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Abstract

We propose the Pretrained Pixel-aligned Reference
(PPR) network for 3D human reconstruction. The PPR net-
work utilizes a pretrained model embedded with a reference
mesh surface and full-view normals to better constrain spa-
tial query processing, leading to improved mesh surface re-
construction. Our network consists of a dual-path encoder
and a query network. The dual-path encoder extracts front-
back view features from the input image through one path,
and full-view reference features from a pretrained model
through the other path. These features, along with addi-
tional spatial traits, are concatenated and processed by the
query network to estimate the desired mesh surface. During
training, we consider points on the pretrained model as well
as around the ground-truth mesh surfaces, enabling the im-
plicit function to better capture the mesh surface and over-
all posture. We evaluate the performance of our approach
through experiments on the THuman 2.0 and RenderPeople
datasets, and compare it with state-of-the-art methods.

1. Introduction
Humans are central subjects in images and videos.

Image-based human modeling leads to a myriad of appli-
cations from medical imaging to virtual reality. The devel-
opment of image-based human reconstruction approaches is
a major topic in the fields of computer vision. It is a chal-
lenging task due to the difficulty in maintaining high fidelity
with holistic human representation during the transforma-
tion from 2D image to 3D space. The difficulty mostly de-
pends on the 3D representation considered for the recon-
struction and hardware limitations. The global constraints
have been solved by some approaches, such as the paramet-
ric 3D geometric representation [9] and the voxel-based vol-
umetric method [21]. For capturing holistic body meshes,
the Skinned Multi-Person Linear Model (SMPL) [9], which
is a parametric 3D human body model made by skinning
and blend shapes learned from thousands of 3D body scans,
which produces human model with facial and body shape
details but without clothing in appearance. The voxel-based

representation [21] can solve the clothing appearance issue
but requires expensive hardware to handle the training of
volumetric CNNs.

Parametric models are proposed to generate 3D hu-
man meshes with various postures. For example, the SM-
PLify [4] and HMR [7] estimate the shape and pose coef-
ficients of a SMPL model [9] for an input image. These
parametric human body models are made for reconstructing
the body posture, rather than the reconstruction of the ac-
tual clothed surface. To better reconstruct clothed surface,
the deep implicit function approaches [15, 16] make good
progress in the reconstruction of 3D clothed human meshes
from one single human images. Instead of explicitly param-
eterizing the output representation, these methods regress a
function to determine the surface occupancy for a 3D lo-
cation, and show its strength in reconstructing high-fidelity
3D geometry without keeping the entire output volume. Re-
cent work [18, 20] combine parametric model with implicit
function modeling for better posture reconstruction.

Different from the existing approaches that consider im-
plicit functions for 3D clothed human reconstruction, we
leverage a pretrained model built on an implicit function
to develop another and better implicit function model. We
propose the Pretrained Pixel-Aligned Reference (PPR) Net-
work, which is the first modeling approach that considers
an off-the-shelf implicit function model, such as PIFu [15]
or PIFuHD [16] as a pretrained model, to reconstruct the
3D clothed human shape for a 2D input image. The RRP
net is built on a two-path architecture which captures the
front-back view features of the human subject in the im-
age by one path, and the full-view features obtained from
the pretrained model by the other path. Both features are
concatenated with additional spatial traits and entered to a
query network that is built upon a Multilayer Perceptron
(MLP) to determine the spacial occupancy of a 3D point,
leading to the reconstruction of the desired 3D mesh shape.
Our approach is verified by the experiments on benchmark
datasets and compared with state-of-the-art methods.

The contributions of this work can be summarized as fol-
lows:

• The first approach that explores a trained implicit func-
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tion as a pretrained model is proposed and verified
through experiments.

• The dual-path architecture with two image encoders
that extract different image features is verified effective
for reconstructing the 3D mesh surface for a 2D image.

