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Abstract

Autoregressive models have proven to be very powerful

in NLP text generation tasks and lately have gained pop-

ularity for image generation as well. However, they have

seen limited use for the synthesis of 3D shapes so far. This is

mainly due to the lack of a straightforward way to linearize

3D data as well as to scaling problems with the length of

the resulting sequences when describing complex shapes. In

this work we address both of these problems. We use octrees

as a compact hierarchical shape representation that can be

sequentialized by traversal ordering. Moreover, we intro-

duce an adaptive compression scheme, that signicantly re-

duces sequence lengths and thus enables their effective gen-

eration with a transformer, while still allowing fully autore-

gressive sampling and parallel training. We demonstrate

the performance of our model by performing superresolu-

tion and comparing against the state-of-the-art in shape

generation.

1. Introduction

Autoregressive models have become the standard

paradigm for generating texts and have gained popularity

for image generation as well. This is because they can ex-

plicitly model the likelihood of the data and thus can be

trained to maximize it in a stable manner, a big benet com-

pared to e.g. GANs where training is generally ckle.

A problem with applying this family of models to other

elds is that they can only generate sequences, as each gen-

erated element depends on all previous ones. This leads to

issues when sequences become very long, as is the case e.g.

with images. When using recurrent networks, the training

and sampling processes take a lot of time, as it can be done

only sequentially. At least for the training this can be allevi-

ated by the use of parallelizable models like CNNs [32,33],

but here the receptive eld is limited, meaning the genera-

tion of a new element can only depend on part of the previ-

ous sequence.

The advent of transformers [23,35] somewhat alleviated this

problem, as they can be trained in parallel and deal with

much larger sequence lengths than CNNs. However, they

cannot process arbitrary sequences, as the memory con-

sumption grows quadratically with the length. There is on-

going research to reduce this memory requirement by ap-

proximating the attention matrix [31], but these approaches

are agnostic to the underlying structure of the sequence.

When generating 3D data these problems are even more

pronounced, as the trivial approach of sequencing a voxel

grid (similar to images) would lead to a sequence length

that grows cubically with resolution and quickly become

intractable already at low resolutions. Thus, transformers

have so far been seldomly adapted for the generation of 3D

shapes [21, 29, 41].

In our approach we do generate voxel grids, but to

handle the cubic memory complexity, we use an octree

representation, where the sequence length grows roughly

quadratically with the resolution for natural shapes. In the

worst (”fractal”) case, where even in the nest resolution

every voxel is near the shape boundary, the octree does

not achieve any memory reduction at all (we even increase

the memory by a factor of 4/3, due to the overhead of

saving the tree), but in practice we never encountered such

a case. However, even a sequenced octree would still be

too large to be processed with a transformer, requiring us to

compress it further.

Compressing a sequence for transformer-based generation

is not trivial, as in order to work on shorter sequences we

not only need to dene a compression method but we have

to be able to expand this compacted sequence again in a

fully autoregressive manner. This means we need to make

sure, that not only the compressed embeddings depend

on each other, but a token generated as part of a block in

an expansion has to depend both on elements inside and

outside of its block.

For this we make use of the octree structure, summarizing

different subtrees with the help of convolutions. When

generating new nodes of the tree, we again use convolutions

for decompression, taking care, that the process stays fully

autoregressive, while still being parallelizable and memory

efcient.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Our general approach: The given shape is represented as an octree (left) which we sequence, while compressing subtrees

representing ne geometry (top right). Given a partial (compressed) sequence a transformer predicts the next token which is then decoded

back to voxels.

The use of an autoregessive setup easily allows us to

condition the generation process on class labels, whereas

the octree encoding enables not only a structured compres-

sion scheme, but also the straightforward implementation

of voxel superresolution. The earlier parts of an octree se-

quence represent a coarse shape representation, while ner

details are encoded in the later parts, thus superresolution

can be formulated as sequence continuation.

2. Related Work

Transformer Autoregressive models in general and

transformers in particular have often been used in the

eld of natural language processing e.g. for text genera-

tion [3, 25], as they are well suited for data that comes in

the form of token sequences. More recently they have been

applied to the eld of vision as well to generate images.

