
Making Corgis Important for Honeycomb Classification: Adversarial Attacks on
Concept-based Explainability Tools

Davis Brown
Pacific Northwest National Laboratory

davis.brown@pnnl.gov

Henry Kvinge
Pacific Northwest National Laboratory

henry.kvinge@pnnl.gov

Abstract

Methods for model explainability have become increas-
ingly critical for testing the fairness and soundness of deep
learning. Concept-based interpretability techniques, which
use a small set of human-interpretable concept exemplars
in order to measure the influence of a concept on a model’s
internal representation of input, are an important thread
in this line of research. In this work we show that these
explainability methods can suffer the same vulnerability to
adversarial attacks as the models they are meant to ana-
lyze. We demonstrate this phenomenon on two well-known
concept-based interpretability methods: TCAV and faceted
feature visualization. We show that by leveraging the geom-
etry of the problem and carefully perturbing the examples
of the concept that is being investigated, we can radically
change the output of the interpretability method. The attacks
that we propose can either induce positive interpretations
(polka dots are an important concept for a model when clas-
sifying zebras) or negative interpretations (stripes are not an
important factor in identifying images of a zebra). Our work
highlights the fact that in safety-critical applications, there
is need for security around not only the machine learning
pipeline but also the model interpretation process.

1. Introduction

Deep learning models have achieved superhuman perfor-
mance in a range of activities from image recognition to
complex games [25, 43]. Unfortunately, these gains have
come at the expense of model interpretability, with massive,
overparametrized models being used to achieve state-of-the-
art results. This is a major limitation when deep learning
is applied to domains such as healthcare [33], criminal jus-
tice [26], and finance [18], where a prediction needs to be
explainable to the user in order to be trusted. This has led to
a surge of interest in tools that can illuminate the underlying
decision making process of deep learning models.

Concept-based interpretability methods (CBIMs) are a

family of explainability techniques that are increasingly pop-
ular. The critical observation underlying these methods is
that in many scenarios, low-level statistics such as the impor-
tance of individual pixels in an input image (as provided by
saliency methods for example), cannot deliver the depth of
insight that a user needs in complex, real-world situations.
CBIMs instead rely on a user provided collection of positive
examples (tokens) of a human-interpretable concept which
are then used to probe a model. CBIMs have now been
successfully applied to a range of applications, from health-
care tasks [13, 32] to understanding the strategies of a deep
learning-based chess engine [31]. In this paper we focus
on two examples of CBIMs that capture both the diversity
and power of these methods: Testing with Concept Activa-
tion Vectors (TCAV) [21] and Faceted Feature Visualization
(FFV) [11].

Besides being inherently black-box in nature, deep learn-
ing models have also been shown to be vulnerable to ad-
versarial attacks where small perturbations to model input
result in dramatic changes to model output [46]. This phe-
nomenon is concerning when deep learning tools are de-
ployed in safety-critical environments. But if explainability
methods are an important component in a machine learning
system, then the robustness of these methods themselves is
nearly as important as the robustness of the model. In this
paper we explore the vulnerability of CBIMs to adversarial
attacks.

Our analysis identifies the small number of concept to-
kens used in CBIM methods as a single point of failure in
the entire interpretability pipeline. Indeed, subtle changes to
a few centralized tokens representing a concept could result
in dramatic misinterpretation of many subsequent input. In
the case where the reasoning behind a model’s predictions is
almost as important as the model’s predictions themselves,
this could result in a model being taken out of deployment.
Despite the fact that CBIM methods can take a variety of
forms, our proposed attack which we call a token pushing
(TP) attack is applicable to many of them since it targets the
linear probe mechanism that is common to nearly all.

We evaluate TP attacks against both TCAV and FFV on

This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

620



pretrained ImageNet models [7, 30] using the Describable
Textures Dataset [5] as a source of concept tokens and on
models trained on Caltech-UCSD Birds 200 [52] using im-
ages with specific attributes as concept tokens. Through
our experiments we show that, provided that it uses a linear
probe, the TP attack does not even require the adversary to
know what interpretability method is being used. The same
perturbations that cause TCAV to fail also cause FFV to fail.
Finally, our TP attack possesses moderate transferability
between different model architectures, meaning that a TP
attack can be developed via a surrogate model even when
the defender model architecture is unknown.

Our contributions in this paper include the following.

• Formalization of an adversarial threat model for post-
hoc concept-based interpretability methods that identi-
fies concept tokens as a single point of failure.

