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Abstract

Modeling a 3D volumetric shape as an assembly of de-
composed shape parts is much more challenging, but se-
mantically more valuable than direct reconstruction from
a full shape representation. The neural network needs to
implicitly learn part relations coherently, which is typi-
cally performed by dedicated network layers that can gen-
erate transformation matrices for each part. In this pa-
per, we propose a VoxAttention network architecture for
attention-based part assembly. We further propose a vari-
ant of using channel-wise part attention and show the ad-
vantages of this approach. Experimental results show that
our method outperforms most state-of-the-art methods for
the part relation-aware 3D shape modeling task.

1. Introduction

Modeling of 3D shapes has been a central research topic
in the computer graphics domain for decades. However,
although great progress has been made since the seminal
work of ShapeNet [5], most existing 3D modeling meth-
ods only focus on full shape modeling and are part relation-
oblivious [3, 15, 41]. Since no semantic information is used
in those methods, details of the 3D shapes, especially those
of small volume yet exquisite parts, are often badly gener-
ated in a blurred or shattered manner.

Recently, part-based 3D shape modeling is attracting in-
creasing research interest since it generates better part de-
tails and gives more insight into part relations. Those meth-
ods usually consist of two steps, shape parts generation and
part assembly. Generating shape parts, similar to generating
a full shape, is easy to achieve with 3D generative neural
networks (either AE, VAE, GAN, or their combinations).
However, how to encode and learn part relations for assem-
bling the full shape is still an open question. Current state-
of-the-art methods either encode all parts together and then
decode it to a full shape [36, 44], or use simple regression
layers to get part transformation matrices [20]. However,

they only focus on how to integrate all part feature informa-
tion during the learning, but neglect to maintain their inde-
pendence at the same time.

In this paper, we propose a part-based attention network
to learn part relations from their features in different net-
work layers, including the vector representation, feature
maps in the generator, or even the final decoded output. The
part dimension will be preserved throughout the training.
The attention mechanism, which originated from Trans-
former [35], now is widely used in the computer vision
domain and has proven its effectiveness in various frame-
works including iGPT [7], ViT [11], IPT [6], etc. How-
ever, it is mostly applied to 2D data, i.e., images currently.
For 3D data, most attention-based works are on the point
cloud data representation [13, 16, 48], 3D volumetric data
have been rarely explored. Like that there are several differ-
ent levels of attention on 2D data which include pixel-based
(smallest input entity), patch-based (enlarged the perception
field), and part-based (with semantic information), for 3D
volumetric data, we can also apply the attention to levels of
voxel-based, patch-based, or part-based. In our case, since
we are interested in the part relations, we use part-based at-
tention for the 3D shape modeling task.

The proposed VoxAttention framework first learns an au-
toencoder to encode the full shape into coherent yet mutual
orthogonal part latent representations, and decode them into
semantic parts. Secondly, transformation matrices for those
decoded parts are learned by applying attention to their fea-
ture information in different layers to assemble them. Our
experimental results demonstrate that the proposed method
achieves excellent performance both qualitatively and quan-
titatively on the 3D shape modeling task.

Our main contributions include:
• A part-based attention neural network to learn semantic

part relations for better 3d shape assembly.
• An optional channel-wise attention strategy on top of the

normal part attention model for feature learning.
• An additional attention consistency loss to prevent the

network from mode collapse when multiple feature lay-
ers are used for computing the part relations.

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Related Work

2.1. Generative Networks for 3D Shape Modeling

With the development of deep learning techniques, there
has been a surge of research interest in deep generative
models in recent years. Since the seminal work of ShapeNet
[5], which is a large 3D shape model dataset that is publicly
available, lots of research has been conducted in building
3D generative models for modeling 3D shapes. Brock et
al. [3] use a 3D VAE neural network to encode and decode
3D shapes. Wu et al. use a 3D-GAN [41] to generate 3D
shapes from latent vectors. Additional image information
has also been used in various methods. TL-network [15]
first applies an autoencoder on 3D shapes, then forces the
image encoder to learn a similar latent representation in be-
tween, while SwitchVAE [40] uses a switch scheme to al-
low both branches updates coherently. Wu et al. [43] de-
crease the uncertainty of 3D voxel grids by predicting the
next best viewing angle. View images have also been used
to compute an additional loss in [33]. 3D-R2N2 [10] uses a
recurrent neural network to encode multi-view information
for 3D shape modeling. Octree-based methods [31,38] have
been proposed for more computationally efficient modeling.
Apart from the volumetric data representation, 3D genera-
tive modeling methods have also been proposed on other
data representations, e.g., point clouds [1, 30, 34, 45], sur-
face meshes [19, 37, 39], or even implicit fields [9, 25, 29].