• The proposed pretrained reference sampling scheme is
verified more effective than the sampling undertaken
by other implicit function modeling approaches.

• The proposed approach demonstrates better perfor-
mance than state of the art, especially for human sub-
jects with non-standing postures which are generally
considered as challenging cases.

The rest of this paper is organized as follows. A brief re-
view on previous work is given in Sec. 2. The proposed ap-
proach is presented in Sec. 3, followed by the experiments
on benchmark datasets presented in Sec. 4. A conclusion to
this study is given in Sec. 5

2. Related Work

2.1. Parametric model

3D human body reconstruction from a single 2D image
is challenging because of the lack of the depth information
about the whole body and between the body parts. To tackle
this challenging task, the parametric 3D human model [4]
is proposed to impose body constraints on the estimated
model. The estimated parametric model can only capture
a standard human body template to supplement the depth
information that a single RGB image cannot provide. How-
ever, the parametric model cannot capture the various body
postures and the clothed surfaces shown on the 2D image.
While using multiple parametric models can be more effec-
tive representing a human body, it is difficult to use multi-
ple shape representations to handle various geometrical pos-
tures and clothed surfaces.

Octopus [2] model reconstructs a 3D shape, including
the parameters of SMPL plus clothing and hair in a canoni-
cal T-pose space. Tex2Shape [3] turns the shape regression
into an aligned image-to-image translation problem by us-
ing the UV-mapping to unfold the SMPL body surface onto
a 2D image. Lazova et al. [8] learn to complete the full
3D texture from partial texture map and generalize to new
poses, shapes and viewpoints with SMPL and traditional
rendering. BodyNet [17] is an end-to-end trainable network
with intermediate network supervision in terms of 2D pose,
2D body part segmentation, and 3D pose. DeepHuman [21]
fuses different scales of image features into the 3D space
through volumetric feature transformation, which helps to
recover accurate surface geometry.

2.2. Deep Implicit Representation

Unlike the parametric models that constrain the solu-
tion area or need cubic memory, Chen et al. [5] advocate
the use of implicit fields for learning generative models of
shapes and introduce an implicit field decoder. Mescheder
et al. [10] encodes a description of the 3D output at infi-
nite resolution without excessive memory footprint.Park et
al. [12] introduce DeepSDF, a learned continuous Signed
Distance Function representation of a class of shapes that
enables high quality shape representation, interpolation and
completion from partial and noisy 3D input data. Saito et al.
[15] propose the implicit function with pixel-aligned for 3D
clothed human reconstruction from RGB images. However,
features from single RGB image can not provided sufficient
information for deep implicit function, and it cause the re-
sult often produces artifacts including broken limbs, depth
error and geometric noise. To advance their method, [16]
input high resolution images and inference front-back nor-
mal map to provide more feature to deep implicit function,
these features improve the result surface detail and decline
the artifacts in previous work. Geo-PIFu [6] is based on a
deep implicit function-based representation to learn latent
voxel features using a structure-aware 3D U-Net. PaMIR
[20] extract features from voxelized SMPL mesh to improve
the generalization ability under the scenarios of challeng-
ing poses and various clothing topologies. ICON [18] use
SMPL fit body to guide the front-back normal map infer-
ence and the deep implicit function. These works are robust
to varied human poses and decrease the artifacts in the orig-
inal PIFu [15]. However, the high dependence on SMPL
body makes its results severely affected by wrong informa-
tion form fitting results of the parametric model.

3. Our Approach
As our approach is developed based on PIFu [15] and PI-

FuHD [16], we first summarize their approaches in Sec. 3.1,
and present ours in Sec. 3.2.

3.1. A Brief Review to PIFu and PIFuHD

The core part of PIFu [15] (Pixel-aligned Implicit Func-
tion) is an implicit function f(v, I) defined for a 3D point
v = (vx, vy, vz) ∈ R3 and an associated image I as fol-
lows.

f(v, I) =

{
1, if v inside the mesh surface.
0, otherwise.

