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Abstract

We use a geometric approach to characterize tumor
shape and intensity along the tumor contour in the con-
text of Glioblastoma Multiforme. Properties of the proposed
shape+intensity representation include invariance to trans-
lation, scale, rotation and reparameterization, which allow
for objective comparison of tumor features. Controlling for
the weight of intensity information in the shape+intensity
representation results in improved comparisons between tu-
mor features of different patients who have been diagnosed
with Glioblastoma Multiforme; further, it allows for iden-
tification of different partitions of the data associated with
different median survival among such patients. Our findings
suggest that integrating and appropriately balancing infor-
mation regarding GBM tumor shape and intensity can be
beneficial for disease prognosis. We evaluate the proposed
statistical framework using simulated examples as well as a
real dataset of Glioblastoma Multiforme tumors.

1. Introduction
Glioblastoma Multiforme (GBM) is a morphologically

heterogeneous disease and is a very common form of brain
tumor found in adults [5]; it is a severe disease with me-
dian survival time of approximately 12 months [9]. No-
tably, fewer than 10% of patients survive 5 years after di-
agnosis [15]. In previous studies, it has been shown that
using quantitative imaging features for survival analysis in
the context of GBM is beneficial for diagnostic as well as
treatment purposes in the context of this severe disease [4].
Magnetic resonance imaging (MRI) is a common tool used
to detect and examine brain abnormalities, e.g., brain tu-
mors such as GBM. In particular, tumor shape and inten-
sity, as captured by MRI, have been recognized as impor-
tant prognostic factors for GBM [3, 12]. GBM tumor inten-
sity captures regions of infiltrating tumor and edema, and
other tissue properties. GBM tumor shape, on the other
hand, captures protrusions of the tumor into surrounding

brain tissues. Both are thus important for characterization
of GBM severity. However, it is often challenging to obtain
a reliable characterization of, and to quantify differences in,
tumor shape since its geometric features are described in a
non-objective and (statistically) informal manner by domain
experts, e.g., circularity, irregularity, etc. [1, 6]. Such de-
scriptions are only crude summaries of GBM tumor shape
and do not fully reflect the complexities of tumor growth
and shape. Furthermore, most studies consider tumor shape
and intensity separately, thus not capturing the potential de-
pendence between these MRI-derived GBM tumor signa-
tures [4]. These motivate our work to develop an approach
that can integrate tumor shape and intensity via a unified
mathematical representation that allows objective compari-
son and further joint statistical analysis of these two features
of GBM tumors.

GBM tumor shape was analyzed in [3] using a geomet-
ric approach. We build on their framework by additionally
incorporating information about intensity (texture) along tu-
mor contours as captured in MRIs. Our approach leads to
a distance between shape and intensity features of GBM tu-
mors that is invariant to all shape-preserving transforma-
tions, and can be used for further statistical analysis, e.g.,
clustering. Using the proposed framework, we discovered
clusters that are associated with large absolute differences
in survival.

1.1. Data description

MRI imaging and associated survival data for 63 patients
diagnosed with GBM, who consented under the Cancer
Genome Atlas protocols1, were obtained from the Cancer
Imaging Archive2. In our study, we consider pre-surgical
T1-weighted post contrast (henceforth referred to simply
as T1) and T2-FLAIR (henceforth referred to simply as
FLAIR) MRIs; data pre-processing is described in detail in
[12] and we omit it here for brevity. In particular, our focus
is on statistical analysis of GBM tumor shape and intensity

1http://cancergenome.nih.gov/
2http://www.cancerimagingarchive.net/
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Figure 1. (a) T1 and (b) FLAIR MRI slices for one GBM patient
in the data. The tumor outline is highlighted as a red curve.

as captured by the axial image slice with largest tumor area
in T1, and the corresponding slice in FLAIR [3,12]. An ex-
ample of a T1 image, and the corresponding FLAIR image,
for one GBM patient are shown in Figure 1. Because of dif-
ferent properties of tissues highlighted by different types of
MRI modalities, tumor shape and associated intensity differ
in their appearance in the T1 and FLAIR images. The GBM
tumor contours, which were segmented semi-automatically
using the Medical Image Interaction Toolkit MITK3M3 Im-
age Analysis (v 1.1.0) and the NIFTI toolbox in MATLAB,
are illustrated as red closed curves overlaid on the MRI im-
ages. More details on the semi-automated segmentation, as
well as other image processing steps related to this dataset
of GBM tumors, can be found in Saha et al. (2016) [12].

