
A. Variational Autoencoders
This section reviews VAEs and the tools of Riemannian

geometry that support our curvature estimation method. For
further background in variational inference and VAEs, we
direct the reader to [6, 18].

A variational autoencoder (VAE) is a generative deep
latent variable model widely used for unsupervised learn-
ing [30]. A VAE uses an autoencoder architecture to im-
plement variational inference: it is trained to encode in-
put data in a compact latent representation, and then de-
code the latent representation to reconstruct the original in-
put data. Consider an N -dimensional dataset of k vectors
x1, . . . , xk ∈ RN . The VAE models each data vector xi as
being sampled from a likelihood distribution p(xi|zi) with
lower-dimensional unobserved latent variable zi. The like-
lihood distribution is usually taken to be Gaussian, so we
write the reconstructed input as xreci = f(zi) + ϵi with
ϵi ∼ N (0, σ2IN ). The function f is here represented by a
neural network called the decoder.

The VAE simultaneously trains an encoder that rep-
resents the approximate posterior distribution q(z|x) over
the latent variables z. The VAE achieves its objective by
minimizing an upper-bound of the negative log-likelihood,
which writes as the sum of a reconstruction loss and a
Kullback-Leibler (KL) divergence:

L = Lrec + LKL

= −Eq(z)[log p(x|z)] + KL(q(z|x) ∥ p(z)).
(1)

We use a similar loss in our experiments, but we adapt
the KL term to the topology of the latent space, which we
call the template manifold Z .

B. Derivations of the Second Fundamental
Form for Surfaces in 3-D

We give additional details on the second fundamental
form II, for a surface within R3, and the associated mean
curvature vector.

Definition 7 (Second fundamental form II of a surface in
R3). Consider a surface S in R3, as the graph of a twice
differentiable function f(u, v). We choose our coordinate
system such that f(u, v) = 0 defines the tangent plane to
S at the point z and (u, v) are the coordinates of a small
displacement x ∈ TzS. By Taylor’s theorem, the best ap-
proximation of f(u, v) in a small region around z is

fz(u, v) =
1

2
(Lu2 + 2Muv +Nv2) =

1

2
xT IIz x,

with: IIz =

[
L M
M N

]
.

In this equation, IIz is a matrix of second partial derivatives
of f at z, called the second fundamental form of the surface.

The second fundamental form allows to define the mean
curvature vector.

Definition 8 (Mean curvature H of a surface in R3 from
its second fundamental form II). Consider a surface in R3

represented by its second fundamental form IIz . Then, its
mean curvature vector is given by:

Hz =
1

2
Tr IIz. (2)

In the specific case of two-dimensional surfaces im-
mersed in R3, the mean curvature vector also enjoys an
equivalent definition, given below.

Definition 9 (Mean curvature H of a surface in R3). Con-
sider a 2-dimensional surface S embedded in R3. A normal
vector at a point z ∈ S defines a family of normal planes
containing this vector, each of which cuts the surface in a
direction ψ producing a plane curve. The curvature of such
a curve at z is given by κz = 1

R(z) , whereR(z) is the radius
of the osculating circle at that point, i.e. the circle that best
approximates this curve locally.

The mean curvature Hz at the point z is defined as

Hz =
1

2π

∫ 2π

0

κz(ψ) dψ, (3)

which is the average of the curvatures κz(ψ) over all direc-
tions ψ in the tangent plane at z.

Definition 9 provides the intuition behind the name
“mean” curvature, as its defining equation is effectively a
mean.

C. Derivations of the Mean Curvature Vectors
C.1. General Formula

We present the general definition of mean curvature, that
builds on the definition of second fundamental form. We re-
fer the reader to the next subsections for concrete examples
of these definitions in the special case of two-dimensional
surfaces in R3.

Definition 10 (Second fundamental form [3]). Consider the
manifold M represented as the immersion of Z into X such
that M = f(Z), M ⊂ X . We have:

II(z)αij = ∇2
ijf

α(z) = ∂2ijf
α(z)− Γk

ij(z)∂kf
α(z)

+Γ̄α
βγ(f(z))∂if

β(z)∂jf
γ(z).

