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Abstract

Researchers typically investigate neural network repre-
sentations by examining activation outputs for one or more
layers of a network. Here, we investigate the potential for
ReLU activation patterns (encoded as bit vectors) to aid
in understanding and interpreting the behavior of neural
networks. We utilize Representational Dissimilarity Matri-
ces (RDMs) to investigate the coherence of data within the
embedding spaces of a deep neural network. From each
layer of a network, we extract and utilize bit vectors to con-
struct similarity scores between images. From these simi-
larity scores, we build a similarity matrix for a collection of
images drawn from 2 classes. We then apply Fiedler parti-
tioning to the associated Laplacian matrix to separate the
classes. Our results indicate, through bit vector representa-
tions, that the network continues to refine class detectability
with the last ReLU layer achieving better than 95% sep-
aration accuracy. Additionally, we demonstrate that bit
vectors aid in adversarial image detection, again achiev-
ing over 95% accuracy in separating adversarial and non-
adversarial images using a simple classifier.

1. Introduction
For nearly as long as neural networks have dominated

various benchmarks, works have investigated methods for
comprehending and explaining their behavior. The recent
controversies around when to, and not to, trust the output
from ChatGPT perfectly encapsulates the problems with
treating networks as a “black box” [1] — explaining net-
work behavior links to trust, and the potential to better un-
derstand how to enhance performance even further. One
method to accomplish this is by examining the coherence of
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input data within the lower-dimensional embedding spaces
that exist within the network, as advocated by the seminal
work on representation learning [4]. Ideally, these interme-
diate embeddings will represent data in such a manner that
prescribed similarities (i.e. same class label) can be iden-
tified and distinguished from prescribed dissimilarities (i.e.
distinct class labels). Geometrically, this manifests if data
identified as similar are mapped to points that are close to-
gether in some embedding space while data identified as
dissimilar are mapped to points that are further apart. It is
then a simple task to distinguish similar data from dissimilar
data.

Analyzing how these embedding spaces are utilized and
their effectiveness can give insights into how the network
is processing and representing the data as it passes through.
This in turn can be used to improve the performance of the
neural network and facilitate the interpretation of its results.
Representational dissimilarity matrices (RDMs) are a use-
ful tool for visualizing the degree of coherence within these
embedding spaces — RDMs quantify the (dis)similarity of
a network’s representation to like- and dislike stimuli. By
examining the RDMs, we can identify patterns or irregular-
ities in the network’s representations of input data in order
to diagnose and address problems with the model’s perfor-
mance or interpretability [16]. We extend these RDMs with
a novel analysis: extending Fiedler partitioning to dissimi-
larity matrices interpreted as weighted graphs. Fiedler par-
titioning [9, 10], also known as spectral partitioning, is a
technique used in graph theory to divide a graph into two or
more subgraphs based on the eigenvalues and eigenvectors
of the graph’s Laplacian matrix.

Typically, the activations for a layer of a neural network
are utilized in neural network pattern analysis to unravel and
encapsulate useful statistics about the input [24]. However,
recent research has demonstrated that the coarser utilization
of “bit vectors”, derived from the output of Rectified Linear
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Unit (ReLU) activation patterns in early layers, are mean-
ingfully linked to adversarial images [14], which inspired
us to use RDMs to further investigate the representations of
bit vectors. In our study, we investigated the effectiveness
of Fiedler partitioning as derived from the Laplacian of a
similarity matrix constructed from the bit vectors within a
layer of a neural network. In other words, we computed the
Fiedler eigenvector of a certain Laplacian matrix related to
the pattern of ReLU activations in the nodes of a layer of
the network. Specifically, we examined the RDMs of each
ReLU layer for two classes using the Fiedler partitioning.
Since the number of nodes in a layer of a deep neural net-
works can be quite large (ranging from 100k to 800k in our
case), we hypothesized that a large number of bits were not
really needed for the classification task. To illustrate this,
we identified and extracted 1000 of the most significant bits
that ultimately led to the construction of the RDMs.