2. Mathematical framework
The proposed representation of shape and intensity of

GBM tumors, which we refer to as shape+intensity for sim-
plicity of presentation, and the associated proposed dis-
tance, build on the elastic shape analysis framework [8,13].

2.1. Representation and comparison of GBM tumor
shape+intensity

Let βc : S1 → R2 denote the 2D closed curve repre-
senting the tumor outline, and βI : S1 → R be the inten-
sity function along the tumor outline; here, S1 acts as the
natural domain for a closed curve and denotes the unit cir-
cle. As seen in Figure 1, segmented GBM tumor contours
(as well as the associated intensity functions) form closed
curves making this a natural representation. We model the
tumor outline, and intensity along the outline, jointly via a
3D, parameterized closed curve β(t) = [βc(t), βI(t)]

T ∈
R3 ∀ t ∈ S1. When constructing this representation based
on segmented MRI images of GBM tumors, we (1) smooth
each tumor outline using a moving average smoother and
scale it to unit length (i.e.,

∫
S1 |β̇c(t)|dt = 1) to ensure that

the resulting shape representation is scale-invariant, and (2)
smooth each intensity function using cubic splines and stan-

dardize it by subtracting the average and dividing by the
standard deviation. Smoothing of the tumor contour and as-
sociated intensity values is motivated by the discrete nature
of MRI imaging data. Standardization of intensity values
for each observation is motivated by a well-known issue
with MRI where intensity values in different images, cor-
responding to the same or similar tissues, can vary, making
them not directly comparable [11]. We denote the standard-
ized tumor outline and intensity function by β∗

c and β∗
I , re-

spectively, and define β∗
λ(t) =

[
β∗
c (t)

λβ∗
I (t)

]
∈ R3 ∀ t ∈ S1 as

a composite coordinate function, where β∗
I is additionally

scaled by a parameter λ, which controls the emphasis of
intensity information when comparing MRI-derived GBM
tumors.

A nuisance source of variation in the presented repre-
sentation of tumor shape and intensity is the choice of
parameterization. Different parameterizations of a closed
curve, corresponding to different starting points or seeds on
the domain S1 and different speeds of traversal along the
curve, do not alter its shape. Let Γ = {γ : S1 → S1 | γ
is an orientation preserving diffeomorphism} denote the
group of reparameterization functions. Then, a reparame-
terization of a closed curve β∗

λ is given by the group ac-
tion of composition: (β∗

λ, γ) = β∗
λ ◦ γ, where γ ∈ Γ.

A parameterization-invariant distance between two closed
curves β∗

λ,1 and β∗
λ,2 must satisfy the isometry property

d(β∗
λ,1, β

∗
λ,2) = d(β∗

λ,1 ◦ γ, β∗
λ,2 ◦ γ), and it is well-known

that the convenient L2 distance does not satisfy this prop-
erty.

In this work, we use an elastic Riemannian metric [10]
that is known to be parameterization invariant to define a
distance between shape+intensity representations of GBM
tumors. The resulting elastic distance is difficult to compute
in practice, but under a convenient transformation called
the square-root velocity function (SRVF) [7, 14], it sim-
plifies to the L2 distance; this enables efficient quantifica-
tion of shape+intensity differences between GBM tumors
in a parameterization-invariant manner. First, we transform
composite coordinate functions β∗

λ into their SRVF repre-

sentation given by q∗λ(t) =
β̇∗
λ(t)√
|β̇∗

λ(t)|
∀ t ∈ S1, where β̇∗

λ

denotes the (coordinatewise) derivative of β∗
λ and | · | is the

Euclidean norm in R3; one can reconstruct the original rep-
resentation β∗

λ from its SRVF q∗λ, up to a translation, by
β∗
λ(t) =

∫ t

0
q∗λ(u)|q∗λ(u)|du. Note that the SRVF represen-

tation is automatically invariant to translation of the contour
and intensity components since it depends on the derivative
of β∗