(1)

To estimate the implicit function f , PIFu [15] explores the
following model,

f(v, I) = g(h(vx,y, I), zv) (2)

where vx,y = (vx, vy) is the orthogonal projection of V
onto the x-y image plane, h(·) is a feature embedding func-
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tion built by a CNN, zv is the depth along the ray from vx,y ,
and g is a Multi-Layer Perceptron (MLP) that determines
the right z∗v so that (2) holds.

As the 3D representation of PIFu [15] is bounded by the
512×512 input image resolution, the PIFuHD [16] consid-
ers 1024×1024 input image resolution with a double-level
approach for the reconstruction of higher resolution. A
coarse level, similar to PIFu [15], focuses on integrating the
global geometry and producing backbone image features of
128×128 resolution. A fine level adds on more details by
using the 1024×1024 input image to produce backbone im-
age features of 512×512 resolution. To predict the back of
a subject, PIFuHD [16] explores a front-to-back inference
scheme by predicting the normal maps of the frontal and
back sides of the subject, and entering the predicted normal
maps as part of the features for the 3D reconstruction. For
the loss function considered at training, PIFuHD [16] uses
the Binary Cross Entropy (BCE) loss instead of the L1 and
L2 losses in PIFu [15].

3.2. Pretrained Pixel-Aligned Reference Model

The differences between our approach and PIFu/PIFuHD
are threefold. The first is the 512×512 input image res-
olution, same as for PIFu, but the expressiveness and de-
tails of our reconstructed 3D surface can be competitive to
those of PIFuHD, substantially reducing the hardware re-
quirements for handling high resolution reconstruction. The
second is the two-path architecture which extracts the front-
back features from the input image I by one path, and ex-
tracts the full-view normal map features from a pretrained
model by the other. The third is the pretrained reference
sampling scheme that samples the 3D points along the pre-
trained model mesh surface and imposes large variances to
the points with large errors from the ground truth at training.

3.2.1 Two-Path Architecture with Pretrained Model

Fig. 1 shows the configuration of our model. It consists
of a front-back view image encoder, a full-view image en-
coder, and a query network made of a multi-layer per-
ceptron (MLP). The front-back image encoder, which is
made of a Stacked Hourglass (SHG) with 4 sub-modules
and each sub-module composed of 8 convolution blocks,
and functions similarly to the coarse-level network in PI-
FuHD, extracts the feature map Φ ∈ R2563 from the input
image I ∈R5122×3 and the frontal and back normal maps
Nf∈R5122×3, Nb∈R5122×3. The full-view image encoder,
which is made of a U-Net with 5 downscaling double con-
volution layers and 5 upscaling double convolution layers,
extracts the feature vector Ψ ∈ R5122×128 from the full-
view normal maps Np

r ∈ R5122×3, Np
l ∈ R5122×3 ob-

tained from the pretrained model. Considering a 3D point

v = (vx, vy, vz) aligned to a pixel at vx,y = (vx, vy) on
the input I , the MLP takes as input of the aligned features
ϕx,y ∈ R256, ψy,z∈R128 (from the two feature maps Φ
and Ψ, respectively) concatenated with the coordinates vx,
vpz and the depth difference dz = vz − vpz , where vpz is the
depth at the pixel-aligned mesh of the pretrained model, and
generates a scalar output u ∈ [0, 1]. v is considered outside
of the mesh surface if u > τu, where τu is a threshold de-
termined in the experiment, or inside of the mesh surface if
otherwise.

The details of our approach can be organized into the
following steps:

1. Enter the input image I to a pretrained model Mp to
obtain the pretrained 3D mesh Mp(I) and the pre-
trained normal maps Np

f , Np
b , Np

l and Np
r for the

frontal, backside, left-side and right-side views, re-
spectively. Additionally, we also consider the frontal
and backside normals, Nf , Nb, obtained by the image-
to-image translation as in [16] for comparison purpose.