Our results revealed that as data proceeded to deeper
ReLU layers, distinct partitions began to emerge in the data,
and the classification accuracy for each class generally im-
proved. An important observation from our study is that
layers did not treat all data equally; some layers appeared
to be specifically focused on improving the ability to dis-
tinguish between a smaller collection of images. The RDM
analysis offers insights into how a network encodes infor-
mation about the input data and extracts crucial features for
classification, improving its transparency and interpretabil-
ity.

Based on the above analysis, we then conducted empir-
ical experiments to evaluate the effectiveness of bit vector-
induced partitioning to distinguish adversarial images from
non-adversarial images. Previous work has shown that ad-
versarial and non-adversarial images are linearly separable
in the latent layer (the penultimate layer activation) embed-
dings of a deep neural network [12]. Although bit vec-
tors provide a more coarse level of information about in-
put data, we have found that bit vectors from the last ReLU
layer of a neural network can also be used to effectively
separate non-adversarial images from adversarial ones. In
fact, we produced results that were at least as good as those
achieved by latent layer embeddings while using fewer fea-
tures. Overall, our results suggest that bit vectors in deep
neural networks offer a promising approach for identifying
adversarial images with high efficiency and potentially im-
proved performance.

Our contributions in this paper are as follows:

• We demonstrate that bit vector subsampling utilizing
1000 out of the 100k-800k available bits can separate
two-class data.

• We present a novel idea of utilizing Fiedler partition-
ing on the Laplacian matrix constructed from bit vec-
tor measures of similarity to achieve over 95% image

class identification accuracy.

• We show that bit vector representations can sepa-
rate adversarial images from non-adversarial ones with
more than 95% accuracy using a linear Support Vector
Machine (SVM) .

The structure of our paper is as follows: Section 2 pro-
vides a comprehensive review of the related literature, in-
cluding Fiedler partitioning, adversarial detection, and net-
work interpretability. Section 3 outlines the relevant defini-
tions that underpin the study. Section 4 presents the Fiedler
Vector algorithm and its practical application to the two-
class and two-superclass classification of images via the bit
vectors of ResNet-50. Section 5 illustrates that the linear
separability of the bit vectors of ResNet-50 can be utilized
to differentiate between non-adversarial and adversarial im-
ages. Finally, Section 6 offers concluding remarks.

2. Related Work

2.1. Fiedler Partitioning

The Fiedler vector, an eigenvector corresponding to the
smallest non-zero eigenvalue of the Laplacian matrix of a
weighted graph, is a fundamental tool in graph theory for
elucidating underlying substructures within a complex sys-
tem represented through pairwise similarities. Its entries
can be utilized to assign the vertices of the graph to two dis-
joint subsets while minimizing the sum of weights of the
edges between the subsets and maximizing the total weight
of edges inside the two subsets. The Fiedler vector algo-
rithm, also called Fiedler partitioning, has been success-
fully applied to numerous real-world problems: identify-
ing regions with similar texture or color properties [28],
identifying groups that share similar characteristics or func-
tions [23], and highlighting influential nodes or communi-
ties in a social network [18]. It is also a well-established
technique in machine learning and data analysis to uncover
and interpret subpatterns within data [8, 31]. One of the
key advantages of the Fiedler partitioning is its ability to
leverage a lower-dimensional feature space derived from the
network, as demonstrated in recent research by Schleider et
al. [26] and Cao et al. [5]. This feature space, typically ob-
tained via eigenvalue decomposition of a graph Laplacian
matrix, allows for efficient and effective data clustering and
visualization, making it a popular choice for a variety of
applications. In this work, we apply Fiedler partitioning
to representational dissimilarity matrices to perform novel
analyses.