2.2. Assembly-based 3D Shape Modeling

Compared to generating a full 3D shape directly, gener-
ating shape semantic parts separately and assembling them
is more valuable since it considers the structural decomposi-
tion of 3D shapes and the connections between shape parts.
Li et al. [21] propose the first deep structure-aware model-
ing framework GRASS for 3D shapes by employing a re-
cursive neural network. StructureNet [26] also uses a tree-
based architecture to generate shape parts in sequences by
extending the binary tree to N-ary tree. 3D-PRNN [50] and
SCORES [49] use a similar method but only shape prim-
itives are generated. StructureEdit [27] further provides a
framework for easy editing. With additional structure land-
marks, Balashova [2] adds a structure detector in combina-
tion with the generator for better shape modeling.

Apart from the above methods that are mostly structure
tree-based, there are lots of methods that learn part relations
directly. COALESCE [47] assembles shape components by
learning to synthesize connections. G2LGAN [36] sends
all the generated parts into another autoencoder to decode
out a full shape. SAGNet [44] uses two branches for en-
coding the part and structure information separately. For
methods that learn spatial transformations for the parts di-
rectly, CompoNet [32] learns the transformations from la-
tent representations of 3D point clouds, but its output shapes

Figure 1. Pipeline of proposed VoxAttention framework. Single or
multiple feature layers from the decoder are used to learn relative
relations for shape parts with part-based attention.

are often disconnected. PQ-Net [42] employs a Seq2Seq
generative network to reconstruct 3D shapes part by part
with gated recurrent units. Dubrovina et al. [12] propose
a decomposer-composer network to learn a factorized em-
bedding space. A more recent work of PAGENet [20] learns
part transformations only from decoded outputs with a spe-
cial augmented dataset. All the above methods merge the
part feature information together at a certain step. We in-
stead propose to keep the part dimension intact and use an
attention-based method to learn part relations.

2.3. Attention in Computer Vision

Attention-based methods have almost dominated the
natural language processing (NLP) domain after the far-
reaching model Transformer [35] was proposed. In recent
years, researchers have applied the attention mechanism to
computer vision tasks and achieved great success. DERT
[4] applies attention to flattened feature maps that are con-
voluted from a CNN for object detection. To achieve better
self-supervised learning on images, iGPT [7] masks some
pixels out and uses an attention-based network for genera-
tive pre-training. ViT [11] cuts an input image into patches
and learns over those flattened patches with a transformer
encoder for classification. IPT [6] does pre-training on mul-
tiple tasks, also with a transformer encoder. A good survey
on visual transformers is given in [17]. However, most cur-
rent visual transformers only apply attention to the 2D im-
age data. For 3D data, the researches that have adopted the
attention mechanism are mostly on point clouds [13,16,48].
There are also works that voxelize the whole point cloud
space to use an attention-based method on the voxel level
for better 3D detection [18, 24]. However, to our knowl-
edge, there are few works that apply attention directly to
shapes of 3D volumetric data, especially with regard to the
semantic part dimension.
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3. Methodology
3.1. Overall Framework

Methods dealing with the part assembly task mostly fol-
low a same routine which consists of two steps of gener-
ating shape parts and learning part relations [20, 36]. Our
VoxAttention framework also follows this pattern but with
an additional fine-tuning step added afterward as illustrated
in Figure 1. An encoder-decoder architecture is used first
to learn part generation. Then the latent representation, fea-
ture maps in each decoder layer, and decoded output of each
part are used for part-based self-attention to learn part rela-
tive relations. After applying the learned affine transforma-
tion matrices, a full 3D shape is finally assembled. For each
step, different losses are used for the training while different
metrics are used to evaluate the learning performance.