Early models here include PixelRNN, PixelCNN and the

image transformer [23, 32, 33]. When using transformers

to encode images Dosovitskiy et al. [8] summarize blocks

to reduce the sequence length and Wu et al. [39] introduce

convolutions for this compression. However, these are only

employed on the encoding side and not in a generative con-

text. Closest to our approach come van den Oord et al. [34]

and Esser et al. [9] who compress an image by convolutions

into a discrete set of codewords, which then can be gener-

ated in autoregressive fashion. However, here the compres-

sion can be seen as a preprocessing step and is not part of

the generative model itself.

Tree structures Octrees [17] are a hierarchical spatial

data structure that reduces the cubic memory complexity of

voxel grids for storing 3D shapes, by recursively partition-

ing the space close to the surface, while saving informa-

tion at a coarse resolution where it sufces. A downside is

the higher complexity when implementing operations such

as convolutions [26, 37], making their usage in neural net-

work based processing relatively seldom. For generating

3D shapes with the help of octrees we are only aware of

few methods, who all dene convolutions on octrees and

are either deterministic or based on VAEs [10, 30, 38]. This

formulation does not allow autoregressive generation as in

our case. Another line of work [15, 20] uses trees with se-

mantic meaning (each node represents a coherent part) to

encode shapes. The geometry within a node then of course

needs to be encoded as well (e.g. as a point cloud). Thus,

contrary to octrees the tree is not the actual geometry repre-

sentation.

3D generation Different neural networks have been de-

veloped to generate all kinds of 3D shape representations:

point clouds [1, 14, 22], voxels [2, 28, 40], functions [7] as

well as those functions arranged in grid structures [11, 16].

However, all of these employ latent variable models like

VAEs or GANs to generate novel shapes. The realm of au-

toregressive models is slowly emerging. PointGrow [29]

and PolyGen [21] generate point clouds and meshes respec-

tively, using architectures based mainly on self-attention.

However, as they do not use any sequence compression,

they are limited in the size of point clouds or meshes,

that they can represent. Recently, VQVAEs [34] have

been adapted to 3D, where the codewords represent implicit

functions in a coarse [19, 41] or irregular [42] 3D grid. The

models use this representation for shape completion or gen-

eration, by applying a transformer to predict the codebook

ids. However, they do not use any hierarchical structure.
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(a) Shape

(b) Quadtree

(c) Sequence

Figure 2. An example of our octree encoding (for simplicity we depict the encoding for a 2D quadtree). Position values are represented

as X/Y for the x- and y-coordinates. Colors are used to indicate the depth level. Filled cells represent full (value=3), white cells empty

(value=1) and transparent (value=2) cells mixed voxels. Below are the resulting value and positional sequences.

3. Octree Transformer

Our network consists of three stages (Fig. 1): The en-

coding stage takes as input a sequenced octree (Sec. 2)

and compresses it into a shorter sequence of latent vectors

with an increasing compression factor for ner octree lev-

els (Sec. 3.2). This sequence is used, to train a standard

generative transformer decoder. We will not describe this

transformer and rather refer to to Vaswani et al. [35]. The

generated sequence of latent vectors produced by the trans-

former is then uncompressed and decoded into a sequence

of octree nodes (Sec. 3.3).

3.1. Octree Sequencing

To construct an octree from a binary voxel grid, we start

by setting up the bounding cube as the root cell. We then re-

cursively subdivide a cell whenever it contains both empty

and full voxels, splitting it into 8 cubes, called the cells

”children”. This process is stopped when all cell’s contain

only empty or full voxels (this happens at the latest, when

we have reached the resolution of the original voxel grid).

Each cell in the tree can thus be either empty, full or mixed

(only intermediate nodes).

Next, this octree needs to be linearized into a sequence of

tokens, from which the octree can be reconstructed. In the

following we will discuss how we approach this problem.

All examples in this section and the following will be on

quadtrees, the 2D variant of octrees, for easier visualiza-

tion. Figure. 2b shows the tree structure together with all

the information we need from our octree.