Here, Γk
ij are the Christoffel symbols of Z for the pullback

metric and Γ̄α
βγ the Christoffel symbols of X for the metric

of X . In this formula, i, j are indices for basis elements
of Tf(z)X , identified with basis elements of TzZ since both
tangent spaces share the same metric; while α in an index
for a basis element of Nf(z)X .



We note that, in the case where X = RN or X = RN
+ ,

the Christoffel symbols Γ̄α
βγ are all zeros. Additionally, in

the specific case where the manifold Z is one dimensional,
its Christoffel symbols are 0. In other words, for a ring
immersed in RN

+ , the Hessian with respect to the pullback
metric is the traditional Hessian: ∇2

ijf(z) =
∂2f

∂xi∂xj
(z).

We now give the general definition of the mean curvature
vector, for any submanifold of X .

Definition 11 (Mean curvature vector [3]). The mean cur-
vature vector H(z) of M = f(Z) ⊂ X is defined as:

Hα(z) =
1

N
Tr II(z)α =

1

N
gijII(z)αij ,

where N is the dimension of X , and the trace Tr is com-
puted with respect to gij , the inverse of the Riemannian met-
ric matrix of Z .

This leads us to the definition of mean curvature vector
of an immersed manifold.

Definition 12 (Mean curvature vector (immersed manifold)
[3]). The mean curvature vector H(z) of M is defined as:

Hα(z) =
1

N
gij

(
∂2ijf

α(z)− Γk
ij(z)∂kf

α(z)

+ Γ̄α
βγ(f(z))∂if

β(z)∂jf
γ(z)

)
,

where N is the dimension of X , and gij is the inverse of the
Riemannian metric matrix of Z .

C.2. Mean Curvatures of the Circle

Example 1 (Mean curvatures of the circle immersed in
RN ). We consider a circle C of radius R immersed in RN .
The norms of its mean curvature vector is:

∥HC(θ)∥ =
1

R
, ∀θ ∈ S1. (4)

Proof. We compute the mean curvature of a circle im-
mersed in RN as:

f : S1 7→ RN

θ 7→ f(θ) = P.


R cos θ
R sin θ

0
...
0

+ t,

where P ∈ SO(N) represents a rotation in RN , and t ∈
RN a translation in RN illustrating that the circle can be
placed and oriented in any direction in RN .

We compute the second fundamental form, for k =
1, 2, 3:

II11(θ) =


d2f1

dθ2 (θ)
d2f2

dθ2 (θ)
...

d2fN

dθ2 (θ)

 =


−R cos θ
−R sin θ

0
...
0

 . (5)

The mean curvature vector is then:

HC(θ) =
1

1
TrIIθ

= g11II11(θ)

=
1

R2


−R cos θ
−R sin θ

0
...
0



=
1

R


− cos θ
− sin θ

0
...
0


Its norm is: ∥HC(θ)∥ = 1

R for all θ ∈ S1.

C.3. Mean Curvatures of the Sphere

Example 2 (Mean curvatures of the sphere immersed in
RN ). We consider a sphere S of radius R immersed in RN .
The norm of its mean curvature vector is:

∥HC(θ, ϕ)∥ =
1

R
, ∀θ, ϕ ∈ S2. (6)

Proof. We compute the mean curvature of a sphere of ra-
dius R immersed in RN as:

f : S2 7→ RN

θ, ϕ 7→ f(θ, ϕ) = P.



R sin θ cosϕ
R sin θ sinϕ
R cos θ

0
...
0


+ t,

where P ∈ SO(N) represents a rotation in RN , and t ∈
RN a translation in RN illustrating that the sphere can be
placed and oriented in any direction in RN .



We compute the Hessian:

∂2f

∂xi∂xj
(θ, ϕ) =



∂2f1

∂xi∂xj
(θ, ϕ)

∂2f2

∂xi∂xj
(θ, ϕ)

∂2f3

∂xi∂xj
(θ, ϕ)

0
...
0


, (7)

where we use the conventions x1 = θ and x2 = ϕ. In
what follows, for conciseness of the derivations, we do not
write the components α of fα for α = 4, ..., N , as they only
contribute terms equal to 0.