3.2. Part Generator

The first step trains an autoencoder for 3D shape parts
reconstruction. Although we want to obtain feature infor-
mation in a part-wise manner, the information should still
keep related implicitly in the latent space. Using separate
autoencoders for each part as in [20] will not work since
they have no information communication. The part feature
information needs to be learned jointly. Here, to generate
parts separately yet coherently, a shared autoencoder is used
to reconstruct each part. We adopt the method in [12] to
achieve the decomposition of shape latent representations.
Mutual orthogonal projection matrices are learned for each
part respectively. Denote Np as the number of parts a shape
category contains (e.g., a chair contains four parts), the pro-
jection matrices Pi(i = 1, . . . , Np) satisfy the properties of
(i) projection property: P 2

i = Pi, (ii) mutual orthogonal:
PiPj = 0 (i ̸= j), and (iii) forming an identity matrix to-
gether:

∑Np

i=1 Pi = I . A partition of the identity (PI) loss
LPI is used to measure the deviation of the learned projec-
tion matrices P1, . . . , PNp from the optimal projection:

LPI =

Np∑
i=1

||P 2
i −Pi||2F+

Np∑
i,j=1,i̸=j

||PiPj ||2F+||
Np∑
i=1

Pi−I||2F

(1)
For the part reconstruction loss Lpart, same as [3, 40], a
modified binary cross entropy loss is used by introducing
a hyper-parameter γ, which weights the relative importance
of false positives against false negatives.

Lpart = −2(γt log(o) + (1− γ)(1− t) log(1− o)) (2)

where t is the target value in {0, 1} and o is the output of the
network in (0, 1) at each output element. Adding weights
to different loss terms, the total loss in step 1 is defined as:

Ls1 = ωPILPI + ωpartLpart (3)

For evaluation, part mIoU is used as the metric for step 1.

Figure 2. An illustrative comparison figure of three different meth-
ods, using an example of Np = 4 and only latent features from a
single ith feature layer is used as input.

Figure 3. One attention block used for learning part relations. Q,
K, and V mean query, key, and value respectively. FF means feed-
forward network.

3.3. Learning Transformation Matrices

The second step is the key for part assembly. A sim-
ple idea is to apply multi-layer perceptron (MLP) directly
on the decoded parts and latent representations. We instead
propose a part attention-based method for learning better
part relations. Figure 2 illustrates how three methods pro-
cess the input features differently. dA stands for the embed-
ding dimension for attention blocks if they are used.

Assuming the shape has Np parts, in the ith feature layer
of the decoder, it has Ci feature channels and the feature
maps are of a resolution of Hi × Wi × Di. When this
single feature layer is used in this step, ignoring the batch
size dimension, the input feature is a 5-dimensional ten-
sor of Np × Ci × Hi × Wi × Di. Simple MLP method
reshapes the input feature into a 1-dimensional vector of
(NpCiHiWiDi) and applies MLP on it directly. The out-
put vector is then reshaped to the shape of transformation
matrices. Part Attention method reshapes the input feature
into a 2-dimensional tensor of Np × (CiHiWiDi) and ap-
plies self-attention along the part dimension. An attention
block is illustrated in Figure 3. With part relations learned
during the attention operation, parts information is cross-
communicated thus more comprehensive part-wise features
are learned. A shared MLP is subsequently applied on
all parts to learn their respective transformation matrices.
Channel-wise Part Attention method further preserves the
feature channel dimension and reshapes the input into a 3-
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Figure 4. A detailed overview of proposed attention network architecture (channel-wise part attention version). Multiple feature layers are
used as input. Nx stands for the total number of input feature layers.

dimensional tensor of Np × Ci × (HiWiDi). For each
channel, an attention block is applied to learn separate part
features. All output features are subsequently concatenated
and a shared MLP is applied to learn part transformation
matrices.