Simply enumerating the values of each cell (empty (1),

mixed (2), full (3)) in breadth-rst manner would give us

a sequence, that fully characterizes the octree and allows

its reconstruction (since we know, that only mixed cells

have children and these have exactly 8, we can infer ex-

actly how many cells we have per layer). However, this

way the spatial location for each cell can only be inferred

from global context. Instead, we add a spatial encoding,

that is unique over all depth levels. For this we enumer-

ate all cells along each dimension individually from coarse

to ne (Fig. 2a), resulting in an unique id for each dimen-

sion. This spatial encoding replaces the 1D positional en-

coding usually employed, when working with transformers.

Together with the value of the cell c we thus have 4 IDs

(3 in 2D). For each possible value of these we learn a dis-

crete embedding v, px, py, pz , which we save for every cell:
v(c), px(c), py(c), pz(c). Note that the positional encodings
do not need to be predicted by the generative model as they

can be inferred from the values themselves.

As our positional encoding depends on the spatial loca-

tion of a cell and not the position of its token in the se-

quence, it is not possible to infer the encoding of the next

token without global context. We therefore embed each to-

ken as the sum of its own value and positional encoding

plus its successor’s positional encoding: e(ci) = v(ci) +
px(ci)+py(ci)+pz(ci)+px(ci+1)+py(ci+1)+pz(ci+1).
This way when sampling a new token, the information of its

position is easy to retrieve from its predecessor. The nec-

essary context for this is always available, as the octree is

generated from the root downwards. We do not need an end-

of-sequence token as we always know how many tokens are

needed to generate a valid octree, and can stop the sampling

process when this number is reached. If we reach the maxi-

mum resolution and still have mixed tokens as leaves, those

are treated as full cells.
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Figure 3. By compressing siblings we can achieve compression

rates of up to 8 (4 in the quadtree example). For higher compres-

sion rates, we consider cousins (of higher order) by compression

on the parent level. When compressing parent nodes we replace

mixed tokens, by the representation of their children. For tokens

that do not have any children (full/empty) we use their original

embedding. The result of the compression is a latent vector for

each compressed subtree.

3.2. Sequence Compression

Although we make use of an octree encoding to cir-

cumvent the cubic complexity of voxel grids, we still en-

counter prohibitively large sequence length when represent-

ing shapes in a high resolution. Therefore, we need to

further compress our sequence in order to be able to t

the transformer’s attention computation into memory. This

compression should not treat our sequence simply as ”at”

1D data, but instead take the hierarchical octree structure

into account. On the one hand this means, that not all to-

kens of the sequence should be treated equally, as cells from

early depth layers are responsible for bigger parts of the

shape (and are few), whereas later cells only encode details

(and are many). On the other hand the compression itself

should take the structure of the octree into account and only

compress cells together, that are spatially close, but not nec-

essarily close in the sequence.

For compression rates of 2,4,8, this means that we combine

the features of siblings in a tree. This can be done easily

with strided convolutions (stride and kernel size equal to

the compression factor).

For higher compression rates we encode entire subtrees into

a single latent vector. For this we rst compress all siblings

and place their combined feature vector at the parent node.

If this parent does have any siblings without children of

their own, these will keep their own feature vector. We then

repeat the compression at the parent generation (Fig. 3).

3.3. Sequence Decoding

For generation we train the transformer decoder on com-

pressed sequences, so that all feature vectors only depend

on vectors positioned earlier in the sequence (when gener-

ating novel shapes, this sequence will be constructed one

by one). However, to obtain a valid octree, we still have

to undo the compression, and obtain logits from which to

Figure 4. When generating a subtree from a sequence of com-

pressed embeddings, we need to both upsample information from

the embedding vectors (black arrows), as well as pass information

from all previously generated tokens in the same subtree (green

arrows).

sample our cell information.

When no compression has been applied a linear layer with

softmax non-linearity is enough to obtain logits. When

compression has been applied we have to undo it, using the

reverse operations of what has been presented before. Just

doing a simple upsampling is not sufcient, as we would

loose the autoregressive property of our generation. The

probabilities of tokens generated this way would depend

only on all previous tokens outside of the compressed sub-

tree. These dependencies are taken care of by the trans-

former. However, within the block the probabilities (of sib-

lings and cousins) would not depend on each other. To

model these dependencies efciently we again make use of

the octree structure (Fig. 4).