We get:

∂2f

∂θ2
(θ, ϕ) =

−R sin θ cosϕ
−R sin θ sinϕ

−R cos θ

 ,

∂2f

∂θ∂ϕ
(θ, ϕ) =



−R cos θ sinϕ
R cos θ cosϕ

0
0
...
0


,

∂2f

∂ϕ2
(θ, ϕ) =

−R sin θ cosϕ
−R sin θ sinϕ

0

 .
We only compute the diagonal terms, avoiding the com-

putation of ∂2f
∂θ∂ϕ (θ, ϕ) because we only need the diagonal

terms in the definition of the trace, given that the inverse of
the pullback metric is diagonal.

We compute the Hessian with respect to the pullback
metric, again omitting its components for α > 3.

IIij(θ, ϕ) =


∂2f1

∂xi∂xj
(θ, ϕ)−

∑2
k=1 Γ

k
ij

∂f1

∂xk

∂2f2

∂xi∂xj
(θ, ϕ)−

∑2
k=1 Γ

k
ij

∂f2

∂xk

∂2f3

∂xi∂xj
(θ, ϕ)−

∑2
k=1 Γ

k
ij

∂f3

∂xk

 . (8)

For the 2-sphere, the Christoffel symbols are:

Γ1
11 = Γ2

11 = Γ2
22 = Γ1

12 = Γ1
21 = 0,

Γ1
22 = − sin θ cos θ,

Γ2
12 = Γ2

21 =
cos θ

sin θ
,

so that we get II11(θ, ϕ):

II11(θ, ϕ) =

−R sin θ cosϕ
−R sin θ sinϕ

−R cos θ

− Γ1
11

∂f

∂x1
− Γ2

11

∂f

∂x2

=

−R sin θ cosϕ
−R sin θ sinϕ

−R cos θ

− 0.
∂f

∂x1
− 0.

∂f

∂x2

=

−R sin θ cosϕ
−R sin θ sinϕ

−R cos θ

 ,

as well as II22(θ, ϕ):

II22(θ, ϕ) =

−R sin θ cosϕ
−R sin θ sinϕ

0

− Γ1
22

∂f

∂x1
− Γ2

22

∂f

∂x2

=

−R sin θ cosϕ
−R sin θ sinϕ

0

− (− sin θ cos θ)
∂f

∂x1
− 0.

∂f

∂x2

=

−R sin θ cosϕ
−R sin θ sinϕ

0

+ sin θ cos θ

R cos θ cosϕ
R cos θ sinϕ
−R sin θ


= R sin θ

− cosϕ+ cos2 θ cosϕ
− sinϕ+ cos2 θ sinϕ

− sin θ cos θ


= R sin θ

− sin2 θ cosϕ
− sin2 θ sinϕ
− sin θ cos θ


= R sin2 θ

− sin θ cosϕ
− sin θ sinϕ

− cos θ

 .

The inverse of the Riemannian metric matrix is:

gS(θ, ϕ)
−1 =

[
1
R2 0
0 1

R2 sin2 θ

]
. (9)

The mean curvature vector is then (omitting its zero com-



ponents):

HS(θ, ϕ) =
1

2
TrIIp

=
1

2
g11II11(θ, ϕ) +

1

2
g22II22(θ, ϕ)

=
1

2R2

−R sin θ cosϕ
−R sin θ sinϕ

−R cos θ


+

1

2R2 sin2(θ)
R sin2 θ

− sin θ cosϕ
− sin θ sinϕ

− cos θ


=

1

2R

− sin θ cosϕ
− sin θ sinϕ

− cos θ

+
1

2R

− sin θ cosϕ
− sin θ sinϕ

− cos θ


=

1

2R

−2 sin θ cosϕ
−2 sin θ sinϕ

−2 cos θ


= − 1

R

sin θ cosϕsin θ sinϕ
cos θ

 .
Its norm is: ∥H(θ, ϕ)∥ = 1

R , which is the expected formula.

C.4. Mean Curvatures of the Torus

Example 3 (Mean curvatures of the torus immersed in RN ).
We consider the torus T obtained by rotating a circle of
radius b and center (a, 0) around the axis z, and immersed
in RN . The norms of its mean curvature vector is:

∥HT (θ, ϕ)∥ =
R+ 2r cosϕ

r(R+ r cos(ϕ))
, ∀θ, ϕ ∈ S1 × S1.