In the actual application, since the original full feature
dimension is too large to use directly, in order to reduce
the feature dimension and keep it consistent for all input
feature layers, we first embed the original features to the
attention embedding dimension dA before performing the
attention operation. To be more specific, the input feature is
embedded into Np × dA for the normal part attention case,
while into Ci × Np × dA for the channel-wise part atten-
tion case. After the embedding, three consecutive attention
blocks are applied in our actual framework. Additionally,
multiple feature layers can be used as input. Figure 4 gives
an overview of the whole pipeline for learning transforma-
tion matrices, using an example of the channel-wise part
attention version and with multiple feature layers as input.
Each feature layer is firstly reshaped and embedded into
a fixed-dimension vector part-and-channel-wise, followed
by three consecutive attention blocks. The outputs are then
concatenated and a shared MLP is applied to learn respec-
tive part transformation matrices. See more details of the
network architectures in subsection 4.1.

Note that the channel-wise strategy is not applicable to
all attention-based modules. Take our task as an example,
if different part features are decoded from non-shared de-
coders, i.e., multiple decoders that have a same structure but
are separately trained and not parameter-shared as in [20],
the channel-wise strategy is not feasible since the feature
channels of a same channel index from different part de-
coders are irrelevant. In our case, a parameter-shared de-
coder is used for all different parts. This makes the channel-
wise part attention feasible since part feature information is
still implicitly related to each other on each feature channel
in every feature layer.

In step 2, the transformation loss Ltrans is an L2 loss de-
fined between the predicted and the ground truth transfor-
mation matrix parameters, summed over all Np parts. Ad-
ditionally, if multiple feature layers are used as input for

Figure 5. Detailed network design of an attention block.

Figure 6. Detailed network design of proposed network architec-
tures. Both part attention and channel-wise part attention models
are presented. Np stands for the number of parts of the input cate-
gory. Nx stands for the total number of input feature layers.

the attention network, an optional attention consistency loss
LAC may be added. The attention consistency loss is de-
fined as the L2 difference between the outputs of the at-
tention network of all feature layers before concatenating
them. Adding weights to different loss terms, the total loss
in step 2 is defined as:

Ls2 = ωtransLtrans + ωACLAC (4)

For evaluation, transformation matrix MSE and full shape
mIoU are used as the evaluation metrics for step 2.
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3.4. Fine-tuning

Our network is a complex one and end-to-end training
does not work well. Thus we divide our training into several
steps like many other related works [20, 36]. In step 1, only
weights in the encoder-decoder are trained. In step 2, the
weights in encoder-decoder are frozen and only weights in
the part-based attention network are trained. In step 3, all
weights are fine-tuned with additional training.

The fine-tuning step uses all the losses above, with an
additional full shape reconstruction Lshape loss added. Lshape
uses a same formula as Lpart but computes over the whole
shape. To achieve better fine-tuning, weights are used for
all terms. The total loss in step 3 is defined as:

Ls3 = ωPILPI+ωpartLpart+ωtransLtrans+ωACLAC+ωshapeLshape
(5)

For evaluation, all the above evaluation metrics, part mIoU,
transformation matrices MSE, and shape mIoU are used.

4. Experiments
4.1. Dataset and Network Details

In our experiments, we use the ShapeNet Part dataset
[46], which is a subset of the ShapeNet dataset [5] with part
annotations. Shapes are firstly converted into voxel grids of
resolution 323 using binvox [28], semantic labels are then
assigned to each voxel based on part annotations. For shape
part ground truth, a part dataset is generated by enlarging
and centering all shape parts in the 323 volumetric space.
The inverse transformation matrices ground truth is also
computed and saved in this step. The dataset is split into
the training set and the test set with a ratio of 80%/20%.
We use the chair category as the main demonstration cate-
gory in this paper. See more results on other categories in
the supplementary material.

In the autoencoder, we use convolution kernels of 4 ×
4 × 4 like [20, 41] to avoid unnecessary output padding for
deconvolution layers. Given input 3D shapes with a reso-
lution of 323, our encoder consists of four 3D convolution
layers with kernel sizes of 4× 4× 4 and strides of 2. Batch
normalization and LeakyReLU layers are inserted between
convolution layers. After latent representation decomposi-
tion, a shared decoder is applied to all part representations.
The decoder simply mirrors the encoder except that a Sig-
moid nonlinearity is used in the last layer. The final outputs
are the decoded parts that have been enlarged and centered
in the volumetric space with a resolution of 323.