2.2. Adversarial Detection

Deep neural networks are efficient in image classifica-
tion, but can be tricked by adversarial attacks [30]. Several
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distinct attacks have been proposed to exploit various weak-
nesses [6, 7, 11, 20, 21]. In response, multiple studies have
been conducted to leverage the characteristics of the hidden
and latent layers of deep neural networks for the purpose of
detecting adversarial images. For example, [3] proposed a
method using the latent layers, and [12] showed the mean-
ingful information carried by activations within these lay-
ers. To detect adversarial and out-of-distribution images,
[17] used features from hidden and latent layers to compute
class conditional Gaussian distributions and Mahalanobis
distances. On the other hand, [19] utilized intermediate con-
volution layer outputs to extract statistics that aid in detect-
ing adversarial images. Our methodology bears similarities
to [19] in that we also examine the internal workings of the
neural network. However, we employ a more rudimentary
metric, specifically the bit vectors generated by a relatively
small subset of a ReLU layer’s activation pattern rather than
relying on the latent layer values.

2.3. Network Interpretability

Interpreting the function of deep neural networks of-
ten involves understanding the hidden layers. Visualiza-
tion techniques using intermediate layers [32], network dis-
section [33], and learning disentangled representations [25]
are some of the few methods proposed to achieve this. In
our work, we contribute to network interpretability by us-
ing bit vectors extracted from intermediate ReLU layers.
In previous literature, quantitative metrics like Hamming
distance [27, 29], Jaccard distance [2], and cosine simi-
larity [15] have been used to evaluate the effectiveness of
the explainable methods. We computed image similarity in
our work by evaluating the pairwise Hamming distance be-
tween the bit vectors determined by data passing through
a ReLU layer and constructing a Laplacian matrix based
on these distances. Our results provide insights into the
neural network’s information processing, feature extraction,
and decision-making mechanisms, enhancing the network’s
transparency and interpretability.

3. Definitions

3.1. Bit Vectors

Consider a feed forward neural network containing
ReLU activation functions. Suppose the ith layer of the net-
work contains hi ReLU nodes. For a given input x ∈ Rm,
we denote its output in the ith layer, at these ReLU nodes,
as oi(x) =

[
oi1(x) . . . oihi

(x)
]⊤

. We define the bit vector

of x in the ith layer as si(x) =
[
si1(x) . . . sihi

(x)
]⊤

with

sij(x) :=

{
1 if oij(x) > 0,

0 if oij(x) = 0.
(1)

Thus, the bit vector is a function of the input x and assigns
a value of 1 to nodes that activate the ReLU function at x
and assigns a value of 0 otherwise. It is typical that the bit
vectors for various inputs in the neural network will exhibit
diverse activation patterns in the ReLU layers as the inputs
traverse the network.

3.2. Representational Dissimilarity Matrices

For a given neural network N with input set X =
{x1, . . . , xn}, let

{
oi(x1), . . . , o

i(xn)
}

be the output of X
in the ith hidden layer of N , we define a representational
dissimilarity matrix (RDM) at layer i as:

RDM (X,N) =
(
dijk

)
0≤j,k≤n

, (2)

where dijk is a measure of dissimilarity between oi(xj) and
oi(xk). For instance, di could be a distance function. In
essence, Representational Dissimilarity Matrices (RDMs)
provide a way to capture the internal representations of a
neural network by summarizing the similarities and differ-
ences between the neural responses to different inputs.

To define the RDM, one needs a measure of dissimilarity.
Different measures lead to different RDMs. In our study, we
employed the Hamming distance and the cosine distance for
di. The Hamming distance is a metric commonly used for
comparing two binary strings of the same length and de-
notes the number of positions where the corresponding en-
tries are distinct. We utilize the Hamming distance as one
of the distance metrics when constructing the RDM for an
input set X at layer i. The cosine distance between two
vectors is defined as 1 − cos(θ) where θ denotes the angle
between the two vectors. In addition to the Hamming dis-
tance, we utilize the cosine distance as a dissimilarity score
for the embeddings occuring in the latent layer of the neural
network.