(10)

Proof. We compute the mean curvature of a torus immersed
in RN :

f : S1 × S1 7→ RN

θ, ϕ 7→ f(θ, ϕ) = P.



c(ϕ) cos θ
c(ϕ) sin θ
r sinϕ

0
...
0


+ t,

where c(ϕ) = R+ r cosϕ.

We compute the Hessian:

∂2f

∂xi∂xj
(θ, ϕ) =



∂2f1

∂xi∂xj
(θ, ϕ)

∂2f2

∂xi∂xj
(θ, ϕ)

∂2f3

∂xi∂xj
(θ, ϕ)

0
...
0


, (11)

where we use the conventions x1 = θ and x2 = ϕ. In
what follows, for conciseness of the derivations, we do not
write the components α of fα for α = 4, ..., N , as they only
contribute terms equal to 0.

We get:

∂2f

∂θ2
(θ, ϕ) =

−c(ϕ) cos θ−c(ϕ) sin θ
0

 ,
∂2f

∂ϕ2
(θ, ϕ) =

−r cosϕ cos θ−r cosϕ sin θ
−r sinϕ

 .

We only compute the diagonal terms, avoiding the com-
putation of ∂2f

∂θ∂ϕ (θ, ϕ) because we only need the diagonal
terms in the definition of the trace, given that the inverse of
the pullback metric is diagonal.

We compute the Hessian with respect to the pullback
metric, again omitting its components for α > 3.

IIij(θ, ϕ) =


∂2f1

∂xi∂xj
(θ, ϕ)−

∑2
k=1 Γ

k
ij

∂f1

∂xk

∂2f2

∂xi∂xj
(θ, ϕ)−

∑2
k=1 Γ

k
ij

∂f2

∂xk

∂2f3

∂xi∂xj
(θ, ϕ)−

∑2
k=1 Γ

k
ij

∂f3

∂xk

 . (12)

For the torus, the Christoffel symbols are:

Γ1
11 = Γ1

22 = Γ2
22 = 0,

Γ1
12 = Γ1

21 = −r sinϕ
c(ϕ)

,

Γ2
11 =

1

r
sinϕc(ϕ),



so that we get:

II11(θ, ϕ) =

−c(ϕ) cos θ−c(ϕ) sin θ
0

− Γ1
11

∂f

∂x1
− Γ2

11

∂f

∂x2

=

−c(ϕ) cos θ−c(ϕ) sin θ
0

− 0
∂f

∂x1

− 1

r
sinϕc(ϕ)

−r sinϕ cos θ−r sinϕ sin θ
r cosϕ


= c(ϕ)

− cos θ + sin2 ϕ cos θ
− sin θ + sin2 ϕ sin θ

− sinϕ cosϕ


= c(ϕ)

− cos2 ϕ cos θ
− cos2 ϕ sin θ
− sinϕ cosϕ


= c(ϕ) cosϕ

− cosϕ cos θ
− cosϕ sin θ

− sinϕ

 ,

and

II22(θ, ϕ) =

−r cosϕ cos θ−r cosϕ sin θ
−r sinϕ

− Γ1
22

∂f

∂x1
− Γ2

22

∂f

∂x2

=

−r cosϕ cos θ−r cosϕ sin θ
−r sinϕ

− 0
∂f

∂x1
− 0

∂f

∂x2

= −r

cosϕ cos θcosϕ sin θ
sinϕ

 .