Based on the defined decoder, we have six feature layers
that may be used. We number the latent representation as
feature layer 0, the decoded parts as feature layer 5, and
the feature maps in each decoder layer as feature layer 1-
4. For example, feature layer 3 has a feature map size of
83 with a channel number of 128 in our case. More details

Input Simple MLP Part Attention Channel-wise Part Attention

step 2 step 3 step 2 step 3 step 2 step 3

Figure 7. Reconstruction results of our attention-based methods in
comparison with applying simple MLP. Results before and after
the fine-tuning are both presented.

are given in the encoder-decoder architecture table in the
supplementary materials. Note that layer 0 and layer 1 are
different when channel-wise part attention is applied. Layer
0 has a feature size of 256 with 1 feature channel, while
layer 1 has a feature size of 13 with 256 feature channels.
In the actual experiments, layer 1 and layer 2 are of too large
feature channel size thus consuming extremely large GPU
memory when the channel-wise strategy is applied. Hence
they are less used in the following experiments.

Figure 5 gives a detailed network design of an attention
block. It consists of an 8-heads attention network and a
feed-forward network. Figure 6 gives the detailed network
design of our proposed attention models. Both normal part
attention and channel-wise part attention models are pre-
sented. Optional attention consistency loss LAC may be ap-
plied between the latent representations of different feature
layers after the attention network (green frame box).

4.2. Training Parameters

In step 1, we set γ = 0.6 for Lpart. The weights for loss
terms are set as ωPI = ωpart = 1. We use Adam optimizer
with an initial learning rate of 0.001, the decay ratio is 0.8
with a decay step of every 50 epochs. The whole step 1
training takes 250 epochs.

In step 2, training settings are different for the base-
line case and the attention-based case. Attention-based net-
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Model Step Part mIoU ↑ Trans MSE ↓ Shape mIoU ↑
Back Seat Leg Armrest Mean

Simple MLP 1,2 71.6% 73.2% 70.1% 61.2% 72.8% 38.5 63.8% ± 0.1%
3 71.5% 72.8% 69.8% 60.4% 72.5% 42.6 71.8%

Part Attention 1,2 71.6% 73.2% 70.1% 61.2% 72.8% 32.0 70.9% ± 2.9%
3 71.6% 73.2% 70.1% 61.3% 72.8% 31.4 76.5%

Channel-wise
Part Attention

1,2 71.6% 73.2% 70.1% 61.2% 72.8% 36.9 75.8% ± 2.1%
3 71.7% 73.2% 70.1% 61.3% 72.8% 36.2 78.4%

Table 1. Quantitative results from different network models on the
chair category. Note that for more precise comparison, we use an
encoder of the same weights from step 1 for our models, thus their
part mIoU before fine-tuning are identical.

Model Shape mIoU ↑
Chair Airplane Lamp

Pix2Mesh [37] 39.6% 42.0% 32.3%
3DCNN [3] 52.6% 50.6% 36.2%

3D-R2N2 [10] 55.0% 56.1% 42.1%
OccNet [25] 50.1% 57.1% 37.1%
IM-Net [9] 52.2% 55.4% 29.6%

D2IM-Net [22] 56.1% 55.8% 42.1%
PQ-Net [42] 67.3% - 41.3%

CompSM [12] 64.4% - -

Simple MLP 71.8% 71.6% 65.4%
Ours (Part Attention) 76.5% 78.2% 71.6%

Ours (C-wise Part Attention) 78.4% 74.7% 72.6%

Table 2. Quantitative shape reconstruction results compared to
other methods. Evaluated with the shape mIoU metric on mul-
tiple categories.

works are usually more delicate and need more time to con-
verge. For the baseline result of applying simple MLP, we
use a learning rate of 0.001 with a decay ratio of 0.8 and
a decay step of every 100 epochs. The training takes 500
epochs. For attention-based methods, the weights for loss
terms are set as ωtrans = ωAC = 1 if LAC is applied. We
use a learning rate of 0.0001 without decay and a training
epochs number of 1500. The feature embedding dimension
dA = 256. Like Transformers [35], a multi-head attention
structure with 8 heads is used in each attention block.

