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Abstract

Precise 6D pose estimation of rigid objects from RGB
images is a critical but challenging task in robotics, aug-
mented reality and human-computer interaction. To address
this problem, we propose DeepRM, a novel recurrent net-
work architecture for 6D pose refinement. DeepRM lever-
ages initial coarse pose estimates to render synthetic images
of target objects. The rendered images are then matched
with the observed images to predict a rigid transform for
updating the previous pose estimate. This process is re-
peated to incrementally refine the estimate at each itera-
tion. The DeepRM architecture incorporates LSTM units to
propagate information through each refinement step, signif-
icantly improving overall performance. In contrast to cur-
rent 2-stage Perspective-n-Point based solutions, DeepRM
is trained end-to-end, and uses a scalable backbone that can
be tuned via a single parameter for accuracy and efficiency.
During training, a multi-scale optical flow head is added
to predict the optical flow between the observed and syn-
thetic images. Optical flow prediction stabilizes the training
process, and enforces the learning of features that are rele-
vant to the task of pose estimation. Our results demonstrate
that DeepRM achieves state-of-the-art performance on two
widely accepted challenging datasets.

1. Introduction
Detecting objects and estimating their 6 dimensional

pose (x, y, z, roll, pitch, yaw) in 3D space is a fundamen-
tal task in the field of computer vision and robotics. As
such, it has many applications, the most common of which
is robotic manipulation. For a robot to be able to effectively
interact with an object, it must know the object’s pose in
relation to itself. In the case of robotic grasping, the ob-
ject’s position is used to determine the input to the inverse
kinematic solver, which can then calculate the joint states
necessary to grasp the object. Augmented reality is another
important field requiring very precise pose estimation [1].
In this setting, pose estimation enables humans to interact

Figure 1. Example of DeepRM object pose refinement.

with both physical and virtual objects in a seamless man-
ner. Applications range across industries such as healthcare,
manufacturing, education, and gaming.

Estimating the 6D pose from a single RGB image is an
ill-posed problem due to the projection of the 3D scene onto
the 2D image sensor. Because of this loss of dimensionality,
many solutions rely on depth sensors to recover the depth
information. Depth sensors, however, can be noisy and are
typically limited by factors such as cost, power, form fac-
tor, range, resolution, frame rate, and sensitivity to external
factors, e.g. sunlight [18,31]. Furthermore, recent advance-
ments in computer vision and AI are enabling RGB only
solutions to approach the same levels of accuracy as those
with RGB-D sensors. In the 2020 BOP Challenge on 6D
Object Localization [14], CosyPose [17], an extension of
DeepIM [18], relied only on RGB data and outperformed
all but two RGB-D approaches. Our intention in this work
is to close the gap between RGB and RGB-D approaches by
focusing on pose refinement with RGB only data, enabling
our solution to be used across a wider range of applications.

In this paper, we introduce DeepRM, a 6D pose refine-
ment technique for rigid objects. Figure 1 shows a repre-
sentative example of the DeepRM pose refinement process.
DeepRM uses an iterative render-and-compare approach to
incrementally refine an initial pose estimate. Given an ini-
tial coarse pose, a target object can be rendered with the
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same camera intrinsics as the original observation. The ren-
dered image can then be matched with the observed image
to predict the rigid transform that aligns the object in the two
images. By leveraging the geometric information implicitly
contained within the 3D model of the object, updates to the
6D pose can be inferred without external depth information.

The proposed DeepRM method improves upon DeepIM
[18] with several innovations, such as high resolution crop-
ping, disentangled loss, variable renderer brightness, a scal-
able backbone based on EfficientNet [28], and most no-
tably a recurrent network architecture. DeepRM is the first
work that both leverages a recurrent neural network to di-
rectly regress 6D pose of rigid objects and provides a scal-
able framework for this task. Utilizing a recurrent architec-
ture allows additional information to be propagated through
each refinement step, significantly improving performance
over non-recurrent methods.

The main contributions of this paper are: 1) we present
DeepRM, an end-to-end trainable recurrent neural network
architecture for 6D object pose refinement, that requires
only a single RGB image as input. 2) DeepRM offers a scal-
able solution that can be adapted based on computational
constraints in real-world scenarios. 3) DeepRM achieves
state-of-the-art results on the challenging YCB-Video [33]
and Occlusion LINEMOD [2] datasets.