2. The two-path structure is composed of two compo-
nent networks h1 and h2 for extracting respectively the
front-back feature map Φ and full-view feature map Ψ,
which can be written as follows:

Φ(I) = h1(Nf , Nb, I) (3)

Ψ(I,Mp(I)) = h2(N
p
f , N

p
b , N

p
l , N

p
r , I) (4)

3. For a 3D point v = (vx, vy, vz), we first compute
the depth difference dz = vz − vpz , and sample the
pixel-aligned image feature vectors from Φ(I) and
Ψ(I), namely ϕx,y = h1(vx,y,Nf ,Nb, I) and ψy,z =
h2(vx,y,N

p
f ,N

p
b ,N

p
l ,N

p
r , I). The concatenated vector

[ϕx,y,ψy,z, vx,v
p
z ,dz] enters the MLP g(·) to determine

the occupancy of v. The same marching cube as in
[15] is performed to extract the meshes from the 3D
occupancy inferred by g(·).

To summarize the above, the implicit function derived from
our approach can therefore be expressed as follows,

F (v, I,Mp(I)) = g(ϕx,y, ψx,y, vx, v
p
z , dz) (5)

where ϕx,y = h1(vx,y, Nf , Nb, I), ψx,y = h2(vx,y, N
p
f ,

Np
b , N

p
l , N

p
r , I)

3.2.2 Sampling with Pretrained Model Reference and
Loss Function

Based on the spatial sampling conducted in [15] and [16],
we propose an improved spatial sampling scheme. The
sampling in [15] and [16] combines uniform sampling and
adaptive sampling based on the surface geometry. In the
training phase, they randomly sample points on the mesh
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Figure 1. The proposed Pretrained Pixel-Aligned Reference Network is composed of two feature encoders h1(.), h2(.) and MLP, each layer of the MLP
makes a skip connection with the full view feature from h2(.).

surface as the ground truth model is available, and add in
offsets with Gaussian distribution with a constant variance
to perturb their positions around the mesh surface. These
sample points are blended with another set of uniformly
sampled points within the bounding box that encloses the
human subject. We found that this sampling scheme can be
difficult handling partial occlusion cases, and propose the
following improved sampling scheme.

1. As the pretrained model is available in our framework,
we first sample points from the pretrained mesh sur-
face.

2. Calculate the amount of difference between the sam-
pled point and the ground truth (gt) mesh surface.

3. Offset the surface sample points using the calculated
difference as the variance of the normal distribution.

The above scheme offers the varying variance which is rel-
atively large at the points that differ significantly from the
ground truth, and is small at the points that differ insignifi-
cantly from the ground truth. When inferencing, the points
with large/small variance can move for a large/small dis-
tance, resulting in a better spatial occupancy accuracy.

Considering a set of sampling points Vn = [v1,v2,
...,vn], we use the following binary cross entropy loss L
to train our model,

L =

n∑
i=1

(Fgt(vi) logF (vi, I,Mp(I))+

(1− Fgt(vi)) log(1− F (vi, I,Mp(I)))

(6)

F (vi, I,Mp(I)) is the point occupancy prediction made by
g(·) for vi, Fgt(vi) is ground-truth occupancy value which
is 1 for inside point and 0 for outside point.

4. Experiments
We first introduce the databases, the experimental set-

tings and the implementation details in Sec. 4.1, then the
evaluation metrics in Sec. 4.2, and then the comparison with
the state of the art in Sec. 4.3.

4.1. Dataset and Experimental Settings

We trained our method and retrained other methods on
the same 450 scans from THuman dataset [19] for a fair
comparison, and used the SMPL-X meshes provided by
Thuman dataset for the methods that requires 3D body prior.
The 3D mesh of each subject is rendered from every other
degree along the yaw direction with an elevation fixed with
0◦. We evaluated the performance on 245 scan meshes se-
lected from Renderpeople [1].