For step 3, the initial learning rate has to be very small for
fine-tuning since the final learning rate in step 1 is already
of a very small number. Here, we use a learning rate of
0.00001 with a decay step of 250 epochs. The total training
takes 500 epochs. γ = 0.6 is used for the full shape binary
cross entropy loss Lshape. For the loss weights, we set ωPI =
1, ωpart = 1, ωtrans = 10, ωshape = 10, and ωAC = 1 if it
is applied. See the supplementary materials for an ablation
study on hyper-parameter selection.

4.3. Qualitative and Quantitative Results

Figure 7 gives some shape reconstruction results from
unlabeled test 3D shapes. Parts are firstly generated and
subsequently assembled with the transformation matrices
learned by the attention network. Baseline results of us-
ing simple MLP are also given. Results with or without the
fine-tuning in step 3 are both given. From the visualization

Model Symmetry score ↑
back seat leg armrest full shape

GT 0.91 0.95 0.85 0.81 0.96

3D-GAN [41] 0.71 0.76 0.40 0.16 0.70
G2L-GAN [36] 0.93 0.94 0.74 0.64 0.91
PAGENet [20] 0.88 0.90 0.68 0.64 0.85

Simple MLP 0.91 0.94 0.83 0.79 0.89
Ours (Part Attention) 0.92 0.94 0.84 0.82 0.91

Ours (C-wise Part Attention) 0.92 0.94 0.84 0.82 0.90

Table 3. Symmetry score of our proposed method compared to
others on the chair category. Note that it is possible that the sym-
metry score is better than the ground truth.

results, we can observe that applying simple MLP directly
produces modest results yet the shape parts are wrongly
scaled and connected in detail. It even fails to correctly re-
construct small-volume parts in some cases. On the other
hand, our attention-based methods, both normal part atten-
tion and channel-wise part attention, produce more part-
coherent reconstruction results on all categories, even for
small-volume parts. More visualization results are given in
the supplementary materials.

Quantitative results on metrics of part mIoU, shape
mIoU, and transformation MSE are presented in Table 1.
All the evaluations are performed on the test dataset. Both
results before and after the fine-tuning are presented. Larger
mIoU means better reconstruction results for both parts and
full shape, while smaller transformation MSE means bet-
ter transformation matrices are learned. From Table 1,
we can clearly observe that compared to applying simple
MLP, our attention-based method gets better numerical re-
sults on both transformation MSE and shape mIoU met-
rics in both steps. The simple MLP method even sacrifices
part mIoU and transformation MSE performance for bet-
ter shape mIoU performance in step 3. The normal part
attention model gets the best transformation MSE perfor-
mance, which means the visualized assembly results from it
are more structurally correct. And the channel-wise part at-
tention model gets the best shape mIoU performance, which
means it focuses more on the overall reconstruction. This is
actually consistent with our qualitative results.

The quantitative comparison results with other methods
on the shape mIoU metric and the symmetry metric are pre-
sented in Table 2 and Table 3 respectively. The symmetry
score is defined as the percentage of the shape voxels that
got matched with their reflection given a vertical symmetry
plane. Table 3 shows that our method is capable of generat-
ing more symmetric parts even for small volume parts like
chair legs or armrests.

Additionally, to quantitatively compare with methods
that work on other 3D data representations, e.g., primitive
shape-based and point clouds, we follow a similar scheme
in SAGNet [44] to firstly convert 3D volumetric data to
point clouds and then use the metrics proposed in [1]. In
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Model JSD ↓ MMD-CD ↓ MMD-EMD ↓ COV-CD ↑ COV-EMD ↑
G2L [36] 0.0357 0.0034 0.0682 0.837 0.834

SAGNet [44] 0.0342 0.0024 0.0608 0.751 0.743
GRASS [21] 0.0374 0.0030 0.0744 0.460 0.445

StructureNet [26] 0.0477 0.0097 0.1524 0.297 0.317
BAE-Net [8] 0.7380 0.0057 0.3210 0.090 0.050
MRGAN [14] 0.2460 0.0021 0.1660 0.670 0.230
EDITVAE [23] 0.0310 0.0017 0.1010 0.450 0.390

Ours (Part Attention) 0.0292 0.0018 0.0412 1.000 1.000
Ours (C-wise Part Attention) 0.0295 0.0016 0.0451 1.000 1.000

Table 4. Quantitative evaluation for shape modeling on the chair
category. For JSD and MMD, the smaller the better. For COV,
the larger the better. Since our method is reconstruction-based, we
achieve 1.0 on COV metric.