• Introduction of TP attacks which cause deliberate mis-
interpretation by disrupting the linear probe mechanism
underlying many concept-based interpretability meth-
ods.

• Demonstration of the effectiveness of TP attacks on
TCAV and FFV.

• Introduction of the first (to our knowledge) adversarial
attack on feature visualization.

2. TCAV and linear interpretability
In this section we describe the method of testing with

concept activation vectors (TCAV) [21]. TCAV has become
a popular interpretability technique that has been used in a
range of applications [20, 27, 48]. Let f : X → Rd be a
neural network which is composed of n layers and designed
for the task of classifying whether a given input x ∈ X
belongs to one of d different classes. Write fℓ : X → Rdℓ

for the composition of the first ℓ layers so that fn = f and
dn = d and let hℓ : Rdℓ → Rd be the composition of the
last n− ℓ layers of the network so that f = hℓ ◦ fℓ for any
1 ≤ ℓ ≤ n − 1. Let C be a concept for which we have a
set of positive examples (tokens) PC = {xC

i }i and negative
examples NC = {xN

i }i, both belonging to X . These are
represented in the ℓth layer of f as the points fℓ(PC) and
fℓ(NC) respectively. One can apply a binary linear classifier
to separate these two sets of points, resulting in a hyperplane
in Rdℓ . We represent this hyperplane by the normal vector
vℓC ∈ Rdℓ that points into the region corresponding to the
points fℓ(PC). vℓC is called the concept activation vector in
layer ℓ associated with concept C. One can think of vℓC as
the vector that points toward C-ness in the ℓth layer of the
network.

Let hℓ,k denote the kth output coordinate of hℓ corre-
sponding to class k. In the classification setting, hℓ,k then
represents the model’s confidence that input belongs to class
k. To better understand the extent to which concept C influ-

ences the model’s confidence of x ∈ X belonging to class k
we compute:

SC,k,l = ∇hℓ,k (fℓ(x)) · vlC . (1)

A positive value of SC,k,l indicates that increasing C-ness of
x makes the model more confident that x belongs to class k.
The magnitude TCAV score for a dataset D is defined as the
sum of SC,k,l(x) over all x ∈ Dk, where Dk is the subset
of D consisting of all instances predicted as belonging to
class k, divided by |Dk|. We compare the TCAV magnitude
of the positive concept images with the TCAV magnitude
for random images in the layer, and use a standard two-
sided t-test to test for significance. We can also compute
the relative TCAV score, which replaces the set of negative
natural images in NC with images representing a specific
concept.

2.1. Faceted Feature Visualization

[11] introduced a new concept-based feature visualiza-
tion objective for neuron-level interpretability, Faceted Fea-
ture Visualization (FFV). The objective disambiguates pol-
ysemantic neurons by imposing a prior towards a linear
concept C in the optimization objective. [11] also utilizes
the linear probe framework with sets of positive and negative
examples of a concept C (PC and NC respectively). Similar
to the TCAV method, one trains a binary linear classifier on
fℓ(PC) and fℓ(NC) to obtain CAV vlC . To visualize output
that tends to activate a neuron at layer ℓ, position i, while
at the same time steering the visualization toward a specific
concept, the authors optimize for the objective function:

argmax
x∈X

fℓ,i(x) + vlC · (fℓ(x)⊙∇fℓ,i(x)), (2)

where ⊙ is the Hadamard product.

3. An Attack on the Tokens of Concept
Traditionally, an adversarial attack [46] on a model f is

a small perturbation δ that, when applied to a specific input
x, results in large changes to model prediction f(x). The
meaning of ‘small’ is usually specified by a metric such as
an ℓp-norm and can either be a hard or soft constraint. In this
work we use projected gradient descent (PGD) [28] to con-
struct our attacks, since it is widely used and straightforward
to implement. The novelty of the attack that we propose in
this paper is (i) the class of methods that the attack targets
and (ii) the way it targets them. Optimization approaches
other than PGD could doubtless be used for the same effect.

The threat model for the token pushing (TP) attack that
we describe below, as well as a general framework for adver-
sarial attacks on CBIMs, can be found in Section A.4. At
a high-level though, the attack has targeted and untargeted
version.
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Figure 1. A schematic of the targeted TP attack. PC is the original set of positive examples of concept ‘bubbly’ C (green), NC is the set of
negative examples of concept C (grey), PC′ is the set of positive examples for target concept ‘striped’ C′ (purple), and P̂C is PC after being
perturbed by the TP attack. When PC is perturbed to P̂C , it shifts CAV vℓC so that it is more closely aligned to the CAV for ‘striped’. The
result is that input that is intended to be interpreted in terms of concept ‘bubbly’ is actually interpreted with respect to the concept ‘striped’.