For the two-path encoders, h1(·) is made of an Hour-
glass network [11] and h2(·) is made of a U-Net [14], as
described in Sec. 3.2. The configurations of both networks
are shown in Fig. 2 and 3. The input image I is 5122 pix-
els in resolution. The front and back surface normal images
that enter h1(·) are made by the surface normal inference
network provided by the PIFuHD [16]. The feature map
Φ(I) from h1(·) is 2563 in dimension, and the feature map
Ψ(I,Mp(I)) from h2(·) is 5122×128. The MLP query net-
work g(·) has an input layer of 387 dimension, three hid-
den layers with 1024, 512, 256 neurons, and one scalar out-
put. During training, we sampled 8,000 points along the
mesh surface of the pretrained model perturbed with zero-
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mean Gaussian and minimum variance 0.1 and maximum
0.3. Our network was trained with a batch size of 2, we use
RMSProp with learning rate to 0.003 and weight decay by
a factor of 0.1 on a single Nvidia RTX 3090 GPU.

Figure 2. Hourglass network configuration for making the image encoder
h1(·)

Figure 3. U-Net configuration for making the image encoder h2(·)

4.2. Evaluation Metrics

Different data format requires different evaluation met-
rics. Parametric methods [4, 7, 13] compute the standard
mean 3D body joint error and the vertex offset between the
predicted model and the ground truth. However, for the spa-
tial occupancy estimation methods [15, 21], the estimated
3D models can be directly compared with the ground truth
to examine the similarity and global quality by using the
Chamfer Distance (CD) and the Points To Surface Distance
(P2S).

The CD calculates the distance between the closest
points across two meshes. It is calculated by summing the
distance between each point in one mesh and the closest
point in the other, and dividing this sum by the number
of points in the mesh to obtain an average distance. The
smaller the CD, the smaller the difference between the re-
constructed mesh and the ground-truth mesh, and the better

the reconstruction quality. The CD is defined as follows,

DCD(P,G) =
0.5

|P |
∑
p∈P

dG(p) +
0.5

|G|
∑
g∈G

dP (g) (7)

whereP andG represent the predicted and ground truth ver-
tices, respectively; dA(B) is a minimum distance function
based on Set-A to evaluate the distance from Set-B.

The P2S metric utilizes unidirectional distance to evalu-
ate the offset between the predicted vertices and the closest
surface of the ground truth mesh. It can be calculated as
follows:

Dp2s(P,Mg) =
1

|P |
∑
p∈P

dMg (p) (8)

where Mg is ground truth model, P is the predicted ver-
tices, and dMg

is minimum distance from P to the closest
surface on the Mg .

4.3. Comparison with Other Approaches

We first use PIFu as our pretrained model and compare
the results with other state-of-the-art methods, including
PIFu [15], PIFuHD [16], PaMIR [20], and ICON [18]. The
comparison with different pretrained models is reported in
the next section. To ensure a fair comparison, we compare
the pretrained weights from the official Github repository
with our retrained weights obtained by using the aforemen-
tioned methods. Table 1 presents the quantitative compar-
isons. Our approach outperforms other methods. Samples
of the qualitative results are demonstrated in Figure 4. Our
approach yields better reconstructed mesh surfaces and bet-
ter posture.

Experiments with different settings of the proposed PPR
network are reported in the next section.

Method Chamfer P2S sec/item
PIFu [15] 2.26 2.14 15.76

PIFu 2.6 2.47
PIFuhd [16] 2.09 2.02 18.11
PaMIR [20] 2.07 2.03 17.01

PaMIR 2.23 2.16
ICON [18] 1.96 1.84 65.34

ICON* 2.05 1.93
Ours 1.81 1.84 86.14

Table 1. Quantitative comparison on RenderPeople for single-view recon-
struction. Ours method is PPR using Pifu as pretrained reference. We
retrained other SOTA method in the same dataset and label with star. Units
for point-to surface and Chamfer distance are in cm

4.4. Ablation Study

We conducted an ablation study to examine different set-
tings of the proposed approach, including different setups
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Figure 4. Errors in the reconstructed meshes to the ground truth, scaled to the color bar on the right.

of the two-path encoders, different sampling schemes and
embedding with different pretrained models.