(a) Attention maps in the first attention block.

(b) Attention maps in the last attention block.

Figure 8. Learned attention maps in different attention blocks.
Lighter yellow means higher correlation, darker blue means lower
correlation.

Table 4, the results are presented using several metrics
for 3D shape sets, including Jensen-Shannon Divergence
(JSD), Coverage (COV), and Minimum Matching Distance
(MMD). The latter two metrics are calculated using both the
Chamfer Distance (CD) and Earth Mover’s Distance (EMD)
for measuring the distance between shapes.

All the above results from the attention-based models are
using feature layers 0/3/5 as the input. For the normal part
attention mode, LAC is applied; for the channel-wise part
attention mode, LAC is not applied. See an ablation study in
subsection 4.5 for reasons of using this choice.

4.4. Learned Part Relations

Learned Attention Maps. The attention maps, i.e., the
part correlation matrices, is the key to the success of our
proposed method. Figure 8(a) and Figure 8(b) give some
typical attention maps in different attention heads from the
first attention block and the last attention block, respec-
tively. Lighter yellow means higher part correlation, while
darker blue means lower part correlation. From the figures,
we can observe that in the first attention block the module
mostly focuses on learning the correlation of one part to
one part, or sometimes to two parts, in the attention heads
(feature maps are mostly composed of light yellow or dark
blue, only few greenish squares). Meanwhile in the atten-
tion heads from the last attention block, the module mostly

GT Simple MLP Attention-based

Recon Swap Recon Swap

(a) Chair leg swapping

(b) Chair back swapping

Figure 9. Part assembly results after swapping certain part repre-
sentations in the latent space.

focuses on learning the correlation of one part to three or
four parts (feature maps are mostly composed of various
greenish squares, only few dark blue squares). This means
our network architecture learns more part correlation infor-
mation going deeper through the attention blocks.

Swap. To demonstrate that our attention-based network
is able to learn good part relations, we conducted experi-
ments of swapping shape parts in the latent space. Figure
9(a) and Figure 9(b) give a demo of swapping the chair legs
or the chair back respectively. The simple MLP method
fails to transform the swapped parts correctly according to
the size of other parts. Swapping one part may even cause
incorrect changes in other parts, e.g., seat in Figure 9(a) and
armrest in Figure 9(b). Our attention-based method suc-
cessfully overcomes all those problems. Swapped parts are
correctly aligned with other parts without harming them.

Mix. Figure 10 gives some part assembly results by us-
ing random parts from the shape category to compose new
shapes. From the figure, we can observe that for the newly
composed shapes, the transformation matrices of different
parts are learned coherently for the assembly.

Interpolation. Additionally, we also give a demo of in-
terpolating between chair pairs in the latent space in Figure
11. The transition between the same parts in the pairs is
smooth, e.g., part thickness, or the morphing chair legs.

4.5. Ablation Study on Attention Models

After conducting a more detailed ablation study on the
VoxAttention models with different architecture choices, in
Table 5, we report quantitative results of using different fea-
ture layers or combinations of them as input for both normal
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Figure 10. Part assembly results of mixing random parts from
different input shapes to generate new shapes.

Figure 11. Interpolation results between chair pairs.

part attention case and channel-wise part attention case. For
settings with multiple feature layers used as attention input,
results with or without the additional LAC are both given.

In step 2, the full shape reconstruction loss is not ap-
plied. Hence for the shape mIoU metric, a certain fluctua-
tion (max. ± 5%) in the performance is observed in most
cases. This is actually quite reasonable: a small difference
in transformation matrices may cause a big difference in
shape mIoU. For example, if the transformed chair back
is moved one voxel length ahead, its transformation ma-
trix will not make big difference, but the shape mIoU will
change a lot since the shape parts are usually only several
voxels thick. In this case, in Table 5, instead of smooth-
ing the curve with a large smoothing parameter, we give a
mean value of shape mIoU with a standard deviation using
the numerical results in the last 100 epochs.
The following conclusions can be drawn from Table 5:
• For the settings that are identical to the network, their

performances are similar to each other. For example,
normal part attention with input layer 0, normal part at-
tention with input layer 1, and channel-wise part atten-
tion with input layer 0.