3.3. Feature Selection

Feature selection is a technique used to reduce the di-
mensionality of the data by choosing features that do a good
job representing the data. In our experiments, we used Se-
lectKBest method from a Python library to reduce the di-
mensionality of bit vectors (i.e. to select a subset of bits
from the bit vector). Mathematically, let X = {x1, . . . , xn}
be a set of n input data points and let Y = {y1, . . . , yn} be
the target labels. Let fi(X,Y ) be a scoring function that
measures the importance of the ith feature in predicting the
target variable. Then, the SelectKBest function selects the
k features with the highest scores, and it returns the set of
indices Sk = {i1, i2, ..., ik} corresponding to the k highest
scores of the scoring function fi(X,Y ). In our experiments,
we use the chi-square statistic as the score function fi.
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4. Classification with Fiedler Vectors
In this section we apply the Fiedler Vector Algorithm,

initially introduced as a theoretical framework for spectral
clustering [9, 10], to groups of images from the ImageNet
dataset. The algorithm is based on the bit vectors col-
lected at various layers within the neural network known
as ResNet-50 [13]. Prior to delving into the applications of
the algorithm with ResNet-50 bit vectors, we first provide a
review of the Fiedler method and its associated definitions.

4.1. Fiedler Vector Algorithm

Consider a weighted graph G = (V,E,W ) where V =
{1, . . . , n} denotes the set of vertices, E denotes the set of
(unordered) edges, and W : E → R≥0 denotes the weights
of the elements in E. Thus each element of E is an un-
ordered pair of vertices and has an associated non-negative
weight. The weighted adjacency matrix A ∈ Rn×n of the
graph G is defined by the rules Aij = 0 if {i, j} /∈ E and
Aij = W ({i, j}) if {i, j} ∈ E. The degree matrix, D, is a
diagonal matrix with Di,i equal to the sum of the entries in
the ith row of A. It can also be expressed as D = diag(Ae)
and e is a column vector of all 1’s. The Laplacian matrix of
the graph G can then be expressed as follows:

Definition 4.1 Given an undirected weighted graph G =
(V,E,W ), its Laplacian matrix L is defined as L = D−A
where A is the weighted adjacency matrix of G and D is the
degree matrix of G.

In [9], it was shown that the Laplacian matrix L is sym-
metric, positive semi-definite, and has 0 as an eigenvalue.
The multiplicity of 0 as an eigenvalue is equal to the number
of connected components of G. Thus, if G is a connected
graph, then 0 is an eigenvalue with multiplicity 1. For con-
nected graphs, the second smallest eigenvalue of L is called
the algebraic connectivity of the graph G. It provides in-
formation about the ease with which the graph can be sepa-
rated into two components. In [10], the eigenvector associ-
ated with the second smallest eigenvalue of L, now referred
to as the Fiedler vector, was proposed as a means of “op-
timally” breaking apart G into two more tightly connected
components. The following theorem leads to the Fiedler
Vector Algorithm for partitioning the vertices of G.

Theorem 4.1 Let G = (V,E,W ) be a weighted connected
graph with weighted adjacency matrix A and Laplacian
matrix L. Let v2 be an eigenvector corresponding to the
second smallest eigenvalue of L. The Fiedler vector parti-
tion is:

C1 = {i ∈ N : v2(i) < 0} and C2 = {i ∈ N : v2(i) > 0}.

The vertices j satisfying v2(j) = 0 can be arbitrarily in-
cluded in either class.

The aforementioned Fiedler Vector Algorithm can be ex-
tended to partition 2l(l = 2, 3, . . .) clusters by leveraging
the sign patterns of entries in the l eigenvectors correspond-
ing to the first l smallest nonzero eigenvalues.

4.2. Experiment Setting

In the following sections, we will apply the Fiedler
Vector algorithm to perform classification tasks on the
ImageNet-1K dataset. This dataset has 1000 classes of im-
ages, each consisting of 1300 training images and 50 valida-
tion images. ResNet-50 refers to a particular trained, deep,
feed forward, convolutional, ReLU neural network that was
trained on the 1.3M training images in the ImageNet-1K
dataset [13]. To obtain the bit vectors for an image, we
pass the image through ResNet-50 and extract the bit vector
based on the output of each ReLU layer. This results in a
total of 17 bit vectors (as there are 17 layers of ResNet-50
that utilize ReLU activation function). The neural network
architecture features an initial set of four ReLU layers with
802,816 nodes, followed by four layers with half the nodes,
six layers with 1/4 of the nodes, and a final three layers with
1/8 of the initial number of nodes.