λ only. Further, as described earlier, each GBM tumor
contour is scaled to unit length via

∫
S1 |β̇

∗
c (t)|dt = 1 ensur-

ing scale-invariance of this component. This results in the
pre-shape+intensity space of GBM tumors, which is given
by C = {q∗λ : S1 → R3 |

∫
S1 q

∗
λ(t)|q∗λ(t)|dt = 0}, i.e., the
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space of SRVFs of closed 3D curves.
We refer to C as the pre-shape+intensity space, because

while translation and scale variabilities have now been re-
moved from the representation, we have not yet accounted
for variation in orientation and parameterization. The repa-
rameterization of a curve β∗

λ via γ ∈ Γ, given by β∗
λ ◦ γ,

becomes (q∗λ, γ) = (q∗λ ◦ γ)
√
γ̇ for SRVFs, where γ̇ is the

derivative of γ. When considering rotations, it is important
to ensure that only the GBM tumor contour, and not the
intensity component, is transformed. For rotations, our fo-

cus is thus on a subgroup of SO(3), R =

[
SO(2) 0

0 1

]
⊂

SO(3), that rotates the first two coordinates of β∗
λ (or equiv-

alently q∗λ) related to the tumor contour, but not the third
coordinate related to intensity. Then, for a rotation O ∈ R,
Oβ∗

λ and Oq∗λ represent rotations of the contour+intensity
curve and its SRVF, respectively. Importantly, the L2 dis-
tance between two SRVFs q∗λ,1, q

∗
λ,2 ∈ C is isometric under

the actions of Γ and R: dC(q
∗
λ,1, q

∗
λ,2) = ∥q∗λ,1 − q∗λ,2∥ =

∥O(q∗λ,1, γ)−O(q∗λ,2, γ)∥ = dC(O(q∗λ,1, γ), O(q∗λ,2, γ)) for
a γ ∈ Γ and O ∈ R. This is a crucial property that al-
lows us to use the L2 distance on the pre-shape+intensity
space C to define a distance on the resulting shape+intensity
space as described next. To unify all contour+intensity
SRVFs that are within a reparameterization and rotation
of each other, we define equivalence classes of the form
[q∗λ] = {O(q∗λ ◦ γ)

√
γ̇ |O ∈ R, γ ∈ Γ}, which provide a

unique representation of shape+intensity for GBM tumors.
In other words, different orientations and reparamateriza-
tions of a GBM tumor’s shape+intensity representation are
contained in one equivalence class. The set of all such
equivalence classes is denoted by S = {[q∗λ] : q∗λ ∈ C}
and is the shape+intensity space.

The distance between two shape+intensity equivalence
classes, [q∗λ,1], [q

∗
λ,2] ∈ S, is defined via the L2 distance on

C as follows:

dS([q
∗
λ,1], [q

∗
λ,2]) = inf

O∈R,γ∈Γ
dC(q

∗
λ,1, O(q∗λ,2 ◦ γ)

√
γ̇)

= inf
O∈R,γ∈Γ

∥q∗λ,1 −O(q∗λ,2 ◦ γ)
√
γ̇∥.

(1)

The optimization problems over R (optimal rotation) and Γ
(optimal reparameterization) are solved using singular value
decomposition and the dynamic programming algorithm [2]
(with an additional seed search), respectively. This process
aligns or registers the contour+intensity representations of
GBM tumors such that the L2 distance between them is
minimized, which results in improved comparisons. An im-
portant aspect of this procedure is that the contribution of
geometric contour information versus intensity information
depends on the chosen value of λ that is used in the repre-
sentation. When λ is small, the registration is driven by ge-
ometric features of the tumor contours; on the other hand,

when λ is large, it is driven by intensity information. We
can visualize the optimal path of deformation (geodesic) be-
tween two GBM tumor shape+intensity objects, the length
of which is given by the distance dS , via a linear interpola-
tion between q∗λ,1 and the optimally rotated and reparame-
terized q∗λ,2. Such deformation paths are useful as they pro-
vide insight into the contribution of the shape and intensity
components in the comparison of GBM tumors.