• When a single feature layer is used as input, for nor-
mal part attention models, using front feature layers gets
a smaller transformation MSE. However, for channel-
wise part attention models, using rear-end feature layers
may get a smaller transformation MSE since the network
needs to balance the trade-off between feature size and
feature channel number.

• When multiple feature layers are used as input in normal
part attention models, LAC must be applied. Otherwise,
the model collapses with a large transformation MSE and
a bad shape mIoU.

• When multiple feature layers are used as input in the
channel-wise part attention models, LAC is not necessary

Feature layer(s) Apply
LAC

Part Attention Channel-wise Part Attention

trans MSE ↓ shape mIoU ↑ trans MSE ↓ shape mIoU ↑
0 - 31.5 70.5% ± 4.4% 31.8 69.5% ± 3.6%
1 - 31.5 70.4% ± 3.1% 88.4 53.2% ± 3.1%
2 - 32.3 72.9% ± 1.7% 37.9 70.3% ± 0.8%
3 - 33.0 71.1% ± 2.2% 35.2 73.3% ± 1.5%
4 - 37.3 65.9% ± 2.3% 33.9 67.2% ± 3.2%
5 - 42.1 66.4% ± 2.6% 41.9 62.5% ± 5.1%

02 no 39.3 64.5% ± 5.1% 55.4 55.7% ± 2.2%
yes 32.2 70.0% ± 2.2% 33.5 71.7% ± 1.2%

03 no 60.8 39.4% ± 3.6% 35.0 69.9% ± 3.3%
yes 32.4 69.0% ± 4.7% 33.3 68.1% ± 2.3%

05 no 354.1 16.9% ± 1.6% 34.9 70.2% ± 2.9%
yes 33.3 68.0% ± 3.8% 35.2 69.7% ± 2.8%

023 no 99.4 35.6% ± 1.7% 76.3 45.7% ± 4.2%
yes 32.0 68.8% ± 2.9% 34.5 69.2% ± 1.9%

035 no 232.0 24.5% ± 1.2% 36.9 75.8% ± 2.1%
yes 32.0 70.9% ± 2.9% 33.2 70.1% ± 2.1%

045 no 211.9 15.0% ± 1.7% 34.8 68.8% ± 3.2%
yes 32.6 69.4% ± 1.8% 32.1 70.6% ± 2.3%

0345 no 286.3 24.9% ± 1.0% 91.9 31.8% ± 3.2%
yes 31.3 70.4% ± 2.8% 31.3 71.7% ± 1.7%

012345 no 390.7 22.7% ± 1.2% - -
yes 31.1 70.4% ± 3.9% - -

Table 5. Quantitative evaluation results in step 2 on the chair cat-
egory with different experimental settings. Numbers in the first
column are the layer index of feature layers used as input.

anymore when only one middle feature layer (layer index
1-4) is used.

• Transformation MSE indicates the shape mIoU to some
degree. But they do not have an absolute strong corre-
lation. Also, better shape mIoU does not ensure better
visualization results since the full shape reconstruction
loss is not introduced in this step. Multiple layer input
usually yields better visualization results in shape details
compared to single layer input.
Balancing the trade-off between model size, metrics re-

sults, and visualization qualities, we use feature layers 0/3/5
as the input for most results in the previous subsections.
With this choice, for the normal part attention mode, LAC
is applied; for the channel-wise part attention mode, LAC
is not applied. More intuitive evaluation curves along the
training are given in the supplementary material.

5. Conclusions
In this paper, a novel attention-based part assembly

method has been proposed for 3D shape modeling. Both
qualitative and quantitative results demonstrate that the pro-
posed method achieves better performance on this task com-
pared to other state-of-the-art methods. The channel-wise
strategy and the additional attention consistency loss also
contribute to the good results. For future possible topics,
we would like to try patch-based self-attention to see if the
semantic information and the part relations can be learned in
a self-supervised manner. Applying attention-based meth-
ods on other 3D data representations, e.g., point clouds or
meshes, to learn semantic information would also be an in-
teresting research direction.
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