Table 2 shows the performance with different settings of
the PPR network, including using only the encoder h1(·)
only, both encoders using the same designs (h1(·) + h1(·)
for both being h1(·) or h2(·)), and for the case that h1(·)
and h2(·) exchanges designs. Fig. 5 shows samples for a
qualitative comparison. We also show the performance with
different traits added to the image feature, including with-

out d∗z (the distance from the query point to the pretrained
model), and with 2-dimensional coordinates (vx, vz) and 3-
dimensional coordinates (vx, vy, vz). It is verified that the
addition with d∗z and 2-dimensional (vx, vz) yields the best
performance.

We also compared the Gaussian perturbation with con-
stant variance on the spatial sampling points. As shown in
the middle part of Table 2, large constant variance leads to
large discrepancy, and the most appropriate setting is the
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Figure 5. Qualitative comparison of different setups of the two-path image encoders.

proposed sampling scheme described in Sec. ??. The bot-
tom part of Table 2 shows the comparison with different
pretrained models, namely the PIFu, PIFuHD and SMPL-X.
Fig. 6 shows samples to demonstrate the 4-view normals of
using different pretrained models for a qualitative compari-
son. It is experimentally verified that the proposed settings
yields the best performance.

Our method is capable of using any pretrained results
for training. We conducted experiments using pretrained
results from PIFu, PIFuHD, and SMPL-X to evaluate our
approach. We found that PIFu and PIFuHD suffer from
a lack of depth features, resulting in similar performance
when used as PPR models. However, using SMPL-X as the
PPR model yielded better pose fit for some reconstructions
that required deeper information. Nonetheless, poor fitting
results in certain standing poses also impacted the recon-
struction performance. To further improve our method, we

trained it on the Thuman dataset.

5. Conclusion

Our Pretrained Pixel-Aligned Reference (PPR) network
takes a different approach to 3D human reconstruction than
previous methods that estimate implicit functions. Instead,
our network uses a two-path architecture that incorporates
a pretrained model based on an implicit function. This al-
lows us to leverage the advantages of an off-the-shelf pre-
trained model and use four-view normals as powerful refer-
ences. The two-path architecture uses different encoders
along each processing path to extract different features.
These encoders form another set of implicit functions that
enable us to better reconstruct the 3D mesh surface from a
single 2D image. Our experiments on benchmark datasets
show that the proposed approach outperforms other meth-
ods.
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Figure 6. The 4-view normal maps for different pretrained models.

Method Chamfer P2S
Only h1(·) 2.02 2.01
h1(·) + h1(·) 1.94 2.00
h2(·) + h1(·) 11.54 17.23
h2(·) + h2(·) 5.45 7.82

wo d∗z 1.91 1.88
(vx, vz) 1.81 1.84

(vx, vy, vz) 1.84 1.86
σ = 5 1.89 1.88
σ = 10 1.87 1.88
σ = 15 1.92 1.94

PPR-PIFu 1.81 1.84
PPR-PIFuHD 1.82 1.83
PPR-SMPL-X 1.90 1.91

Table 2. Ablation Study results. 1) Different network settings and spa-
tial features components. 2) constants standard deviation settings for sam-
pling. 3) Using different model as the PPR result.

Moreover, as the PPR network only considers the four-
view normals of the pretrained model, other characteristics
of the model could also be useful. We are currently explor-
ing the use of the mesh surface of the pretrained model to
further improve performance, and we will share our results
as soon as they become available.
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