2.2. Assessment of GBM tumor shape+intensity het-
erogeneity

The proposed representation and distance are use-
ful in assessing inter-patient GBM tumor heterogeneity
with respect to shape and intensity. In particular, the
shape+intensity distance between GBM tumors enables im-
plementation of distance-based clustering approaches such
as hierarchical clustering. Subsequently, we are able to as-
sess differences in survival across the generated clusters.
Importantly, depending on the choice of the tuning parame-
ter λ, the clustering can be driven either by geometric shape
differences (for small values of λ) or intensity differences
(for large values of λ).

We apply hierarchical clustering based on the proposed
distance, with complete linkage, to partition GBM tumor
shape+intensity data into two groups. We use an implemen-
tation of hierarchical clustering as given by the MATLAB
(version R2022a) functions linkage() and cluster(). We con-
sider different values of λ to compute the shape+intensity
distances between GBM tumors to try to understand the im-
portance of geometric shape versus intensity in the cluster-
ing results and subsequent survival analysis. Then, within
each cluster and for each considered value of λ, we esti-
mate median survival times based on the Kaplan-Meier es-
timate of the survival function, which accounts for censor-
ing in the patients’ survival times. One can also use other
summaries of survival times such as mean survival time,
which is the area under the Kaplan-Meier curve. In this
work, we use median survival rather than mean survival, as
the latter can be underestimated if the longest observation
time is censored, which is the case in our data. Finally, we
compare the estimates between the two groups generated
via our clustering approach. To evaluate the reliability of
the presented clustering results, and the subsequent cluster-
wise survival analysis, we provide multi-dimensional scal-
ing (MDS) plots to visualize/assess separation across clus-
ters where each GBM tumor shape+intensity observation
is colored by its cluster membership, and further conduct
three-fold cross-validation (over λ), respectively. While
the cross-validation assesses differences in survival times
across clusters for different values of λ, the MDS is based
only on distances and does not incorporate any survival in-
formation.
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3. Results
We present results of applying the proposed framework

to analyze GBM tumor shape and intensity information. We
begin with illustrations of registration and geodesic compu-
tation using a simulated example and multiple real GBM
tumors. Then, we describe clustering results, based on the
entire dataset of 63 GBM patients, for different values of λ,
and relate them to survival. The smallest value of λ that we
consider is λ = 0.01, where very little intensity information
is used in the registration and comparison of MRI-derived
GBM tumors; the majority of contribution comes from the
difference in shape of the tumor contours. The largest value
of λ that we consider is λ = 0.5, where the intensity in-
formation dominates comparisons of GBM tumors. Due to
the relative scales of the GBM contour coordinates (after
rescaling the contours to unit length) and the intensity val-
ues (after standardization), we found empirically that regis-
tration and comparison results for λ > 0.5 are very similar
to those for λ = 0.5.

3.1. Registration and deformation of GBM tumors

Figure 2 illustrates registration results for two simulated
contour+intensity objects. The simulated contours have a
round shape with one region of protrusion (peak); the size
of the peak differs between the two simulated contours. The
corresponding simulated intensity functions both have a sin-
gle peak of high intensity with different magnitude. In each
panel, we show the two tumor contours along with the cor-
responding intensity functions in red and blue. For im-
proved display, we plot the intensity functions as if they
were defined on the domain [0, 1]. In Figure 2a, we show
the standardized tumor contour+intensity objects. Recall
that standardization refers to (1) rescaling of the contours,
and (2) translation of the intensity functions via subtraction
of the mean and rescaling of the intensity functions via di-
vision by the standard deviation. In Figure 2b, we show the
registration results for a small value of λ = 0.01. In this
case, as expected, the registration process is driven by ge-
ometric information of the contours: the peaks on the two
contours are well-aligned. On the other hand, the peaks on
the two intensity functions are misaligned since this infor-
mation plays a small role in registration. When λ is in-
creased to 0.5 in Figure 2c, intensity information starts to
dominate the registration procedure. Thus, the peaks on the
intensity functions become well-aligned while the peaks on
the contours are not.