Figure 2. The untargeted TP attack on three different concepts for a ResNet-18 trained on Caltech-UCSD Birds 200 with TCAV magnitude
scores with respect to the class ‘brewer blackbird’ (left) and the scaly DTD concept for an InceptionV1 trained on ImageNet with TCAV
magnitude scores with respect to snake classes in ImageNet (righ). Note that the plot on the left varies the concepts but keeps the class,
‘brewer blackbird’, fixed while and plot on the right varies the class while keeping the concept, ‘scaly’, fixed.

Untargeted attack: The adversary attempts to modify
exemplars for concept C so as to maximally change the
interpretation of input with respect to C.

Targeted attack: The adversary attempts to modify ex-
emplars for concept C so that interpretations of any input
with respect to C now resemble interpretations with respect
to a different target concept C ′.

The basic idea is simple; we find perturbations to alter a
model’s internal representation of the concept tokens PC =
{xC

i }i. Using the notation developed in A.4, let f : X → Rd

be a copy of the defender’s model or a surrogate. Let ℓ be
the layer of f that the attack is optimized for.

In the untargeted version, perturbations ∆ℓ = {δℓi}i
added to each element in PC shift their hidden representa-
tions in layer ℓ so that they no longer correlate with concept

C. In order to find a point that can guide this shift, the ad-
versary chooses some collection of images that are unrelated
to C, UC := {xU

i }i. The adversary calculates the centroid
of fℓ(UC), which we denote by µU . This will serve as a
representative of “unrelatedness” to C in layer ℓ. Then for
each xC

i ∈ PC , the adversary uses PGD to compute

δℓi := argmin
∥δℓ∥∞≤ϵ

||fℓ(xC
i + δℓ)− µU ||, (3)

where ϵ > 0 is chosen based on how visible the attack is
allowed to be. The targeted version of the attack is analo-
gous except that the adversary chooses a target concept C ′,
calculates the centroid µC′ of fℓ(PC′), and then optimizes
for

δℓi := argmin
∥δℓ∥∞≤ϵ

||fℓ(xC
i + δℓ)− µC′ ||. (4)
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Figure 3. The targeted TP attack, perturbing three classes (dumbbell
and corgi from ImageNet, bubbly from DTD) towards the centroid
of the honeycombed DTD concept for the layer. TCAV magnitude
scores are with respect to the honeycomb ImageNet class.

Both (3) and (4) are related to the hidden layer attacks de-
scribed in [19, 50]. A schematic of the targeted TP attack
can be found in Figure 1.

In Section 4, we show that in spite of the fact that neither
(3) nor (4) is the primary optimization objective of either
TCAV or FFV, the TP attack is still effective when applied
to either method. In fact, objective functions (3) and (4)
make the TP attack more flexible since they act against
the underlying linear probe mechanism common to many
CBIMs. This means that the adversary does not need to
know the specific CBIM that the defender is using in order
for the method to have a high probability of success.

4. Experiments
To better understand the effectiveness of the methods

proposed in Section 3, we apply the TP attack to TCAV and
FFV. For both TCAV and FFV we focus on InceptionV1
weights trained on ImageNet-1k [7] from Torchvision [30].
We apply our attack to interpretation input from ImageNet
and Caltech-UCSD Birds 200 (CUB) [53]. The token sets
that we use to capture concepts for ImageNet input come
from ImageNet itself and the Describable Textures Dataset
(DTD) [5]. The tokens that we use for CUB input come
from the attribute metadata associated with that dataset. We
perform all PGD attacks with ϵ = 8/255 and 20 steps. To
train a CAV, we use a linear classifier trained via stochastic
gradient descent and ℓ2-regularization. See Section A.5 in
the Appendix for other experimental details. Examples of
perturbed tokens can be found in Figure 8 in the Appendix.
The results we describe in the first part of this section focus
on the white-box setting where the adversary knows the
defender’s model. In Section 5.1 we show that our attacks
are also effective in the black-box setting.