The weighted adjacency matrix A for a given set of im-
ages at each layer is obtained by computing the matrix
1−H , where 1 is a matrix of all ones, and H is the normal-
ized Hamming distance matrix. In other words, at a given
layer, the entry Hi,j of H is defined as the number of dif-
ferent entries in the bit vectors for images i and j divided
by the length of the bit vectors.

To account for the large number of nodes in each layer
and the varying degrees of importance among them, we uti-
lized a feature selection technique described in Section 3.3
to identify the most crucial bits in the bit vector. We then la-
beled each image with a much shorter bit vector consisting
of the most crucial bits. Finally, we applied the Fiedler Vec-
tor algorithm to the weighted adjacency matrix described in
the preceding paragraph.

In the classification process, we used the training data
of the selected classes to determine the 1000 most essential
features (bits), which we then used to compute the Lapla-
cian matrices for the training and test data of the chosen
classes, respectively. Finally, we evaluated the classification
rate using the Fiedler Vector algorithm on both the training
and test datasets.

4.3. Two-Class Classification

We defined four pairs of distinct classes for our exper-
iments. The first two pairs each consists of two different
species, specifically Tench vs Thunder Snake, and Rhode-
sian Ridgeback vs Monarch Butterfly. The other two pairs
belong to subcategories of two main categories, fish and
snake. In particular, the third pair is Tench vs Goldfish, and
the fourth pair is Thunder Snake vs Ringneck Snake.
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In our initial experiment, we extracted 1000 significant
features from the training data for two classes (Tench and
Thunder Snake) and utilized the same features from the val-
idation set to construct an RDM. We investigated how the
RDMs of these two classes evolve throughout the 17 ReLU
layers as depicted in Figure 1. We also noticed an inter-
esting pattern where one class grows more similar to the
other in the initial layers (layers 2-6), but later, both classes
drift apart as indicated by the increasing dissimilarity val-
ues. We observed clustering as the pairwise distance de-
creased within the same class, even in the initial layer. In
the later layers, both classes were distinctly separated in the
RDM, with a discernible boundary between them. Interest-
ingly, the separation was already evident at the 15th ReLU
layer.

Table 1 presents the classification accuracy for each layer
and the accuracy for each class calculated using the Fiedler
Vector Algorithm. The results are in line with the RDM
plots. It is interesting to note that while the classification
rate as a whole may decrease across two consecutive lay-
ers, the accuracy of one class may improve. Similar exper-
iments were performed for the remaining three pairs, and
the resulting test accuracy was plotted for 1, 5, 10, and 17
ReLU layers (see Figure 2). Our findings again indicated a
positive correlation between layer depth and classification
accuracy, implying that the neural network can extract in-
creasingly valuable information from the data later in its
architecture.

Figure 2 shows comparable performance for the three
pairs of classes but slightly worse performance for the
fourth, Thunder Snake vs Ringneck Snake. This can per-
haps be attributed to the fine-grained differences between
the Thunder Snake and Ringneck Snake that the coarse
characterization given by bit vectors may be unable to com-
pletely capture.

In conclusion, our experiments have demonstrated that
the coarse representation given by bit vectors, filtered to
1000 significant features, capture enough information about
the data to be used as a tool for neural network analysis.
The Fiedler Vector algorithm applied to the Laplacian ma-
trix constructed from the bit vectors is shown to be an effec-
tive method for image classification, with the classification
rate generally increasing in later layers.