Figure 3 presents registration results for two GBM tu-
mors, which have similar shape and were segmented from
the T1 MRI modality. The blue and red tumor con-
tour+intensity representations in this figure came from pa-
tients with 12.20 months and 2.83 months survival times, re-
spectively. In Fig. 4, we also present registration results for
two T1 MRI GBM tumors from patients with the shortest

(0.72 months, red) and longest (57.8 months, blue) survival
times in our dataset. As illustrated in Fig. 4a, the patient
with the shortest survival has a more irregularly shaped tu-
mor contour, i.e., more protrusions, as compared to the pa-
tient with the longest survival. Similar to the registration re-
sults based on simulated contour+intensity objects (Fig. 2),
Figures 3b and 4b show that when λ = 0.01, correspond-
ing to less emphasis on intensity information during regis-
tration, geometric features of the tumor contours are better
aligned as compared to the intensity functions along the tu-
mor contours. As λ is increased to 0.5, the registration pro-
cess focuses more on intensity information as demonstrated
by improved alignment of the intensity functions in Figs. 3c
and 4c.

The rows in Figs. 5 to 7 show geodesic deforma-
tions between the shape+intensity representations for the
simulated example and real GBM tumors considered in
Figs. 2 to 4, respectively, for seven values of λ =
0.01, 0.09, 0.17, 0.26, 0.34, 0.42, 0.5 (from top to bottom);
each geodesic starts from the blue GBM tumor and ends at
the red one, and is sampled with six intermediate points.
In each geodesic, shape components are drawn as 2D tu-
mor contours with overlaid colors representing intensity. As
seen in the top row of each figure, when λ is small, the
deformation is primarily driven by the shape component.
Here, geometric features of the contours, e.g., protrusions,
are in correspondence across the two shapes and this is re-
flected in the resulting geodesic. As λ increases, the influ-
ence of the intensity component on the geodesic deforma-
tion becomes apparent. For instance, in the bottom row of
each figure, we see that the deformation is mostly driven by
the correspondence of high/low intensity values.

3.2. Hierarchical clustering and survival analysis

Next, we consider the entire dataset consisting of 63
subjects; for each subject, we have GBM tumor con-
tour+intensity data from T1 and FLAIR MRIs. We first
computed ten 63 × 63 pairwise shape+intensity distance
matrices using Eq. (1), corresponding to ten equally spaced
values of λ between 0.01 and 0.5. We then applied hierar-
chical clustering, with complete linkage, to each of the ten
distance matrices and split the data into two clusters, with
the aim of discovering a value of λ that provides large sep-
aration between the clusters in terms of median survival.

First, in Fig. 8a, we evaluated the absolute difference in
median survival between the two clusters for each value of
λ. For the T1 modality, the largest absolute difference of ap-
proximately 6.5 months occurs for a relatively small value
of λ = 0.12, i.e., where shape plays the dominant role in
the comparison of GBM tumors. For the FLAIR modality,
the largest absolute difference of approximately 8 months
occurs at a relatively large value of λ = 0.5, i.e., where in-
tensity plays the dominant role in the comparison of GBM
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(a) (b) (c)

Figure 2. Registration of two simulated contour+intensity objects. (a) Standardized contour+intensity for two simulated examples. Reg-
istration results: (b) λ = 0.01, (c) λ = 0.5. Shape plots: the x- and y-axes are used to visualize the x- and y-coordinates of the shape
component. Intensity plots: the x-axis shows the domain of the intensity function, while the y-axis captures the magnitude of intensity
values.

(a) (b) (c)

Figure 3. Registration of two GBM tumor contour+intensity representations from T1 (left: contours; right: intensity functions). (a)
Standardized contour+intensity for two GBM tumors. Registration results: (b) λ = 0.01, (c) λ = 0.5. Shape plots: the x- and y-axes are
used to visualize the x- and y-coordinates of the shape component. Intensity plots: the x-axis shows the domain of the intensity function,
while the y-axis captures the magnitude of intensity values.

