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1. Appendix

1.1. Sublevel Set Filtration

For times series data we assume a single variable func-
tion f : R ! R. Given r ∈ R, we define the sublevel set
below r as f−1(−∞,r]. As the filtration parameter r in-
creases, we can tracking how the homology of the sub-
level sets change. In the case of 1-D time series data these
changes would only occur in D0 since we are only interested
in connected components and no changes would occur un-
til reaching an extrema in the signal assuming the function
f satisfies some general and standard conditions (e.g., q-
tame [?]).

For extrema being local minima, we add new connected
component “born” at height rB. For the case of local ex-
trema being maxima two existing sets (or components) are
combined, each of which were born at rB and r′B. Form this
information we follow the Elder Rule [?, p. 150], assum-
ing rB ≤ r′B and the maxima is at rD, then we say that the
component born at r′B dies going into rD and the resulting
set assumes the label rB. The pair (r′B,rD) ∈ D0 is called
a persistence pair in the zero-dimensional sublevel set per-
sistence. We continue generating the persistence pairs as r
increase from −∞ to ∞. For the case of any unpaired births,
we set a death coordinate of ∞ and label this persistence pair
as an essential classes. As such, the resulting persistence di-
agram exists in the extended plane R2

.
The lifetime or persistence of a pair (bi,di) ∈ Dp( f ) is

defined as `i = di−bi. In this paper, our functions are only
sampled on a finite domain, with the first sample at time
ta and the last sample at time tb. We obtain a continuous
function over [ta, tb] by using a piecewise linear interpola-
tion between consecutive samples, and extending the func-
tion to ±∞ by extending the first (resp., last) edges to rays.
Doing so allows us to define a persistence diagram that does
not have critical points on the boundary of our time series.

As such, we study the persistence points where both coor-
dinates are finite, and omit persistence points that contain
an unbounded coordinate. However, for demonstrative pur-
poses we will still show the essential class persistence pair
in our example in Fig. 1.

We now demonstrate an example signal in which we as-
sume the time series extends as rays in the domain. This
example function is shown in 1 having three local minima
and two local maxima. The resulting persistence diagram

Figure 1. Demonstrative example of sublevel set persistence ap-
plied to time series data.

captures how these minima and maxima are paired together
through sublevel set persistence with one essential class that
will be ignored when we generate our persistence images.
The algorithm used to calculate the this persistence diagram
is detailed in [?].

The idea of sublevel set persistence can also be extended
to higher dimensions. This is common in image data where
our function is a surface. For images we can track the topol-
ogy of the sublevel sets in both dimensions 0 and 1 as the
sets can contain features in both dimensions.

1.2. Vietoris-Rips Filtration for Time Series

A simplicial complex is a generalization of a graph
to higher dimensions, which are collections of simplices
at various dimensions (e.g., points are zero-dimensional,
edges are one-dimensional, and faces are two-dimensional
simplices). These simplices are subsets of a vertex set
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Figure 2. Example demonstrating persistent homology of point cloud data using the Vietoris-Rips complex filtration.

σ ⊂ V , and we require for face closure such that if σ ∈ K
and τ ⊆ σ , then τ is also in K. For data that is stored as
vectors (point cloud χ) we can directly form a simplicial
complex using the distance between points. For time series
data we can generate point cloud data by performing time-
delay embedding. Time delay embedding of a time series
embeds a signal x(t) ∈ R to χ(t) ∈ Rn by using a delay
τ with χ(t) = [x(t),x(t + τ),x(t +2τ), . . . ,x(t +(n−1)τ)].
Applying this over the entire time series results in a point
cloud χ .

To generate an abstract simplicial complex (ASC) from
the point cloud, a Vietoris-Rips complex is used where we
build the ASC Kr for any fixed parameter r ≥ 0 by includ-
ing all simplices with distance at most r; i.e. Kr = {σ ⊆
V | d(u,v)≤ r for all u,v ∈ σ}, where d is a distance func-
tion. Zero-dimensional simplices, the vertices of the com-
plex, are all added at r = 0. An edge uv, which is a 1-
dimensional simplex, is present in Kr for any r value above
d(u,v). Higher dimensional simplices such as triangles are
included when all subedges are present.

Generating simplicial complexes as r increases results in
a sequence of ASCs that we can use to study the persistent
homology of the point cloud data. Persistent homology [?],
a filtration tool from the field of Topological Data Analysis
(TDA) [?,?], is used to gain a sense of the shape and size of
a dataset at multiple dimensions and filtration values. For
example, it can measure connected components (dimension
zero), holes (dimension one), voids (dimension two), and
higher dimensional analogues, as well as an idea of their
general size or geometry. Persistent homology measures
these shapes using a parameterized filtration to detect when
homology groups are born (appear) and die (disappear). In
this case the parameterization filtration uses the parameter r
for point cloud data.