2. RELATED WORK

2.1. 6D Object Pose Estimation

The goal of 6D object pose estimation is to determine
an object’s fully constrained pose within 3D space. As
the field is vast, we limit the discussion of related works
to methods based on RGB data. Traditional methods uti-
lized template matching techniques [11] or matched hand
crafted feature points to a 3D CAD model and solved the
Perspective-N-Point (PnP) problem [5]. Early deep learning
based methods built upon the two-stage approach of feature
detection followed by PnP. BB8 [23] first used this tech-
nique to regress the 8 corners of the bounding cuboid in 2D,
and then solved for pose via PnP. Similar methods followed
the same approach, but addressed other limiting factors such
as efficiency [30] and robustness to occlusion [21].

To further address the problem of occlusion, PVNet [22]
introduced a pixel-wise voting network using RANSAC,
resulting in an estimator that is capable of detecting key-
points, even when they are occluded. The best results
were achieved with 8 keypoints similarly to methods us-
ing bounding boxes. However, the sparsity of the keypoints
in such approaches limits functionality under high levels of
occlusion and truncation. To address this, a different line of
research attempts to predict 3D coordinates for every pixel
in the target image. By drastically increasing the number of
2D-3D correspondences, performance is maintained even

under high occlusion. To handle the additional noise in-
herent to the dense predictions, PnP+RANSAC is needed to
achieve robustness to outliers. Dense correspondence meth-
ods include DPOD [35], EPOS [13], and ZebraPose [27].

Recent works such as PoseCNN [33] attempt to directly
regress the pose of objects from RGB images. PoseCNN
uses a VGG16 [26] backbone to extract high dimensional
feature maps. These shared feature maps are then utilized
by three downstream tasks: semantic segmentation to local-
ize and distinguish objects, translation prediction, and rota-
tion prediction. The translation and rotation predictions are
directly regressed by passing flattened feature maps through
fully connected layers. The benefit of direct approaches is
that they can be fully trained end-to-end, without surrogate
loss functions as in the two-stage approaches.

The Geometry-guided Direct Regression Network
(GDR-Net) [32] aims to achieve the end-to-end differentia-
bility of direct methods, the geometry-guided accuracy of
PnP methods and the robustness of dense methods. GDR-
Net predicts dense pixel-wise correspondences, but then in-
stead of using a non-differentiable PnP solver, it uses a a
convolutional Patch-PnP network to directly regress pose.
SO-Pose [7] further extends this approach by leveraging self
occlusion information to enforce cross-layer consistencies
across the correspondence field, self-occlusion information,
and 6D pose, resulting in a direct method that performs
comparably to many refinement based techniques.

2.2. 6D Object Pose Refinement

Although recent methods such as GDR-Net [32] and SO-
Pose [7], achieve high levels of accuracy compared to prior
works, the ill-posedness of the problem still makes this task
very challenging for RGB-only methods. As a result, re-
finement techniques are necessary to achieve the perfor-
mance requirements of high-precision applications. Sim-
ilar to traditional pose estimation techniques, early meth-
ods used either hand crafted feature descriptors, or template
based matching techniques for refinement. DeepIM [18]
then introduced a novel neural network architecture to it-
eratively refine the pose of an object in a target image by
matching it to a rendered image of the object’s initially es-
timated pose. DeepIM is based on the FlowNetS [9] opti-
cal flow architecture, and directly regresses the translational
and rotational updates necessary to minimize the difference
in the observed and rendered images.

Recent state-of-the-art works improve upon DeepIM by
addressing a variety of factors, but virtually all of them
follow the same basic render-and-compare approach. for
example, CosyPose [17] replaces the FlowNetS backbone
with EfficientNet; [28], removes the optical flow head, and
directly regresses rotation in a 6D rotation parameteriza-
tion [36] as opposed to a quaternion; and [31] introduces a
combined pose proposal and refinement network. Focusing
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Figure 2. Overview of the DeepRM method. An initial pose estimate is used to render a target object. The observed and rendered images
are passed through a convolutional neural network to predict a se(3) transformation that updates the previous pose estimate. This process is
repeated multiple times to incrementally refine the estimate. In addition to the updated pose estimate, hidden states from recurrent LSTM
modules are propagated to each iteration.

on the refinement network, [31] extracts and warps feature
maps based on the optical flow between observed and ren-
dered images. The warped feature maps then pass through a
spatial multi-attention layer to highlight important features,
before directly regressing the pose update.