The inverse of the Riemannian metric matrix is:

gS(θ, ϕ)
−1 =

[ 1
(R+r cosϕ)2 0

0 1
r2

]
. (13)

The mean curvature vector is then:

HS(θ, ϕ) =
1

2
TrIIp

=
1

2
g11II11(θ, ϕ) +

1

2
g22II22(θ, ϕ)

=
1

2c2(ϕ)
c(ϕ) cosϕ

− cosϕ cos θ
− cosϕ sin θ

− sinϕ


+

1

2r2
(−r)

cosϕ cos θcosϕ sin θ
sinϕ


=

cosϕ

2c(ϕ)

− cosϕ cos θ
− cosϕ sin θ

− sinϕ

− 1

2r

cosϕ cos θcosϕ sin θ
sinϕ


= −

(
cosϕ

2c(ϕ)
+

1

2r

)2 cosϕ cos θ2 cosϕ sin θ
2 sinϕ


= −

(
cosϕ

c(ϕ)
+

1

r

)cosϕ cos θcosϕ sin θ
sinϕ


= −r cosϕ+R+ r cosϕ

rc(ϕ)

cosϕ cos θcosϕ sin θ
sinϕ


= − R+ 2r cosϕ

r(R+ r cos(ϕ))

cosϕ cos θcosϕ sin θ
sinϕ

 .
Its norm is: ∥H(θ, ϕ)∥ = R+2r cosϕ

r(R+r cos(ϕ)) , which is the ex-
pected formula.

D. Invariance under Reparameterizations
We give the proof for Lemma 1.

Lemma 3 (Invariance with respect to reparameterizations).
The curvature profile is invariant under reparameteriza-
tions f → f ◦ φ−1 of the neural manifold M.

Proof. The distance between two points on the latent man-
ifold is given by:

dist(z0, z) =
∫ 1

0

dτ

√
dγc

dτ

dγd

dτ
gcd(γ(τ))

Where γ is a geodesic and g is the pullback metric induced
by f . Consider a reparameterization of the latent space z̃ =
φ(z). The distance between z̃0 and z̃ is then given by

dist(z̃0, z̃) =
∫ 1

0

dτ

√
dγ̃a

dτ

dγ̃b

dτ
g̃ab(γ̃(τ))

Which we can write as

dist(z̃0, z̃) =
∫ 1

0

dτ

√
dγ̃a

dγc
dγc

dτ

dγ̃b

dγd
dγd

dτ
g̃ab(γ̃(τ))



Via the metric tensor transformation law,

gcd(γ) =
dγ̃a

dγc
dγ̃b

dγd
g̃ab(γ̃(τ))

we conclude that dist(z̃0, z̃) = dist(z0, z) when the
latent manifold is endowed with the pullback metric.
Thus, if we consider the mean curvature vector H(z) =
H(dist(z0, z)) using a reference point z0 = z̃0, we obtain a
reparameterization-invariant curvature profile on the latent
manifold.

E. Examples of Latent Losses
We illustrate the latent loss term presented in the main

text with its explicit formulae for manifolds with topology
S1 or S2.

Example 4 (Latent loss terms for Z = S1, S2). The latent
loss terms for neural manifolds parameterized by template
manifolds S1, S2 are given by:

LS1

latent = (1− cos (θgt − θ̂))2,

LS2

latent = (1− cos (θgt − θ̂)

+ sin(θgt) sin(θ̂)(1− cos (ϕgt − ϕ̂)))2.

We implement these loss terms when we seek to enforce
a canonical parameterization of the latent space, informed
by outside world’s task variables.

F. Invariance under Permutations
We give the proof for Lemma 2.

Lemma 4 (Invariance of topology and geometry). Consider
a neural manifold M embedded in neural state space RN

+

corresponding to the recording of N neurons. Permuting
the order of the N neurons: (i) leaves the topology of M
invariant, (ii) leaves the geometry of M invariant.

Proof. Consider a neural manifold M embedded in neural
state space RN

+ corresponding to the recording of N neu-
rons. Consider SN the group of permutations of the set
{1, . . . , N} labelling the N neurons. The group SN acts
on RN

+ by permutating of the order in which neurons are
recorded, i.e., by permuting the axes of the space RN

+ as:

SN × RN
+ 7→RN

+

σ , (x1, . . . , xN ) 7→(xσ(1), . . . , xσ(N))

Consider one permutation σ ∈ SN . We show that the
topology and geometry of M is invariant with respect to σ,
by showing that σ is a linear, thus continuous, isometry of
RN

+ .

By properties of permutation, σ can be written as a prod-
uct of transpositions τt’s:

σ = ΠT
t=1τt (14)

where the product is taken in the sense of the composition.
A given transposition τt exchanges only two neurons. If
each transposition leaves the topology of M invariant, then
so does σ. Thus, we show that any transposition τt leaves
the topology of M invariant.