tumors. Next, we assessed balance of sample sizes in the
estimated clusters by computing the absolute difference be-
tween the number of patients in cluster 1 and the number
of patients in cluster 2. As shown in Fig. 8b, for T1 MRI
data, the two estimated clusters are fairly balanced when
λ = 0.06, 0.12, 0.17; for FLAIR, the clusters are balanced
when λ = 0.06, 0.5. Note that the clusters are balanced
in terms of sample size for λ = 0.12 in T1 and λ = 0.5
in FLAIR, suggesting that the corresponding largest differ-
ences in median survival discovered based on the proposed
shape+intensity representation of GBM tumors are reliable
statistically; whether or not the balanced sample sizes be-
tween groups of patients with distinct survival are clinically
relevant, however, needs to be further investigated. In addi-
tion, the survival differences based on the estimated clusters
are quite large, since median survival time in GBM is only
12 months [9].

In Fig. 9, we show clusterwise Kaplan-Meier estimates
of survival probabilities for clusters estimated based on (a)
T1 data and λ = 0.12, and (b) FLAIR data and λ = 0.5,
i.e., λ values that yield the largest absolute difference in
median survival. In both cases, patients placed in cluster
2 had lower survival probabilities across most of the study
period. Particularly, when clustering is based on the FLAIR
data, the difference in survival probabilities between the two
clusters is larger across the study period, as compared to

clustering based on T1 data. This suggests that the FLAIR
MRI-derived tumor shape and intensity can be more useful
in identifying two groups of patients with distinct survival
patterns.

Figure 10 shows MDS plots of the shape+intensity dis-
tance matrices based on (a) T1 data and λ = 0.12, and
(b) FLAIR data and λ = 0.5. Each observation is col-
ored according to its cluster membership. In both panels,
we see that there is reasonable separation between the two
estimated clusters based on the proposed distance, although
this is not as clear based on the FLAIR data. These plots
provide some evidence that the clustering results based on
the proposed representation and distance are reliable. How-
ever, the MDS coordinates are computed using distances
only and do not incorporate survival information.

Finally, Table 1 reports three-fold cross-validation re-
sults for the ten equally spaced values of λ between 0.01
and 0.5. In this cross-validation setup, the subjects’ cluster
memberships for different values of λ remain the same as a
result of hierarchical clustering based on the entire dataset.
We randomly split the data into three folds, and use two
training folds to find the value of λ that yields the largest dif-
ference in median survival between the two clusters. Then,
we evaluate the difference in median survival and (cluster-
wise) sample sizes in the remaining testing fold for that λ
value. We repeat this procedure three times by considering
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(a) (b) (c)

Figure 4. Registration of two T1 GBM tumor contour+intensity representations for patients with shortest (less than 1 month; red) and
longest survival (more than 50 months; blue). (a) Standardized contour+intensity for two GBM tumors. Registration results: (b) λ = 0.01,
(c) λ = 0.5. Shape plots: the x- and y-axes are used to visualize the x- and y-coordinates of the shape component. Intensity plots: the
x-axis shows the domain of the intensity function, while the y-axis captures the magnitude of intensity values.

Figure 5. Shape+intensity geodesics (along rows) between the
two simulated contour+intensity objects considered in Figure 2
for different values of λ. Top row to bottom row: λ =
0.01, 0.09, 0.17, 0.26, 0.34, 0.42, 0.5.

Figure 6. Shape+intensity geodesics (along rows) between the two
GBM tumors considered in Figure 3 for different values of λ. Top
row to bottom row: λ = 0.01, 0.09, 0.17, 0.26, 0.34, 0.42, 0.5.

each of the folds as a testing fold. As evident in the table,
these results corroborate our findings in the earlier analysis
based on the entire dataset. For the FLAIR data, the op-
timal value of λ estimated using the training folds is 0.5

Figure 7. Shape+intensity geodesics (along rows) between the two
GBM tumors considered in Figure 4 for different values of λ. Top
row to bottom row: λ = 0.01, 0.09, 0.17, 0.26, 0.34, 0.42, 0.5.