RNNPose [34] is a recent work on RGB pose refinement
that uses an architecture inspired by RAFT [29] for optical
flow, but extends it significantly for the task of pose esti-
mation. RNNPose is the first work to leverage Gated Re-
current Units (GRUs) during the iterative process of pose
refinement. However, pose is optimized by a Levenberg-
Marquardt (LM) algorithm on an estimated correspondence
field, and therefore RNNPose is not considered a purely di-
rect approach.

Following RNNPose, Lipson et al. [19] also use a RAFT
inspired architecture, but solve for pose using a Bidirec-
tional Depth-Augmented PnP (BD-PnP) solver. This tech-
nique extends the standard PnP process by additionally min-
imizing the reprojection errors of the rendered image, as
well as the inverse depth. Like RNNPose, this method
predicts a 2D-3D correspondence field and then solves for
pose, therefore we do not consider it a direct approach.

Vision transformer architectures [8], [20] have recently
gained popularity for many computer vision tasks, includ-
ing fine grained classification, semantic segmentation, ob-
ject tracking, and human pose estimation. Trans6D [34] and
CRT-6D [4] utilize vision transformers for the task of 6D
object pose estimation. However, while they utilize trans-
formers, both methods require hybridized architectures con-
sisting of both convolutional and attention layers to achieve
state-of-the-art results. CRT-6D [4], for example, uses a
ResNet34 [10] backbone for feature extraction, followed by
multiple layers of deformable self and cross-attention. Ad-
ditionally, both methods require an iterative refinement pro-

cess to achieve improved results.

3. METHOD
An overview of the proposed DeepRM method is illus-

trated in Fig. 2. Inspired by DeepIM [18], it follows an
iterative render-and-compare approach to refine the pose of
an object in a single RGB input image. Given an initial pose
estimate of a target object, an image of the target object is
rendered. The rendered image is then matched with the real
image of the object to predict an se(3) transform to the ini-
tial pose estimate that better aligns the rendered object to the
observed image. The se(3) transform consists of a transla-
tion and rotation vector, where the rotation is represented as
a normalized unit quaternion. se(3) denotes the Special Eu-
clidean group, which refers to the set of proper rigid trans-
formations within the Euclidean group. Such transforms
within the Euclidean group preserve the Euclidean distance
between transformed points. Because each update reduces
the error between the rendered and observed images, this
process can be repeated iteratively to incrementally refine
the result. This method compensates for lack of external in-
formation such as depth by leveraging pre-existing geomet-
ric and visual properties of target objects, i.e. textured CAD
models. By rendering objects in a way that is geometrically
consistent with the observed scene, 3-D spatial information
can be recovered from the RGB only image data.

3.1. Network Architecture

The DeepRM neural network architecture is illustrated
in Fig. 3. The observed and rendered RGB images are
concatenated channel-wise to form a 240×320×6 dimen-
sional tensor. The 6-channel tensor is passed as input to
the backbone convolutional neural network to extract fea-
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Figure 3. Architecture of the proposed DeepRM method. The observed and rendered RGB images are concatenated to form a 6-channel
tensor. The 6-channel tensor is then passed as input to the backbone network to extract feature maps. The final 8×10×384 feature map is
flattened and passed through three shared, fully-connected, LSTM layers before the final translation and rotation heads. The multi-scale
feature maps from the backbone network are also used in the optical flow head during training.

ture maps, where the final 8×10×384 feature map from
the backbone is flattened and passed through three shared,
fully-connected, LSTM layers before the final translation
and rotation heads. The multi-scale feature maps from the
backbone network are also used in an auxiliary optical flow
head during training to stabilize the training process, and
enforce the learning of features which are relevant to the
task of pose estimation. The structure of the optical flow
head is the same as FlowNetS [9], however both the spatial
and channel dimensions are modified to match the corre-
sponding layers in the backbone network. We use the B3
version of EfficientNet [28] as the backbone feature ex-
tractor to achieve the best balance between performance
and model size, but also demonstrate state-of-the-art results
with smaller versions of EfficientNet such as B0 and B2.
Because we match the dimensions of the optical flow head
to those of the backbone, our architecture can be scaled as
a whole, using the same hyperparameter used by the Effi-
cientNet backbone, called ϕ. The use of ϕ as a model scal-
ing hyperparameter is further discussed in [28].