More concretely, we need to combine information from

two different sources. Information about everything out-

side of the current subtree is encoded in the latent vector at

the root and needs to be passed down to the leaves (Fig. 4

black arrows), whereas information about already generated

leaves within the tree needs to be passed to successor leaves

on the same level (Fig. 4 green arrows).

Let us start with the simple case of a compression factor

c ≤ 8. We rst need to undo the compression, by upsam-

pling the latent vector, which simply can be done with a

transposed convolution of the same stride and kernel size

as was used for the compression, resulting in blocks of size

c. Next, we need to model the dependency within these

blocks. Each entry should depend on all entries occurring

earlier in the sequence (within the same block). This can be

done with what we call a masked block convolution. This

passes information from one node to all successors within

the same block. For this we just need to accumulate the

respective latent vectors, which can be efciently modeled

with convolutions.

This operation can be seen as a sort of attention, where the

attention weights are not input dependent, but instead only
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Res Octree tokens 0/4 0/8 1/8 2/8

2 8 2 1 - -

4 64 16 8 1 -

8 224 56 28 8 1

16 816 204 102 28 8

32 3352 838 419 102 28

64 13264 3316 1658 419 102

128 48530 12132 6066 1658 419

256 144096 36024 18012 6066 1658

Table 1. Sequence lengths achieved with different compression

schemes. The Octree tokens are from the 90 percentile per depth

layer. The compression is denoted as a/b, where a indicates the

depth of the subtrees we collapse and b how many tokens at the

root level are encoded together.

depend on the position. This is sensible in our case, as the

position of our information (where is the lled/mixed/empty

cell positioned) contains more information than the value

(which is only one of three options).

When we have compression factors higher than 8, we

have to apply this strategy recursively. On the one hand the

latent vector at the root is upsampled several times, taking

the position of mixed tokens into account (only at mixed

tokens do we upsample further, as only mixed tokens have

children). On the other hand information about leaf nodes

needs to be propagated further. For this we pass it up a level

(to the parent nodes) and there repeat the block convolu-

tion. Again, information is only passed to nodes later in the

sequence. Nodes in the parent generation that do not have

any children, do not contribute. This information is then

added to the corresponding latent vectors in the same level

and passed down again by the already described transposed

convolution.

Note that we generally could model both the sequence en-

coding and decoding with additional smaller transformer

networks as well. However, this would lead to a much

larger memory consumption, counteracting the goal of the

compression, which is why we have opted for this more

lightweight approach.

Note that our compression algorithm is fully differentiable

and we therefore can train the encoding, transformer and

decoder together end to end.

4. Evaluation

All evaluations are performed on the ShapeNet Core

dataset (v1) [4]. We use the training split from Chen and

Zhang [7] (80% training and 20% testing) and randomly

pick another 5% from the training set for validation. The

voxelized models are obtained from Hane et al. [10].

All experiments are done on a single RTX2080Ti. Our

transformer decoder consists of 8 layers, uses 8 heads and

a latent dimension of 256. We trained all models using

the Adam optimizer [13] and a training rate of 3 · 10−5.

Furthermore the rst 10% of the training steps are used for

warm-up, where we linearly increase the learning rate from

0. We trained with a batch size of 1 for either 500 epochs

on a single class or 100 epochs for class conditional models

on the entire dataset. To increase sampling speed we used

the fast transformer framework [12, 36]. Even though our

compression scheme is fully parallelizable and decreases

the effective sequence length for the transformer, during

sampling we still need to sample each token of the uncom-

pressed sequence one after the other. We do not need to ap-

ply the transformer for each token, but still this can lead to

long sampling times (several minutes) for complex shapes

at high resolution. We sampled with a temperature of 0.8.

As we compare against GANs, which do not allow to com-

pute a log-likelihood for test shapes, we adopt their evalu-

ation scheme. For this we sampled a set of shapes 5 times

the size of the test set, used the Light Field Descriptor [5] to

compare single shapes and coverage (COV) and minimum

matching distance (MMD) [1] as well as edge count differ-

ence (ECD) [6, 11] to compare the respective sets.