4.3.1 Two Superclass Classification

The Fiedler vector has shown promising results in classify-
ing two distinct classes, which prompted us to investigate
its effectiveness in partitioning broader classes, specifically
the superclass of fish and snake, and fish and cat. Our anal-
ysis indicates that the Fiedler Vector algorithm is an effec-
tive method for classifying two superclasses. To identify the
best 1000 features, we selected the training datasets of class

Tench and class Goldfish, and class Thunder snake and class
Ringneck snake. These classes belong to the fish and snake
superclasses, respectively. We then applied the Fiedler Vec-
tor algorithm to the validation dataset of these superclasses,
resulting in a test accuracy of 94.5%, 97.5%, and 99% for
the last three ReLU layers, respectively.

We also conducted similar experiments on the fish
(Tench and Goldfish) and cat (Persian and Egyptian) su-
perclasses. For the last three ReLU layers, the resulting
test accuracy was 98%, 99%, and 99.5%, respectively. Fig-
ure 3 shows the resulting RDMs for these two pairs of su-
perclasses at the last ReLU layer.

Our findings suggest that the bit vectors can identify
common features for classes belonging to the same super-
class, even in the earlier ReLU layers. Additionally, the
Fiedler Vector algorithm effectively distinguishes between
two different superclasses.

5. Adversarial Image Analysis

The success of Fiedler partitioning in separating image
classes motivated us to see if bit vectors could also distin-
guish between adversarial and non-adversarial images. In
the next two sections, we conducted experiments to analyze
different adversarial attacks. Firstly, we examined the cor-
relation between the RDMs of bit vectors and the RDMs of
latent layer embeddings. Encouraged by the positive results
of this experiment, we constructed a linear SVM classifier
in the subsequent section. The SVM classifier was trained
on the bit vectors and achieved promising results, demon-
strating the potential of using bit vectors for adversarial im-
age detection.

5.1. RDM Comparison between ReLU layer and
Latent Layer Embeddings

In our investigation, we aimed to compare the differ-
ences in latent layer embeddings and corresponding bit
vectors of adversarial and non-adversarial images in the
Imagenet-1K validation set. To ensure coherence, we used
2048 significant features for the ReLU-17 layer bit vectors,
corresponding to the dimensionality of the latent layer em-
beddings. We used Hamming distance for the bit vector
RDM and cosine distance for the latent layer RDM to build
our RDMs. Figure 4 illustrates a distinct separation between
the two classes in the latent layer RDM, as anticipated. Sim-
ilarly, the ReLU layer RDM showed a clear difference be-
tween adversarial and non-adversarial classes. The Pearson
correlation between the two RDMs was 0.620, indicating a
positive correlation between the representations.

In the following section, we investigate bit vectors’ po-
tential in distinguishing between these two types of images
via a linear classifier.
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Figure 1. RDM for Tench and Thunder Snake on the test data at Layers 1-17.

Layer number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Accuracy (%) 60 69 58 52 76 81 83 59 84 90 83 85 78 73 100 100 99

Tench (%) 24 54 22 4 62 62 82 18 74 86 66 72 56 46 100 100 98
Thunder Snake (%) 96 84 94 100 90 100 84 100 94 94 100 98 100 100 100 100 100

Table 1. Test accuracy (in percentage) at layer 1-17 for Tench and Thunder Snake using Fiedler Vector Classifier.

5.2. Linear Separability Comparison

The ReLU activation patterns of deep neural networks
are a tremendous simplification of the workings of the net-
work yet contain essential information about the input data,
as demonstrated by the findings in [14]. That study indi-

cated that only 5 bits out of the 6 million in the bit vectors
are sufficient to distinguish between most adversarial and
non-adversarial images. To the best of our knowledge, the
use of bit vectors to investigate adversarial images is not
prevalent in the literature. However, [12] showed that linear
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Figure 2. Test accuracy for four pairs of two classes each at layer
1, 5, 10, 17 using Fiedler Vector Algorithm.

Figure 3. Test accuracy for fish (Tench and Goldfish) vs snake
(Thunder and Ringneck) and for fish (Tench and Goldfish) vs cat
(Persian and Egyptian) at layer 17 using Fiedler Vector Algorithm.

