, which decreased by 7%. The prediction
accuracy gradually reduced from the 3 seconds later pre-
diction to 4 seconds interval, and at this interval, the two
models decreased by around 1% (MCIP) and 2% (CIPF),
respectively. Overall, our proposed CIPF model showed
similar or higher accuracy compared to MCIP depending
on the different prediction times.

5. Conclusion

In this paper, we introduce a new feature fusion module,
CIPF, for predicting pedestrian crossing intention. CIPF is
a network that efficiently fuses various inputs by separat-
ing modules depending on the properties of each feature,
utilizing past visual or non-visual features extracted from
pedestrians or vehicles. We achieved state-of-the-art per-
formance in predicting whether a pedestrian will cross at a
future point. We also experimented with the impact of eight
input features on performance, verified the validity of the
visual encoder type, and examined the performance differ-
ence when increasing the prediction time. In addition, we
demonstrated the pedestrian crossing intention prediction
process with qualitative results. By utilizing this network,
it is expected to greatly contribute to improving pedestrian
safety in the autonomous driving environment by anticipat-
ing pedestrian crossing intention in advance.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN
encoder–decoder for statistical machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–1734,
2014. 4

[10] Zhijie Fang and Antonio M. López. Is the pedestrian going
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