Data Augmentation In all experiments we use data aug-

mentation inspired by PolyGen [21], randomly scaling the

shape independently along the different axes with a piece-

wise linear warp. Note that even small changes in the voxel

grid can lead to big changes in the octree sequence, making

this augmentation very important as shown in Tab. 3.

Compression In Tab. 1 we show which compression we

achieve with a collection of different compression factors.

From these numbers we can infer how much we need to

compress in order to t the sequence into memory, and what

compression factor might be reasonable for what layer. In

Tab. 3 we show different compression schemes. After gen-

erating the octree, we lter out all sequences, that would

have a length of more than 3300 after compression, in order

to t the training onto a single GPU.

Loss Function Autoregressive models are usually trained

by directly minimizing the negative log-likelihood, and we

do the same here. However, one might think that in an oc-

tree representation getting the earlier elements in the se-

quence correct is much more important than for later el-

ements, as they cover bigger regions. We therefore tried

weighting the loss function according to the depth layer an

octree element resides in. Starting with a weight of one

for the rst layer and then decrease by a factor of α for

each subsequent layer. In Tab. 2 we evaluate different fac-

tors. In order to be able to compare fairly, we normalize the

weights to an average of one over a shape. To compare the

results, we evaluate COV, MMD and ECD. As can be seen,
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factor α ↑COV ↓MMD ↓ECD

1 76.47 2958 1889

0.5 75.00 2921 1886

0.25 74.78 2933 1767

0.125 76.03 3011 2057

Table 2. Evaluation of different loss functions

differences are only marginal. For simplicity we therefore

decided against any weighting.

Ablation In this section we motivate several of the design

decisions we made. For this we evaluate different congu-

rations of our model and report the negative log-likelihood

after training in Tab. 3. For runtime reasons this ablation is

done on the chair dataset for a resolution of 64. We com-

pare against a simple baseline, where we do not use any

compression, but instead limit the attention to a local neigh-

bourhood [27,41], so that the computation ts into memory.

As can be seen easily, data augmentation contributes a

big factor in improving our results as it counteracts overt-

ting. In fact using data augmentation, we did not observe

any overtting at all, suggesting that the model size could

be further increased given enough memory.

Lastly, we want to compare several choices regarding our

compression scheme. As mentioned, the sequence can be

compressed with a different factor at each depth level. Try-

ing out every possible combination of compression is not

feasible, therefore we restricted to three intuitive possibil-

ities. As coarser levels are more important for reconstruc-

tion they should generally be compressed less than higher

levels. However, at what rate the compression should in-

crease is unclear. We evaluate two different schemes. In our

baseline we increase the compression more or less linearly

using factors of (0/1, 0/1, 0/2, 0/4, 0/8, 1/4). In another

experiment, we evaluate a ”steeper” compression A. leav-

ing earlier layers unchanged, and focusing the compression

on the ner scales A = (0/1, 0/1, 0/1, 0/1, 0/8, 1/8). The
idea was, that this way we might lose information in the de-

tails, but keep the coarse structure better. Both compression

schemes lead to roughly similar sequence lengths. As can

be seen the former scheme is better able to reduce the loss,

suggesting that a linear increase in compression is desirable

(Tab. 3).

Furthermore, we want to check if the compression scheme

has any adverse effect at all, or if maybe a shorter sequence

is even benecial for training. For this we tested a stronger

compression scheme B = (0/1, 0/1, 0/4, 0/8, 1/4, 1/8)
leading to sequences of roughly half the size. As can be

seen, this leads to worse results. We conclude that the com-

pression should be chosen in a way that leaves the sequence

as long as memory permits.

model ↓bits/token

uniform random 1.5850

sliding window 0.3056

full model 0.0727

- augmentation 0.1227

+ later compression A 0.0762

+ stronger compression B 0.0864

Table 3. Evaluating different design decisions. To put the numbers

into context we report a baseline of uniform random sampling as

well as results for a transformer with sliding-window attention.

Comparison After having found the best conguration

for our model, we want to compare it against other genera-

tive approaches. For this there are mostly GANs available.

As their evaluation is carried out on a resolution of 64, we

do the same, using the evaluation criteria described earlier

in this section. The numbers for previous approaches are

taken from Chen and Zhang [7] and Ibing et al. [11]. Al-

though we do not fully reach the state of the art, our method

is competitive with the presented GANs (Tab. 4).