By incrementing r we create a nested sequence of ASCs

K0 ⊆ K1 ⊆ K2 ⊆ . . .⊆ Kn. (1)

We then calculate the homology of dimension p for each
complex, Hp(Ki), which is a vector space representing the
p-dimensional structure of the space such as components,
holes, voids, and higher dimensional features. However,

this information does not yet yield how the homology of
each ASC is related to the next ASC. To get this informa-
tion, persistent homology uses the inclusions on the ASCs
to induce linear maps on the vector spaces resulting in a
construction called a persistence module V:

Hp(Kα0) ↪! Hp(Kα1) ↪! Hp(Kα2) ↪! . . . ↪! Hp(Kαn), (2)

where ↪! are the maps induced by the inclusion map be-
tween ASCs. It should be noted that in the sequence of
ASCs, each vertex must be unique and consistently identi-
fied.

The appearance and disappearance of classes at var-
ious dimensions in this object can be tracked, result-
ing in a summary known as a persistence diagram D =
{D0,D1, . . . ,Dp}. For each homology generator which ap-
pears (born) at Kb and disappears (dies) at Kd , we add the
persistence [b,d] in the persistence diagram.

For example, consider Fig. 2 which shows point cloud
data and the ASCs as r ∈ [0.00,0.43,0.56,0.83,1.52]. Ad-
ditionally, this figure shows the corresponding persistence
diagram for dimensions 0 and 1 as D0 and D1, respectively.

For D0 all persistence pairs are born at 0 since these are
the components which begin as all the points in the point
cloud represented as vectices in the first simplicial complex.
These components begin to connect where persistence pairs
in D0 die following the Elder Rule. At r = 0.56, all of the
components are combined into one component.

For D1 the loops or holes in the ASCs are tracked
through the filtration. At r = 0.43 the first, smaller hole
is formed as shown in the ASC. This hole persists until ap-
proximately r = 0.83 in which is fills in resulting iun the
persistence pair [0.43,0.83]. The second, larger hole first
forms when the point cloud is fully connected at r = 0.56.
This hole persists until r = 1.52 resulting in the persistence
pair [0.56,1.52]. We can see that the filtration of r results
in two main persistence pairs in D1 capturing the general
shape and size of the data.

1.3. Persistence Images

Here we demonstrate how we calculate the persistence
image from a persistence diagram. This procedure with a



toy example persistence diagram for calculating the PI for a
persistence diagram Dp of dimension p is shown in Fig. 3.

The first step in the method is to get the birth-persistence
representation of a persistence diagram T : R2 !R2, where
each persistence pair (bi,di) ∈ Dp is mapped to the pair
(bi,di−bi) as shown in Fig. 3 (a). we will refer to the persis-
tence (or commonly referred to as lifetime) of a persistence
pair as `i = di−bi.

The second step is to represent T (Dp) as a surface using
each pair and a differentiable distribution function g(x,y).
Specifically, in this work we use the Gaussian kernel

gG(x,y) =
1

2πσ2 e((x−−µx)
2+(y−µy)

2)/2σ2
, (3)

where σ is the user-chosen standard deviation parameter
and µx and µy are the mean or center point of the distribu-
tion. In this work we set this parameter to σ = 0.05pmax for
all experiments with pmax as the maximum persistence. To
define the surface function we also need a weighting func-
tion w :R2 !R mapping persistence pairs to a weight. This
weighting function must be continuous, differentiable, and
intersect zero for a persistence pair with zero persistence.
In this work we use the simple linear function

w(bi, `i) = `i (4)

We can now define our surface function of T (Dp) as

S(x,y) = ∑
(bi,`i)∈T (Dp)

w(bi, `i)gG(x,y), (5)

To practically apply the surface function as an impute to
machine learning architectures we must create a finite sized
representation of the surface. In this work we do this by
creating a tessellation of squares (pixels) that cover the area
occupied by

[bmin−3σ ,bmin + pmax +3σ ]× [−3σ , pmax +3σ ]

resulting in a square area, where bmin is the minimum birth
value. These pixels have resolution p× p with the width of
the square pixels wp is chosen as wp = (pmax +6σ)/p.

1.4. WESAD Embedding Parameters and Window
Sizing

To determine a suitable window size we use the common
criteria of at least ` = 20 observations [?] and at most ` =
50. In this work we consider an observation as one period
of the signal. To do this we use the criteria of a period
for a biological signal as 2τ , where τ is the time delay for
delay embedding, as suggested in [?] for continuous time
series. Additionally, we chose to use ` = 50 as [?] found a
general increase in performance with longer windows. As
such, we set the window size as w = 150τ , where we select

Table 1. Time delay embedding parameters for signals in WESAD
dataset.

Location Sensor fs (Hz) Delay (τ) Dim. (n)
Chest ACC 700 65 5
Chest ECG 700 38 4
Chest EMG 700 5 4
Chest EDA 700 4 4
Chest Temp 700 3 4
Chest Resp 700 600 3
Wrist ACC 32 8 5
Wrist BVP 64 16 4
Wrist EDA 4 1 3
Wrist Temp 4 1 4

τ using the mutual information method [?] due to the non-
linear nature of the time series.

We also to shift the sliding windows by a distance s =
0.25wmax for each consecutive window, where wmax is the
largest window size of any of the signal types. This ended
up being from the Resp signal as shown in Table 1 with τ =
600. We only kept the window if the window fell within a
region specified by only one state. Applying this procedure
resulted in a total of 1620 windows across all subjects that
were labeled as baseline, amused, or stressed.
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Figure 3. Persistence image pipeline.
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