3.2. Recurrent Fully Connected Layers

While many other works [17, 18, 31] in pose refinement
leverage an iterative process to incrementally improve upon
an initial coarse estimate, most do not leverage any type
of recurrent network features. However, recurrent architec-
tures have been successfully used to improve the iterative
processes of other visual processing tasks, such as optical
flow prediction [29], saliency detection [6], and instance
segmentation [24]. Adding gated recurrent mechanisms,

such as LSTMs or GRUs, to the iterative processes should
generally maintain or improve their current levels of perfor-
mance. Considering the case where all gated connections
are disabled, we simply have the original network config-
uration, where each iteration is independent of the previ-
ous. We can then enable the recurrent connections to en-
force continuity across iterations, improving performance
with each iteration. Based on our hypothesis, we apply this
theory to the task of 6D pose refinement and present a novel
recurrent network architecture suited for this task.

3.3. High Resolution Cropping

To improve upon the cropping strategy of DeepIM [18],
we choose to follow an approach similar to CosyPose [17].
This process consists of cropping the region of interest
around the object, based on the estimated pose, and then
resizing this crop to 320×240 before passing it to the net-
work. This cropping strategy has several benefits: a) it re-
duces background clutter b) it leverages the higher input im-
age resolution. c) it reduces the memory and computational
requirements of the network. The only difference between
our approach and [17] is that we generate the rendered im-
age at the full 640×480 resolution, and use the same crop
as the target image, rather than adjusting the camera param-
eters and rendering directly to 320×240.

3.4. Transformation Parameterization

Following DeepIM [18], the network does not directly
predict the translational update as a vector in meters, but
rather a 2D translation in pixel space, along with a relative
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change in depth, corresponding to the projected centerpoint
of the target object. Given the initial pose of the object,
and the pixel space displacements, the 3D translation can be
recovered via the thin lens equation. This parameterization
enables the network to perform simplified reasoning in 2D,
as opposed to modeling the complex relationship between
3D object geometry and the camera intrinsics.

3.5. Rotation Parameterization

To regress rotation, the network predicts the four quater-
nion components, which are then normalized to form a unit
quaternion. The advantage of normalizing the output is that
the network only needs to learn the ratios between compo-
nents.

3.6. Disentangled Point Matching Loss

To learn 3D pose, we use the point matching loss
(LPML) function as in [18], but disentangle the transla-
tional components as in [25]. LPML incorporates both ro-
tational and translational error in a single scalar metric, con-
veniently eliminating the need to balance the separate ele-
ments. Additionally, the disentangled formulation isolates
the influence of the xy translation with the relative change
in depth. For a ground truth pose p = [R|T ], and an esti-
mated pose p̃ = [R̃|T̃ ], the point matching loss is defined
as the average ℓ1 norm of a subset of n model points:

LPML(R̃, T̃ ) =
1

n

n∑
i=1

∣∣∣∣∣∣(Rxi + T )− (R̃xi + T̃ )
∣∣∣∣∣∣
1
. (1)

where xi denotes the i-th model point.
Extending the above equation to disentangle the transla-

tional components, we first split the ground truth translation
and the predicted translation into their respective compo-
nents, i.e. T = [x, y, z] and T̃ = [x̃, ỹ, z̃]. We then utilize
a combination of the ground truth and predicted translations
as input to the LPML function to create our disentangled
pose loss, LDPML:

LDPML =
[
LPML(R̃ , [x̃, ỹ, z̃])+

LPML(R̃ , [x̃, ỹ, z])+

LPML(R̃ , [x, y, z̃])
]
/ 3.