4.1. TP Attacks on TCAV

To test the untargeted TP attack against TCAV, we choose
concept/class pairs with straightforward associations. For
example ‘striped’/‘zebra’. The goal of the attack is to change

the interpretation so that a concept that is actually significant
to a model, no longer appears so. For example, the pertur-
bation may cause TCAV to indicate that ‘striped’ is not a
significant concept for the class ‘zebra’. We provide a full
list of concept/class pairs in Table 2 of the Appendix. We
perform the same experiment for all concept/class pairs, but
for simplicity explain the procedure with the ‘striped’/‘zebra’
concept/class pair. We select 70 non-overlapping sets of 50
randomly chosen images from ImageNet to be {N i

striped}.
This same {N i

striped} will be used for all concept/class pairs.
We fix a set of unrelated images Ustriped of size 1000 that are
also randomly sampled from ImageNet. Finally, we choose
random sets of 40 images from the class ‘striped’, Pstriped,
from DTD. The interpretation input, Dzebra, is a collection
of images which the model predicts as belonging to the class
‘zebra’.

For each layer ℓ of the model we run the TP attack against
Pstriped to generate perturbed tokens P̂ ℓ

striped. For each of
the resulting pairs (Pstriped, P̂

ℓ
striped) and each layer ℓ′ of

the model, we then apply TCAV 70 times (once for each
N i

C), calculating the difference in magnitude TCAV score
when using P̂ ℓ

striped instead of Pstriped. Thus in effect, we
not only explore the case where the TP attack targets the
same model layer that the interpretability method is being
used to analyze (ℓ = ℓ′), we also investigate the case where
these are different (ℓ ̸= ℓ′).

In the targeted case, we focus on concept/class pairs that
would not be expected to have any association. For example,
class ‘honeycomb’ and concept ‘Pembroke Welsh corgi’.
Then we choose target concepts that would be assumed to
be important to the class. For example, we might attack
tokens for the concept ‘Pembroke Welsh corgi’ so that it
looks like it has the same significance to the ImageNet class
‘honeycomb’ as the DTD texture ‘honeycombed’. Thus we
make it appear that ‘Pembroke Welsh corgi’ is an important
concept when the model predicts something is a honeycomb.

4.2. TP Attacks on FFV

We evaluate the TP attack on FFV by performing feature
visualizations for InceptionV1 on every channel neuron for
the layers mixed3a, mixed3b, mixed4a, and mixed4b using
(1) FV: the channel objective only (i.e., using only the first
term in equation 2), (2) FFV1 and FFV2: two different
groups of concept images for PC (‘striped’) and NC , (3)
Gaussian: concept images to which Gaussian noise has been
added for PC , and (4) TP attack: concept images to which
a TP attack has been applied targeting layer mixed3b for
PC . We then compare these visualizations using a variant
of the Fréchet Inception Distance (FID) [16] to measure the
perceptual distance. A successful attack should significantly
change this distance since the visualizations will no longer
be optimized towards the “same” concept. The FID score
is calculated across neurons in all the layers listed above,
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Figure 4. Average Fréchet Inception distances between feature
visualizations generated from InceptionV1 in different ways: using
only the channel term from (2) (FV), two separate runs of FFV with
different sets of positive and negative concept images (FFV 1 and
FFV2), with Gaussian noise added to the positive concept images
(Gaussian), and with the token pushing attack applied (TP attack).
Targeted layers are mixed3a, mixed3b, mixed4a, and mixed4b.
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Figure 5. A faceted feature visualization of the same neuron (chan-
nel 9 on InceptionV1, layer mixed4d) for ‘striped’ and ‘dots’ facets,
(first row), and the FFV after a TP attack (second row). While
visualizations in the first row reflect the concept priors, the vi-
sualizations in the second row do not (indicating the attack was
successful).

though our attack only targets mixed3b. We use a PyTorch
implementation of FID [41] and use the second block of
InceptionV3 as the visual similarity encoder (due to the
smaller dataset size).

5. Results

Plots of raw TCAV magnitude scores over model layer
for both clean concept tokens (dotted lines) and the attacked
concept tokens (solid lines) can be found in Figure 2. In the
plot on the left the defender’s model is a ResNet-18 trained
on Caltech-UCSD Birds 200 with TCAV magnitude scores
calculated with respect to fixed class ‘brewer blackbird’ and
varying concepts. In the plot on the right the defender’s

model is an InceptionV1 and the fixed concept ‘scaly’ is
evaluated with respect to various snake classes. We see that
in both cases, our attack results in significant changes in
TCAV magnitude scores, meaning that the interpretation of
the class in terms of the concept is significantly different
before and after the attack (the goal of the untargeted attack).
For example, in the right plot in Figure 2 we see that the
importance of the ‘scaly’ concept for all the snake classes
decreases significantly which would signify, to a user who
is unaware of the attack, that ‘scaly’ is not important to the
model’s prediction of snake classes.