We would have liked to compare against autoregressive ap-

proaches as well. But as the only available options Point-

Grow [29] and PolyGen [21] work on different shape repre-

sentations have different input requirements and evaluated

their models with different metrics on different subsets of

the ShapeNet dataset, we considered a fair comparison im-

possible.

In Fig. 5 we compare shapes generated at different reso-

lutions sampled from class conditional models with previ-

ous approaches. For each resolution we trained a different

model (although in principle higher resolution models can

generate shapes in lower resolutions as well). To t the

models into memory we used different compression strate-

gies. The model for resolution 64 is the same as presented

earlier as our baseline. For a resolution of 128 we use

a compression of (0/1, 0/1, 0/4, 0/8, 1/4, 1/8, 2/4) and

for resolution 256 (0/1, 0/1, 0/4, 0/8, 1/4, 1/8, 2/4, 2/8).
We achieve our best results at a resolution of 64 where

we can generate more diverse and less noisy samples than

3DGAN, the only other voxel based method. We then

see a decrease in quality at higher resolutions. Although

our level of detail is comparable to the function based

approaches (IMGAN, Grid-IMGAN), we do not reach their

smoothness, even though our resolution is higher, as the

voxels we add are noisy. This might be due to the higher

compression factor that is necessarily employed, as well

as due to the limited size of our model (a bigger network

with more heads might be able to focus better on the coarse

shape as well as on ne details). On all scales our network

is able to correctly model the symmetries inherent in the

shapes. Generally we have not noticed overtting in any
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Plane Car Chair Rie Table Average

↑COV%

3DGAN [40] 12.13 25.07 62.32 18.80

PC-GAN [1] 73.55 61.40 70.06 61.47 77.50 68.80

IM-GAN [7] 70.33 69.33 75.44 65.26 86.43 73.36

Grid IM-GAN [11] 81.58 80.67 82.08 81.47 86.19 82.80

Octree Transformer 73.05 60.26 76.47 60.21 80.55 70.11

Train Set 85.04 85.67 84.73 84.00 87.13 85.13

↓MMD

3DGAN 1993 4365 4476 5208

PC-GAN 3737 1360 3143 3891 2822 2991

IM-GAN 3689 1287 2893 3760 2527 2831

Grid IM-GAN 3226 1225 2768 3366 2396 2607

Octree Transformer 3664 1363 2958 3582 2496 2813

Train Set 2225 984 2317 3085 2066 2135

↓ECD

3DGAN 28855 26279 6495 32116

PC-GAN

IM-GAN 6543 20606 2553 3288 1018

Grid IM-GAN 355 1062 144 94 188

Octree Transformer 2573 8563 1889 1835 1098

Train Set 1 11 1 2 5

Table 4. Comparison of different generative methods synthesizing 3D shapes. Results from previous methods are taken from [7] and [11].

Each subcategory was evaluated on a shape resolution of 643 against a voxelized test set of the same resolution. 3DGAN was not trained

on the plane subcategory and no ECD values are reported for PC-GAN, thus some entries remain blank. For ECD no averages are reported,

as values for different datasets are not comparable.

of our runs despite not using any regularization techniques

(only data augmentation) and therefore conclude that the

network capacity could still be signicantly increased.

Furthermore, our hyper-parameters were optimized for a

resolution of 64.

Superresolution To perform superresolution, we provide

the model with truncated sequences from the test set, de-

scribing the shape only up to a given resolution and let our

model complete these sequences. For a quantitative evalu-

ation we use similar metrics as Mescheder et al. [18] and

Peng et al. [24]. We report the chamfer distance as well as

the intersection over union between the sampled shape and

the ground truth (Fig. 7). As our model is probabilistic, we

show how the result improves when increasing the number

of samples, by reporting the best value out of the set. As

a baseline we compare the input (low resolution) voxeliza-

tion to the ground truth. A direct comparison to Mescheder

et al. [18] and Peng et al. [24] is unfortunately not possible,

as they train and evaluate on different data. Again, we show

results at three different resolutions using the same trained

models as in the last task. In all examples we increased the

resolution by a factor of 8 (3 levels). In Fig. 6 we show

the input shape, some generated samples, and the original

shape from the test set. With higher resolutions, we see the

same quality problems as in the unconditional case. Fur-

thermore, the diversity decreases (compared to e.g. resolu-

tion 64, where a wide range of valid shapes are generated),

which can be explained by the more restrictive precondition

and the comparatively small dataset.