(2)

Our formulation is slightly different than [25] and [17]
in that it does not disentangle the rotation component. This
was found experimentally to be much more stable during
training, and provides better results than the fully disentan-
gled representation. For the auxiliary optical flow head, we
use the same multi-scale endpoint error loss (LMS−EPE)
as [9]. The disentangled point matching pose loss is then
combined with the mask loss to obtain the total loss (Ltotal)

as follows:

Ltotal = LDPML + α · LMS−EPE , (3)

where the balancing factor α has been set to 0.1 following
[18].

4. EXPERIMENTS
4.1. Datasets

The YCB-Video dataset [33] is a a large scale dataset,
with a total of 133,827 images over 92 unique scenes. Im-
ages contain labeled 6D poses of 21 target objects. The ma-
jority of images contain 4-5 objects in the scene, resulting in
high levels of occlusion, as well as a variety of challenging
lighting conditions. The 21 objects are a diverse selection of
common household items, which include various levels of
symmetry (i.e. non-symmetric, discretely symmetric, and
continuously symmetric objects). For consistent compari-
son, we use the same exact real data, synthetic data, and
data split as DeepIM [18].

The Occlusion LINEMOD dataset [2] is an extension
upon the original LINEMOD dataset [12]. LINEMOD con-
sists of 13 common household objects, split into 13 clut-
tered scenes. Roughly 1000 images are provided for each
object. Many target objects are present in each image, how-
ever only a single object is labeled per image. The target
object in each image is also generally very visible. To cre-
ate a more challenging dataset, Occlusion LINEMOD was
introduced. Occlusion LINEMOD provides ground truth la-
bels for all objects in one of the 13 scenes. This results in
high levels of partial occlusion, significantly increasing the
difficulty of the dataset. Following the convention of other
works such as [7, 32], we train on LINEMOD, and evalu-
ate on Occlusion LINEMOD. Although, due to the limited
amount of real data provided in LINEMOD, we addition-
ally augment the training data with physically-based ren-
dering (PBR) images that are publicly available from the
2020 BOP Challenge [14].

4.2. Evaluation Metrics

To evaluate the performance against other state-of-the-
art methods, we follow [7, 17, 18, 22, 31, 32] and use the
ADD metric [12]. More specifically, we use two specific
variations upon it, depending on the dataset, ADD(-S) 10%
for Occlusion LINEMOD and area under the curve (AUC)
ADD(-S) for YCB-Video. For the sake of brevity, we re-
fer readers to prior works such as [12] and [33] for a more
detailed description of these metrics.

4.3. Implementation Details

DeepRM is implemented in PyTorch, and uses the same
OpenGL based renderer as [18]. Unlike other works [17,18]
that use a consistent light source, we manually tuned the
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Method P.E. Ref. AUC of ADD(-S) ↑
PoseCNN [33] ⋆ 1 61.31

PVNet [22] 1 73.4
RePose [15] M ✓ 77.2

GDR-Net [32] 1 80.2
DeepIM [18] 1 ✓ 81.9

RNNPose [34] M ✓ 83.1
Trabelsi [31] 1 ✓ 83.1
SO-Pose [7] 1 83.9

GDR-Net [32] M 84.4
CosyPose [17] 1 ✓ 84.5
ZebraPose [27] M 85.3
Trans6D [34] M ✓ 85.9
CRT-6D [4] 1 ✓ 87.5

DeepRM (Ours) 1 ✓ 87.0

Table 1. Comparison to state-of-the-art on the YCB-V dataset.
Ref. indicates that the network includes refinement. ⋆ identifies
the method used to provide initial coarse estimates to DeepRM. In
the P.E. column, M indicates a separate unique model is trained
per object and 1 means a single model was trained for all objects.