Without loss of generality, we can prove it for a transpo-
sition τt exchanging neuron 1 and neuron 2, which will sim-
plify the notations. The transposition τt = τ12 exchanges
neuron 1 and 2, which corresponds to exchanging the first
two axes, axis x1 and axis x2 in RN

+ , while keeping all other
axes invariant. The action of this transposition corresponds
to the symmetry of hyperplane x1 = x2 within RN

+ , as:

RN
+ 7→ RN

+

x = (x1, x2, . . . , xN ) 7→ (x2, x1, . . . , xN ) = T12.x

where T12 is the permutation matrix:

T12 =


0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

We see that the transposition τ12 of two axes is a linear map
expressed by matrix T12. As a linear map, τ12 is continu-
ous. Any continuous map acting on a manifold preserves
the topology of this manifold. Consequently, any transpo-
sition, and thus any permutation, preserves the topology of
the neural manifold M.

Additionally, the matrix T12 is orthogonal as we can
show that TT

12.T12 = IN where IN is the identity matrix
of shape N × N . Consequently, T12 is an isometry of RN

+

that preserves the geometry of M embedded in RN . Con-
sequently, any transposition, and thus any permutation, pre-
serves the geometry of the neural manifold M in the sense
that d(p, q) = d(σ∗, σq): the distances along the manifold
M are invariant.

G. Synthetic Datasets
We detail generation of the synthetic datasets in our ex-

periments of distorted circles, spheres and tori.

Distorted Circle Datasets The distorted circle datasets
are created from the immersion fS

1

synth:

S1 → RN

θi 7→ R ∗ [A(θi)(cos θi, sin θ, 0, ..., 0)] + ηi,
(15)



with θi uniformly distributed on S1 for i = 1, . . . , n.
In Eq. 15, A(θ) = 1 + α[exp (−5(θ − π/2)2) +
exp (−5(θ − 3π/2)2)] where the parameter α modulates
the amplitude around the ring, creating extrinsic curvature
in the vicinity of π/2 and 3π/2.

Distorted Sphere Datasets The distorted 2-sphere
datasets are created via the immersion fS

2

synth:

S2 → RN

(θi, ϕi) 7→ R ∗
[
A(θi, ϕi)

(sin θi cosϕi, sin θi sinϕi, cos θi, ..., 0)
]
+ ηi,

(16)
with θi, ϕi uniformly distributed on S2 for i =
1, . . . , n. In Eq. 16, A(θ, ϕ) = 1 + α exp (−5(θ)2) +
α exp (−5(θ − π/2)2) with the parameter α introducing
curvature in the vicinity of the north and south poles of S2.

Distorted Torus Datasets The distorted 2-torus datasets
are created via the immersion fT

2

synth:

T 2 → RN

(θi, ϕi) 7→ R ∗
[
A(θi, ϕi)

((R− r cos θi) cosϕi, (R− r cos θi) sinϕi, r sin θi, ..., 0)
]

+ ηi,
(17)

with θi, ϕi uniformly distributed on T 2 for i = 1, . . . , n.
Here, R and r are the major and minor radii of the torus;
these are assumed to carry no relevant information, and are
both set to unity. The amplitude function A(θ, ϕ) in Eq. 17
is given by

A(θi, ϕi) = 1 + α exp (−2(θ − π)2)[exp (−2(ϕ− π/2)2)

+ exp (−2(ϕ− 3π/2)2)]

with the parameter α introducing extrinsic curvature by
stretching the torus on opposite sides at (θ, ϕ) = (π, π/2)
and (θ, ϕ) = (π, 3π/2)

Validation of Learned Topology We show here the re-
sults of TDA applied to the synthetic dataset of the distorted
T 2. This validates that the first step of our pipeline can ef-
fectively capture the topology of the manifold, as we ob-
serve the two holes know to characterize the torus topology
in Fig. 8.