(a) (b)

Figure 8. Absolute difference (y-axis) in (a) median survival, and
(b) sample size between estimated clusters for different values of λ
(x-axis). Results based on T1 data are shown in blue while results
based on FLAIR data are shown in red.

in each of the three cases. The resulting median survival
differences across clusters evaluated using the left out test-
ing data are large and comparable (5.55, 9.00 and 6.05); the
sample sizes across clusters in the testing fold are also fairly
balanced in each case. For the T1 data, the optimal value
of λ is estimated to be 0.12 based on the second and third
training folds yielding median survival differences across
clusters evaluated using the left out testing data of 9.10 and
0.60; the sample sizes across clusters in the corresponding
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(a) (b)

Figure 9. Clusterwise Kaplan-Meier survival estimates, for λ
values that yield the largest difference in median survival, based
on (a) T1 data, and (b) FLAIR data. The study period time (in
months) is shown on the x-axis, while the Kaplan-Meier estimates
are on the y-axis.

(a) (b)

Figure 10. MDS plots, for λ values that yield the largest absolute
difference in median survival, for (a) T1 data, and (b) FLAIR data.
Each patient is colored according to cluster membership.

testing folds are fairly balanced. Note, however, the small
difference in median survival (0.60) in the third testing fold
(bottom row of the T1 results in Table 1). This indicates that
the choice of training and testing folds is critical as we have
small sample sizes in each of the folds. Based on the first
training fold, the estimated optimal value of λ is 0.5, but
results in very unbalanced clustering on the corresponding
testing fold. This again shows the limitation of the small
sample size in our dataset. Nevertheless, these results pro-
vide some evidence that the clusterwise survival analysis
results reported in this section are reliable. The results re-
ported here can be strengthened further by repeating this
analysis on a larger cohort of GBM patients.

The discrepancy between the clustering results based on
T1 and FLAIR is expected since the tumor outlines, and as-
sociated intensities, are captured differently in each modal-
ity; they highlight properties of tissues differently. Tumors
captured by FLAIR are generally more irregularly shaped,
having more complex protrusions, and also have higher in-
tensity compared to T1. Therefore, the same weight λ for
the intensity component can lead to different clustering re-
sults.

Modality Optimal Sample size Difference in
λ difference median survival

across test clusters

T1 0.5 20 3.50
0.12 0 9.10
0.12 5 0.60

FLAIR 0.5 2 5.55
0.5 4 9.00
0.5 5 6.05

Table 1. Three-fold cross-validation results for ten equally spaced
values of λ between 0.01 and 0.5.

Figure 11. Level curves for one T1 MRI-derived GBM tumor al-
lowing the study of shape and intensity on and inside the tumour
boundary.

4. Discussion

We proposed a framework that provides objective char-
acterization of tumor shape and intensity and allows assess-
ment of tumor heterogeneity among patients. The proposed
representation combines and balances information of tumor
shape and intensity along the tumor outline, estimated from
T1 and FLAIR MRIs, which is found to be useful in identi-
fying patients with different disease prognosis. The balance
of information is achieved by scaling the intensity along the
tumor contours to control its influence in tumor shape and
intensity comparisons. The proposed representation and as-
sociated distance are invariant to translation, scale, rotation
and reparameterization, which are desirable mathematical
properties. The definition of distance then enables statisti-
cal analysis of GBM tumor shape+intensity, e.g., clustering.
Besides the context of GBM, the proposed approach is gen-
eral and can be applied to data from other medical imaging
modalities.

We discovered that a certain emphasis on the intensity
component is helpful in distinguishing patients with poor
disease prognosis, in terms of survival, from those with
good prognosis, as shown in the clustering and survival
analysis results. Such information can be beneficial both for

559



patients and doctors to make medical decisions after GBM
diagnosis, e.g., whether to undergo invasive surgery to re-
move the tumor.

The proposed method uses information about the shape
of the tumor outline and the intensity along the outline. A
natural direction for future work is to extend the proposed
approach to additionally use information about the (shape
of) level curves inside the tumor and the associated inten-
sity values along these curves. Such a representation of a
GBM tumor for a single patient is illustrated in Fig. 11.
This extension would capture information regarding the
spatial organization of intensity values inside the tumor,
thus providing more information regarding GBM tumor
heterogeneity. We additionally plan to develop further
statistical tools for analyzing GBM tumor shape+intensity
objects including summarization via the mean and explo-
ration of variability through principal component analysis.
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