Figure 4. RDM comparisons of ReLU layer and latent layer for
non adversarial and adversarial images.

separability can be achieved between adversarial and non-
adversarial images using latent layer embeddings. In our
experiments, we observed that bit vectors can also achieve
comparable or better results in linear separability. Specifi-
cally, we utilized the last ReLU layer of ResNet-50, ReLU-
17, to generate the 100352-dimensional bit vectors.

Although the linear separability using bit vector repre-
sentations from the later part of the network may seem ob-
vious, our approach’s efficiency lies in selecting 1000 of the
100352 bits that contain the most information. By training a
linear SVM on this concentrated information, we were able
to distinguish adversarial from non-adversarial images. In
our experimental analysis, we utilized the validation dataset
of ImageNet-1K. Instead of using the entire dataset, we se-
lectively choose classes based on their placement within the
WordNet hierarchy [22]. These datasets are as follows:

Randomly selected classes We utilized a dataset consist-
ing of 100 classes that were randomly selected from the val-
idation dataset of ImageNet-1K. Each class contained 50
images, resulting in a total of 5000 images for the dataset.

Broad Classes Using WordNet Hierarchy The second
dataset was generated by leveraging the WordNet hierar-
chy to identify and select high-level classes from the Im-
ageNet validation dataset. The data was labeled based on
the top-level categories, resulting in a dataset of 11,600 im-
ages that span five broad classes: aquatic animals, reptiles,
carnivores, insects, and natural objects.

Subclasses from Selected Broad Classes The third
dataset consisted of one subclass from each of the five
classes in the second dataset. The selected subclasses were
fish, snakes, working dogs, butterflies, and plants, resulting
in a total of 2,650 images.

To generate adversarial images, we utilized four dis-
tinct attack methods: DAmageNet [7] (the dataset was di-
rectly downloaded), Fast Gradient Sign Method (FGSM)
[11], Projected Gradient Descent (PGD) [20], and Carlini
& Wagner (CW) [6]. We then conducted five Linear SVM
experiments on the resulting datasets, including ImageNet
vs. DAmageNet, ImageNet vs. FGSM, ImageNet vs. PGD,
ImageNet vs. CarliniWagner, and ImageNet vs. all adver-
sarial images combined.

5.2.1 Experiments

We began by dividing our two sets of original images’ bit
vectors Xorg and adversarial images’ bit vectors Xadv into
separate training and test sets, which resulted in four sets of
bit vectors: Xorg

train, Xorg
test , Xadv

train, and Xadv
test . We applied a fea-

ture selection method to Xorg
train and Xadv

train independently to
select k features (bits) from the last ReLU layer for both
original and adversarial images. We discarded the other
ReLU features, resulting in Xorg

trainSelected and Xorg
testSelected for

original bit vectors, and Xadv
trainSelected and Xadv

testSelected for ad-
versarial bit vectors. We then concatenated the original bit
vectors with the adversarial bit vectors, giving us our final
train and test sets: Xtrain and Xtest. Simultaneously, we gen-
erated labels vectors ytrain and ytest, where the label is either
original or adversarial. Finally, we trained a linear SVM
classifier on (Xtrain, ytrain) and evaluated the classifier per-
formance on the test set (Xtest, ytest). The pseudo-code for
this experiment is presented in Algorithm 1.

Using a consistent data split, we generated and evalu-
ated models using two k values: 2048 and 1000. Results
are shown in 2 and 3, corresponding with accuracy and AU-
ROC, respectively. We selected k = 2048 because that cor-
responds with the dimensionality of the latent layer embed-
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Attack type Random selection WordNet hierarchy Subclasses
ReLU1000

accuracy
ReLU2048

accuracy
Latent layer

accuracy
ReLU1000

accuracy
ReLU2048

accuracy
Latent layer

accuracy
ReLU1000

accuracy
ReLU2048

accuracy
Latent layer

accuracy
DAmagenet 0.978 0.992 0.977 0.961 0.989 0.984 0.944 0.989 0.968

FGSM 0.935 0.981 0.9625 0.966 0.993 0.954 0.966 0.988 0.938
PGD 0.917 0.97 0.902 0.961 0.979 0.885 0.911 0.977 0.868

CarliniWagner 0.958 0.992 0.962 0.959 0.991 0.996 0.970 0.961 0.993
All 0.959 0.979 0.9416 0.975 0.987 0.939 0.936 0.986 0.931

Table 2. Accuracy comparison between bit vectors and latent layer embeddings.