Effect of Noise on Curvature Estimation Error for Dis-
torted Spheres We quantify the curvature estimation er-
ror as we vary the noise levels for distorted spheres, to com-
plement the similar experiments presented in the main text
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Figure 8. Persistence diagram for synthetic dataset on the torus, il-
lustrating that TDA is an appropriate tool to compute the topology
of a neural manifold and to constrain the latent space to be a given
template M∗.

A. B.

Figure 9. Curvature estimation error on distorted circles. A. While
the error increases with the noise level, it does not go over 4% for a
range of noise levels corresponding to realistic values observed in
neuroscience. Each experiment is repeated 5 times. The vertical
orange bars show the -/+ 1 standard deviations of the errors. B.
The error shows minimal variations with respect to the number of
recorded neurons N . The vertical axis is shared across both plots
for ease of comparison.

Distorted Circles Distorted SpheresA. B.

Figure 10. Curvature estimation error on distorted circles (A) and
spheres (B). The number of neurons is fixed at N = 2 for the
distorted circles, and N = 3 for the distorted spheres. Each exper-
iment is repeated 5 times. The vertical orange bars show the -/+ 1
standard deviations of the curvature estimation errors.



for distorted circles. Fig. 10 compares the curvature error
for the circles (A) and the spheres (B).

In these experiments, the number of neurons N is fixed
at N = 2 for the circles and N = 3 for the spheres. For
each value of σ, 5 synthetic manifolds are generated and
estimated. The vertical orange bars represent +/- standard
deviation. We observe that the error is approximately twice
as important in the case of the spheres than in the case of the
circles. While the results in the main text seem to indicate
that the estimation error does not depend on the number of
neurons, we could conjecture that it depends linearly in the
dimension of the manifold.

H. Experimental Place Cells (12 neurons)

We used data from 12 place cells within one session,
whose neural spikes are binned with time-steps of 1 sec-
ond, to yield 828 time points of neural activity in R12

+ . Our
results show that the reconstructed activations match the
recorded (ground-truth), see Fig. 7 (A): even if we can-
not observe the neural manifold in R12

+ , we expect it to
be correctly reconstructed. The canonical parameterization
is correctly learned in the VAE latent space, as shown in
Fig. 7 (B). The curvature profile is shown in Fig. 7 (C)
where the angle is the physical lab angle. As for the sim-
ulated place cells, we observe several peaks which corre-
spond to the place fields of the neurons: e.g. neuron 4
shown in Fig. 7 (C) which codes for one of the largest
peaks, which is expected as it has the strongest activation
from Fig. 7 (A). We reproduce this experiment on another
dataset with 40 place cells recorded from another animal
and find similar results in the supplementary materials. We
emphasize that the goal of this experiment is not to reveal
new neuroscience insights, but rather to show how the re-
sults provided by the curvature profiles are consistent with
what one would expect and with what neuroscientists al-
ready know.

I. Experimental Place Cells (40 neurons)

We perform the same experiment on real place cell data
as in subsection 5.2.2, this time recording from 40 neurons.
In this experiment, after the temporal binning, we have 8327
time points. Similarly to the previous experiment, the re-
construction of the neural activity together with the canoni-
cal parameterization of the latent space are correctly learned
by the model. As expected, we observe a neural manifold
whose geometry shows more “petals” which intuitively cor-
respond to the higher number of neurons recorded by this
experiment. We locate a place cell whose place field pro-
vides one of the highest peaks, neuron 22, and color the
curvature profile based on the activity of this neuron.

This demonstrates that our method can be applied to real
neural datasets, providing geometric results that match the
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Figure 11. Neural geometry of 40 experimental place cells as an
animal moves along a circle. (A) Recorded versus reconstructed
neural activity of 12 place cells with respect to the positional an-
gles of the animal in lab space. (B) Latent space’s parameteriza-
tion: the angular latent variables are colored by the corresponding
positional angles of the animal in lab space. (C) Curvature pro-
file of the neural manifold in log scale: the angles represent the
physical lab space angles, colored by the reconstructed activation
of neuron 22.

intuition. In the case of hippocampal place cells, the ge-
ometry of the neural manifold depends on the number of
neurons, whether they tile the physical space where the an-
imal is moving. It also depends on the spiking profile of
their place fields, including its amplitude and width.
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