Method P.E. Ref. ADD(-S) 10% ↑
PoseCNN [33] 1 24.9
PVNet [22] ⋆ 1 40.8
RePose [15] M ✓ 51.6

PPC [3] 1 ✓ 55.3
DeepIM [18] 1 ✓ 55.5

GDR-Net [32] 1 56.1
Trans6D [34] M ✓ 57.9
Trabelsi [31] 1 ✓ 58.4

RNNPose [34] M ✓ 60.7
GDR-Net [32] M 62.2
SO-Pose [7] 1 62.3
CRT-6D [4] 1 ✓ 66.3

ZebraPose [27] M 76.9
DeepRM (Ours) 1 ✓ 65.0

Table 2. Comparison to state-of-the-art on the LM-O dataset.
Ref. indicates that the network includes refinement. ⋆ identifies
the method used to provide initial coarse estimates to DeepRM. In
the P.E. column, M indicates a separate unique model is trained
per object and 1 means a single model was trained for all objects.

renderer brightness so that it properly exposes each object
that is matched in the target scene. This step can be au-
tomated by using an average metering algorithm, similar
to what is used in digital photography for auto-exposure.
Since the rendered object is always drawn on a black back-
ground, the render brightness for each object can be pre-
determined offline, and used throughout all training and
testing. This simple modification improved the baseline
results by 0.4%. For both YCB-Video and Occlusion

LINEMOD datasets, we use the ADAM optimizer [16],
with a base learning rate of 1e-4. Although due to the differ-
ences in each dataset, we use different batch sizes, training
durations, and learning rate schedules for each dataset. For
YCB-Video, 16 images are used per batch, with 4 objects
per image, resulting in an effective batch size of 64. Sim-
ilar to DeepIM [18], the model is trained for 20 epochs,
with fixed learning rate decays of 0.1 at epochs 10 and 15.
Although best results are obtained earlier at epoch 19 on
YCB-Video. For Occlusion LINEMOD, 48 images are used
per batch, with 1 object per image, resulting in an effective
batch size of 48. Number of epochs are scaled up to 190, to
account for the difference in the size of the dataset and batch
size compared to YCB-Video. Additionally, for Occlusion
LINEMOD only, a warmup period of 10% base learning
rate is used in the first 4 epochs. Both datasets are trained
with 6 refinement iterations during training. Then during
testing, 12 iterations of refinement are used for YCB-Video,
and 6 iterations are used for Occlusion LINEMOD.

4.4. Comparison to State-of-the-Art

Results on YCB-Video dataset. Table 1 presents the
results of DeepRM compared to the current state-of-the-art
on the YCB-Video dataset for the AUC ADD(-S) metric.
Initial predictions are obtained from PoseCNN [33], where
DeepRM outperforms all existing state-of-the-art methods
except CRT-6D [4]. We note that CRT-6D was trained us-
ing synthetic, physically-based rendering (PBR), images for
training, whereas DeepRM did not use this additional in-
formation. We speculate that re-training DeepRM on this
improved dataset would close or surpass the 0.5% perfor-
mance gap.

Results on LM-O dataset. Table 2 presents the results
of DeepRM compared to the current state-of-the-art on the
Occlusion LINEMOD dataset for the ADD(-S) 10% met-
ric. Initial predictions are obtained from PVNet [22], where
DeepRM outperforms all existing methods except for Ze-
braPose [27] and CRT-6D [4]. Although ZebraPose pro-
vides significantly superior performance, it requires a dif-
ferent model for each object and runs at a significantly re-
duced frame rate compared to DeepRM.

4.5. Ablation Study on YCB-Video

Table 3 displays network performance in terms of accu-
racy and frames per second (FPS) as a function of various
backbone architectures, fully-connected layer types, fully-
connected layer dimensions, and number of trainable pa-
rameters for the YCB-Video dataset. Due to resource and
time constraints, results are limited to 8 refinement itera-
tions. All tests were performed on a desktop workstation
with a single NVIDIA RTX 3060 GPU and an Intel i7-
11700K CPU.

Highest accuracy is observed for the EfficientNet-B3
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Method Backbone FC Type FC Layer Dims # Params Metric 2 4 6 8

DeepIM [18] FlowNetS MLP 256→256 60M FPS 12.0 N/A N/A N/A
ADD(-S) N/A 81.9 N/A N/A

DeepRM (ours) EfficientNet-B0 (ϕ=0) LSTM 256→256→128 33M FPS 47.8 24.4 17.5 13.0
ADD(-S) 83.2 84.5 84.7 84.6

DeepRM (ours) EfficientNet-B2 (ϕ=2) LSTM 384→256→256 55M FPS 39.2 21.0 14.0 10.3
ADD(-S) 83.7 85.1 85.4 85.5