Random selection WordNet hierarchy Subclasses
Attack type ReLU1000

AUROC
ReLU2048

AUROC
Latent layer

AUROC
ReLU1000

AUROC
ReLU2048

AUROC
Latent layer

AUROC
ReLU1000

AUROC
ReLU2048

AUROC
Latent layer

AUROC
DAmagenet 0.997 0.999 0.997 0.993 0.999 0.998 0.989 0.999 0.995

FGSM 0.982 0.997 0.992 0.995 0.999 0.988 0.995 0.999 0.982
PGD 0.976 0.996 0.962 0.994 0.998 0.948 0.971 0.998 0.936

CarliniWagner 0.993 0.999 0.999 0.994 0.999 0.999 0.995 0.993 0.999
All 0.985 0.996 0.97 0.994 0.998 0.963 0.978 0.998 0.955

Table 3. AUROC comparison between bit vectors and latent layer embeddings.

dings, allowing us to compare bit vectors with latent em-
beddings. We experimented with k = 1000 to investigate
how bit vectors compared to latent embeddings when the di-
mensionality of the bit vectors was substantially lower than
the latent embeddings.

Algorithm 1 Linear SVM Classifier

Require: Xorg, Xadv, ResNet-50
Ensure: Accuracy and AUROC scores

1) Split into sets (Xi
train) and (Xi

test) where i = org, adv
2) Determine class labels (yitrain) based on the number of
classes indicated by the chosen dataset.
3) Select the top k features for (Xi

train).
4) Select the same features for (Xi

test).
5) Concatenate the selected training sets (Xi

trainSelected) for
i = org, adv into a single set (Xtrain).
6) Concatenate the selected test sets (Xi

testSelected) for i =
org, adv into a single set (Xtest).
7) Create label vectors (ytrain) and (ytest) for the training
set and test set with 0’s for original images and 1’s for
adversarial images.
8) Train a Linear SVM on (Xtrain, ytrain).
9) Evaluate the performance on (Xtest, ytest).

5.2.2 Results

We conducted a comprehensive evaluation of our approach
using accuracy and AUROC metrics, compared to SVM on
latent layer embeddings (2048 features) in Tables 2 and 3.
Our findings indicate that bit vectors with 2048 features ex-
hibit better accuracy and AUROC scores than latent layer
embeddings for adversarial image detection. Also, it is
worth noting that when we reduced the number of features

to 1000, bit vectors performance is comparable to latent
layer scores, indicating that bit vectors do not need much
information to be impactful. This corresponds with the find-
ings in [14], who also noticed that bit vectors can be heav-
ily down sampled while still maintaining meaningful infor-
mation. This highlights the potential for a bit vector based
approach for detecting adversarial attacks, as it can extract
crucial information with fewer bits.

6. Conclusion
This paper examined the potential of ReLU activation

patterns (bit vectors) for interpreting neural networks. We
investigated a novel way to extend RDMs, a popular tech-
nique for comparing the similarity of networks, to facilitate
Fiedler partitioning. Through the use of Representational
Dissimilarity Matrices (RDMs), we investigated the coher-
ence of input data within the network’s embedding spaces.
Bit vectors were utilized to construct similarity scores be-
tween images from two distinct classes within each layer
of a deep neural network. Fiedler partitioning was then
employed to separate the classes in these matrices. Our
findings demonstrated that the bit vectors improve the de-
tectability of classes throughout the network, with the final
ReLU layer achieving over 95% separation accuracy. Fur-
thermore, we showed that bit vectors are effective in ad-
versarial image detection, achieving over 95% accuracy in
separating adversarial and non-adversarial images using a
linear SVM.
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