5. Conclusion

In this work we introduced a new deep generative model,

based on the transformer architecture, for the generation of

3D shapes in the form of octrees. In order to deal with long

sequences we developed a compression scheme, that signif-

icantly reduces sequence length, while still allowing fully

autoregressive generation and might be of interest in other

elds that deal with long sequence lengths, like the domain

of image generation. Our model can be applied for the gen-

eration of novel shapes, as well as for increasing the resolu-

tion of existing ones, as it naturally supports a coarse-to-ne

generation process, with easily adjustable level of detail.

As autoregressive models are widely used in text gener-

ation etc. one can now pose 3D problems in this framing, as

we demonstrated for the case of superresolution, which was

formulated similar to next word prediction. This should be

interesting for further tasks, like treating shape completion

as a translation problem (both partial and complete shapes
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Resolution 64
3

Resolution 128
3

Resolution 256
3

3DGAN

IMGAN

Grid-IMGAN

Figure 5. Samples synthesized by our class conditional Octree Transformer at different resolutions and comparable approaches. For

3DGAN the plane model was omitted, as the model was not trained on the plane dataset.

Resolution 8
3
→ 64

3

0.27

1.21

0.12

0.42

0.18

0.23

0.11

0.38

Resolution 16
3
→ 128

3

0.41

0.45

0.72

0.14

0.72

0.14

0.72

0.16

Resolution 32
3
→ 256

3

0.33

0.19

0.56

0.10

0.39

0.10

0.51

0.06

Figure 6. Superresolution samples synthesized by the Octree Transformer at different res-

olutions. Our model computes an upsampling of factor eight. The leftmost shape is the

preconditioning and the rightmost shape the actual model from the dataset. In grey we show

three different upsamplings. We report chamfer distance (upper number) and IoU (lower

number) to the ground truth shape.

Figure 7. Evaluating superresolution on the

chair subset (Chamfer distance and Intersec-

tion over Union). x denotes baseline.

can be encoded akin to sentences).

Even though our method greatly reduces the size of

the sequence the transformer needs to process to generate

shapes, we are still mainly limited by its length and the re-

sulting memory constraints (small model sizes, high com-

pression factors, slow sampling). An interesting direction

of research and possible solution to these problems would

be an increase of the complexity of geometry represented by

a single token. Currently we only use three tokens (empty,

mixed, full) to encode the octree. By adding tokens with

additional information, we could transfer complexity from

the sequence length to the token variety (language models

usually deal with thousands of different tokens). In these to-

kens we could encode voxel arrangements or even go a step

further and store implicit functions in the form of (quan-

tized) latent vectors, thus improving the smoothness of our

results as well.
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Point cloud GAN. In Deep Generative Models for Highly

Structured Data, ICLR 2019 Workshop, 2019. 2

[15] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. Zhang, and

L. Guibas. Grass: Generative recursive autoencoders for

shape structures. ACM Transactions on Graphics (TOG),

36(4):1–14, 2017. 2

[16] I. Lim, M. Ibing, and L. Kobbelt. A convolutional decoder

for point clouds using adaptive instance normalization. Com-

put. Graph. Forum, 38(5):99–108, 2019. 2

[17] D. Meagher. Geometric modeling using octree encoding.

Comput. Graph. Image Process., 19(1):85, 1982. 2

[18] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and

A. Geiger. Occupancy networks: Learning 3d reconstruction

in function space. CVPR, 2019. 7

[19] P. Mittal, Y.-C. Cheng, M. Singh, and S. Tulsiani. AutoSDF:

Shape priors for 3d completion, reconstruction and genera-

tion. In CVPR, 2022. 2

[20] K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. Mitra, and

L. J. Guibas. Structurenet: Hierarchical graph networks for

3d shape generation. ACM Trans. Graph., 2019. 2

[21] C. Nash, Y. Ganin, S. M. A. Eslami, and P. W. Battaglia.