DeepRM (ours) EfficientNet-B3 (ϕ=3) MLP 512→256→128 22M FPS 37.8 19.5 13.1 10.1
ADD(-S) 83.0 84.6 84.8 85.0

DeepRM (ours) EfficientNet-B3 (ϕ=3) GRU 512→256→128 63M FPS 35.7 18.1 12.7 9.3
ADD(-S) 83.5 85.3 85.5 85.5

DeepRM (ours) EfficientNet-B3 (ϕ=3) LSTM 512→256→128 79M FPS 34.0 18.0 12.0 9.5
ADD(-S) 84.2 86.2 86.6 86.8

Table 3. Ablation Study on YCB-Video. FPS represents frames per second. ADD(-S) represents AUC ADD(-S). MLP represents multi-
layer perceptron, i.e. standard fully connected layer. N/A represents ’Not Available’.

train iters init 2 4 6
test iters 2 4 6 2 4 6 8 2 4 6 8 10 12 14
ADD(-S) 60.0 82.3 82.5 82.2 84.2 85.5 85.5 85.4 84.2 86.2 86.6 86.8 86.9 87.0 87.0

Table 4. Ablation Study on Refinement Iterations for YCB-Video. ADD(-S) represents AUC ADD(-S). Best results are obtained when
training with 6 iterations and testing with 12.

backbone using 8 refinement iterations. This configuration
achieves 86.8% at 9.5 FPS on the AUC ADD(-S) metric for
YCB-Video. However, the number of refinement iterations
can be decreased to 4 to achieve 18 FPS while still main-
taining superior accuracy to all state-of-the-art methods.

Table 3 also demonstrates that the fully connected layers
in our architecture can be scaled along with the EfficientNet
backbone, using the same scaling parameter, ϕ. Using this
technique, the model can be adapted to meet real-world ex-
ecution time or resource constraints. This flexibility along
with the accuracy and efficiency of our method provide a so-
lution that is well-suited to practical robotics applications.

Finally, to support our claim that recurrent network fea-
tures improve the performance of this task, Table 3 displays
the impact of recurrent fully-connected layers compared to
standard fully-connected ones. We find that LSTMs pro-
vide a significant increase of 1.8%, whereas GRUs provide
a more moderate improvement of 0.5% over the standard
fully-connected baseline.

4.6. Ablation Study on Refinement Iterations for
YCB-Video

The process of iterative refinement is heavily dependent
on the number of iterations performed. As such, we in-
vestigate the impact of training and testing on a variety of
refinement iterations. All tests were performed with the
EfficientNet-B3 backbone on the YCB-Video dataset. AUC
ADD(-S) results are reported in Table 4. Best performance
is achieved when training with 6 iterations, and testing with

12 iterations, although we find 8 testing iterations to provide
the best balance of accuracy and execution time.

4.7. Ablation Study on Optical Flow

In addition to the recurrent structure, the auxiliary opti-
cal flow head is one of the main features that distinguishes
our work from others such as CosyPose [17]. We find that
the auxiliary optical flow head provides an accuracy im-
provement of 1.8% on the EfficientNet-B3 backbone con-
figuration of our network, clearly demonstrating its benefit.
Furthermore, this improvement only costs a 5% increase in
parameters during training. At inference, this portion of the
network is removed. Table 5 displays these results using
6 training iterations, and 8 testing iterations on the YCB-
Video dataset.

Method # Params AUC of ADD(-S)
No Flow 75 M 85.0

Flow 79 M 86.8

Table 5. Ablation Study on optical flow for YCB-Video. Opti-
cal flow reinforcement provides a 1.8% improvement, while only
increasing the model size by 5%.

5. CONCLUSIONS
In this work, we introduce DeepRM, a novel method for

precise 6D pose estimation of rigid objects from RGB only
data. DeepRM improves upon existing render-and-compare
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approaches by leveraging several unique elements, such as
an optical flow enforced learning process, an efficient and
scalable backbone, and an LSTM enhanced iterative refine-
ment mechanism. DeepRM outperforms the majority of
existing state-of-the-art methods on the challenging YCB-
Video and Occlusion LINEMOD datsets.
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