We note that while TP attacks are generally effective, this
effectiveness depends on the class, concept, and layer. We
see that the attacked ‘scaly’ tokens result in TCAV magni-
tude scores that are only marginally lower than the baseline
at layer ‘mixed3b’ for the class ‘green snake’, whereas the
score is much lower at layer ‘mixed4a’. On all the plots we
include 95% confidence intervals for each layer based on the
70 different N i

C sets. The point of this is to verify that the
result does not depend on having the “right” negative exam-
ples and to provide evidence that our results are statistically
significant.

Figure 3 shows a plot for the targeted TP attack on TCAV.
The model being interpreted is an InceptionV1, the concepts
being attacked are dumbbell, corgi, and bubbly, and the
target class is honeycombed. We see that after the targeted
attack, the TCAV scores for all three concepts are higher than
their baseline scores, suggesting that the corgi, dumbbell,
and bubbly concepts are important in all layers of the model
for honeycombed classification.

For FFV, we observe TP attack effectiveness from the
differences between the visualizations FFV produces when
given a clean concept set PC and the visualizations FFV
produces when given an attacked concept set P̂C . We give
two such examples separately using the ‘striped’ and ‘dotted’
concept sets in Figure 5. We note that while the first row
appears to look like the labeled concept, the second row of
attacked visualizations do not appear related to the concept.
For quantitative measurements, Figure 4 gives the average
FID between visualizations produced in different ways. We
note that while the FID scores between the separate clean
FFV runs is 0.26, the FID score between the TP attack and
the clean FFV runs are 1.39 and 1.34. The larger FID scores
suggest that the TP attack modifies the FFV output signif-
icantly more than the usual variation between runs. This,
along with visualizations such as 5, suggest that a TP attack
can drastically change the semantic meaning associated with
the feature visualizations produced by FFV.

Finally, we find that both the TCAV magnitudes (Table
1) and the FFV FID scores (Figure 4) are susceptible to
Gaussian noise added to the concept set. This suggests
that, even independent of adversarial attacks, CBIMs are
brittle. This brittleness suggests that these methods are also
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Figure 6. TCAV sensitivity scores for the zebra class with the stripe images for a MobileNetV2 (left) [40] and a Vision Transformer
(right) [8] trained on ImageNet-1K. The attacks use perturbations made on the stripe concept images for InceptionV1 using centroids for
different hidden layers (different colored curves). All layers/blocks shown are sensitive to the stripe concept before the attack, and are not
sensitive after the attack.

vulnerable to natural distribution shifts in data, e.g., between
the concept set and training images. We see a need for
continued research into robust interpretability methods.

5.1. Transferability to Different Layers and Model
Architectures

We evaluate TP attacks for two kinds of transferability:
transferability to methods which target different layers of a
model and transferability to different model architectures.
We investigated the former by performing attacks developed
for one hidden layer ℓ, on methods targeting a different
hidden layer ℓ′ as described in Section 4. We found that in
many cases, TP attack worked comparably well even when
the layer being targeted differed from the layer actually used
by the interpretability method (see the off-diagonal entries
in Figure 1 in the Appendix).

We also investigate how TP attacks transfer to a defender
that is using a different model architecture by applying at-
tacks developed for InceptionV1 to TCAV when it is used to
interpret a MobileNetV2 [17] and a Vision Transformer [8]
models, all trained on ImageNet. We compute the TCAV
magnitude score for ‘striped’/‘zebra’ for the output of the
three layers in MobileNetV2 that were sensitive to the stripe
concept according to signed TCAV and the output of the even
blocks (2, 4, 6, 8, 10) for the ViT. These results are displayed
in Figure 6. We see that other than block 4 of the Vision
Transformer, the TCAV magnitude scores decreases signif-
icantly even when perturbations are developed on a model
architecture different from the one that is being interpreted.

6. Conclusion
In this work we show that concept-based interpretability

methods, like much of the deep learning modeling pipeline,
are vulnerable to adversarial attacks. By introducing subtle
changes to the examples of a concept used to drive the inter-
pretation, an adversary can induce different interpretations.

The attacks we describe target the linear probe component
common to many different concept-based interpretability
methods and thus are general enough to work for multiple
methods without modification. We hope that the results of
this paper will promote better security practices, not only
around the model pipeline itself, but also around the method
that is being used to interpret the model.
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