Polygen: An autoregressive generative model of 3d meshes.

In Int. Conf. on Machine Learning,, pages 7220–7229, 2020.

1, 2, 5, 6

[22] C. Nash and C. K. I. Williams. The shape variational au-

toencoder: A deep generative model of part-segmented 3d

objects. Comput. Graph. Forum, 36(5):1–12, 2017. 2

[23] N. Parmar, A. Vaswani, J. Uszkoreit, L. Kaiser, N. Shazeer,

A. Ku, and D. Tran. Image transformer. In Int. Conf. on

Machine Learning,, pages 4052–4061, 2018. 1, 2

[24] S. Peng, M. Niemayer, L. Mescheder, M. Pollefeys, and

A. Geiger. Convolutional occupancy networks. ECCV, 2020.

7

[25] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,

I. Sutskever, et al. Language models are unsupervised multi-

task learners. OpenAI blog, 1(8):9, 2019. 2

[26] G. Riegler, A. Osman Ulusoy, and A. Geiger. Octnet: Learn-

ing deep 3d representations at high resolutions. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3577–3586, 2017. 2

[27] A. Roy, M. Saffar, A. Vaswani, and D. Grangier. Ef-

cient content-based sparse attention with routing transform-

ers. Transactions of the Association for Computational Lin-

guistics, 9:53–68, 2021. 6

[28] A. Sharma, O. Grau, and M. Fritz. Vconv-dae: Deep volu-

metric shape learning without object labels. In ECCV, pages

236–250. Springer, 2016. 2

[29] Y. Sun, Y. Wang, Z. Liu, J. E. Siegel, and S. E. Sarma. Point-

grow: Autoregressively learned point cloud generation with

self-attention. In IEEEWinter Conference on Applications of

Computer Vision, WACV 2020, Snowmass Village, CO, USA,

March 1-5, 2020, pages 61–70, 2020. 1, 2, 6

[30] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-

erating networks: Efcient convolutional architectures for

high-resolution 3d outputs. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2088–2096,

2017. 2

[31] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efcient

transformers: A survey. ACM Computing Surveys, 55(6):1–

28, 2022. 1

[32] A. van den Oord, N. Kalchbrenner, L. Espeholt,

K. Kavukcuoglu, O. Vinyals, and A. Graves. Condi-

tional image generation with pixelcnn decoders. In NeurIPS,

pages 4790–4798, 2016. 1, 2

2706



[33] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu.

Pixel recurrent neural networks. In Int. Conf. on Machine

Learning,, pages 1747–1756, 2016. 1, 2

[34] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural

discrete representation learning. In NeurIPS, pages 6306–

6315, 2017. 2

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all

you need. In NeurIPS, pages 5998–6008, 2017. 1, 3

[36] A. Vyas, A. Katharopoulos, and F. Fleuret. Fast transform-

ers with clustered attention. In Proceedings of the Inter-

national Conference on Neural Information Processing Sys-

tems (NeurIPS), 2020. 5

[37] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.

O-cnn: Octree-based convolutional neural networks for 3d

shape analysis. ACM Transactions on Graphics (TOG),

36(4):1–11, 2017. 2

[38] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong. Adaptive o-

cnn: A patch-based deep representation of 3d shapes. ACM

Transactions on Graphics (TOG), 37(6):1–11, 2018. 2

[39] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and

L. Zhang. Cvt: Introducing convolutions to vision transform-

ers. CoRR, 2021. 2

[40] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenen-

baum. Learning a probabilistic latent space of object shapes

via 3d generative-adversarial modeling. In NeurIPS, pages

82–90, 2016. 2, 7

[41] X. Yan, L. Lin, N. J. Mitra, D. Lischinski, D. Cohen-Or,

and H. Huang. Shapeformer: Transformer-based shape

completion via sparse representation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6239–6249, 2022. 1, 2, 6

[42] B. Zhang, M. Nießner, and P. Wonka. 3DILG: Irregular la-

tent grids for 3d generative modeling. In Thirty-Sixth Con-

ference on Neural Information Processing Systems, 2022. 2

2707


