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Abstract

Adversarial perturbations aim to modify the image pix-
els in an imperceptible manner such that the CNN classi-
fier misclassifies an image, whereas humans can predict the
original class. Several defense algorithms against adver-
sarial attacks are proposed in the literature, such as binary
classification which aims to detect adversarial examples,
and network retraining using perturbed images. The chal-
lenge with the adversarial detection approach is that once
the perturbed samples are detected, they are discarded, and
the system requires fresh input. On the other hand, adver-
sarial training requires the generation of adversarial im-
ages for data augmentation and hence is computationally
demanding. It is well known that training a deep CNN
architecture is resource-intensive, and therefore retraining
again from scratch is not feasible in resource-constrained
scenarios. We propose computationally efficient fine-tuning
of pre-trained networks to increase their robustness against
the prevalent gradient-based attacks. The proposed fine-
tuning is performed in a complete black-box fashion, where
we do not know the training setting such as optimizer, batch
size, and learning rate used in the training of the network.
Extensive experiments using multiple CNN architectures
such as VGG and ResNet show that the proposed fine-tuning
provides significant robustness against various widespread
gradient attacks.

1. Introduction

Building an adversarially robust network requires huge
computational resources. For instance, eight layers convo-
lutional neural network (CNN) which can obtain ∼ 16%
error on ImageNet [19] requires 1.4 GFlop operations, and
152 layers require 22.6 GFLOP functions for ∼ 3.5% er-
ror. Similarly, on four M40 GPUs, the ResNet-18 model
requires 2.5 days for training, whereas the ResNet-152
requires 1.5 weeks of training time [18]. Making these
resource-hungry networks adversarially robust via adversar-

ial training is an arduous task.
As shown in Figure 1, the motivation of the proposed re-

search is to provide a mechanism to enhance the adversarial
robustness of deep networks even in absence of large com-
putational resources through cost-effective fine-tuning. The
proposed approach also provides a trade-off between natu-
ral accuracy and adversarial robustness. The proposed algo-
rithm fine-tunes the network through novel data augmenta-
tion for 15-20 minutes on a 1080 Ti GPU machine, on which
the pre-trained network takes a couple of days to a week.
For network fine-tuning, data augmentation is performed
by perturbing the local regions of images through various
transformation functions and data corruption. To showcase
that the proposed approach provides security against popu-
lar gradient-based attacks, extensive experiments using sev-
eral pre-trained networks on multiple databases are used.
The key contributions of this research are:

• We propose a novel data augmentation technique to in-
crease the pre-trained network’s adversarial robustness
in a computationally efficient manner. The proposed
technique can be applied to any pre-trained network
in a black-box fashion, i.e., parametric details are not
required for fine-tuning;

• The effect of different parameters in the proposed data
augmentation is analyzed concerning the trade-off be-
tween the robustness and natural accuracy of the net-
work;

• Extensive experiments and comparisons with exist-
ing algorithms are performed which highlight that the
proposed algorithm yields significantly higher perfor-
mance.

2. Related Work
With the introduction of a simple lp norm minimization-

based attack referred to as L-BFGS [42], several popular
adversarial attacks are proposed. Adversarial attacks aim
to minimize the perturbation norm in such a way as to fool
only the deep learning classifier while maintaining the deci-
sion of human examiners intact. The popular and effective
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Figure 1. Motivation of the proposed research. The resource-constrained scenario lacks enough training resources, time, and parametric
details of the pre-trained network. The proposed research provides a solution through simple network fine-tuning through randomized data
augmentation to increase the adversarial robustness in a white-box setting.

adversarial attacks in literature can be broadly grouped into
gradient-based [11], logits based [14], classifier-based [33],
universal perturbations [32], and black-box [2, 23]. Out of
these attacks, gradient-based attacks are the most effective
in dropping the target model’s accuracy. The gradient at-
tacks can also be used as a backdoor attack reflecting their
high potential in restricting the deployment of deep neural
networks [6].

Several defense algorithms are also presented to amelio-
rate the effect by looking at the significant limitations of
deep classifiers against adversaries. Existing defense strate-
gies can be broadly divided into the following categories: (i)
binary detectors, (ii) input modification or network modifi-
cation, (iii) adversarial training, and (iv) certified defenses.
The binary detectors trained a separate classifier(s) to de-
cide whether an image is clean or perturbed [24,31]. Based
on the classifier’s decision, the image is either discarded
or passed to the network for further processing. The input
modification or network modification-based defenses apply
some processing on the network filters or input images to
mitigate the effect of adversarial noise [21, 23]. However,
most of the existing defenses based on an external classi-
fier, input, or network manipulation are proven ineffective
under white-box attack setting [12] where an attacker has
complete access to the target network and its defense mech-
anism. Another defense that is in a nascent stage is to pro-
vide a certificate of robustness. Certified robustness is de-
fined as the defense, which states that in certain limits of the
network or input, no adversarial examples exist. However,
most of these certified defenses provide slight robustness
against gray-scale images. Further, Ghiasi et al. [20] have
shown that certified defenses can also be broken.

Out of the existing defenses, adversarial training is
found to be the most robust defense along with generalized
detection-based defenses [1, 5]. Adversarial training refers
to the scenario where the network is trained using both clean
and their adversarial counterpart. [22] have first performed
the adversarial training with the adversarial examples gener-

ated using the gradient method. Later, several studies have
been proposed to train the network using strong adversaries
or ensemble adversarial examples [39]. However, the ad-
versarial training-based defense has a few limitations: (i)
computationally expensive because of the generation of ad-
versarial images, (ii) affects generalization, and (iii) vul-
nerable to unseen adversarial attacks not used in the train-
ing [49]. A discussion on the existing adversarial examples
generation and defense works can also be found in the sur-
vey papers [10]. The recent studies open a new direction of
defense which is either based on denoising the input [37],
transfer-learning [15], augmentation [36], retraining of the
network [28], and universality [3, 4, 9]. The above stud-
ies inspire us to build a generic and cost-effective solution
based on data augmentation and fine-tuning of vulnerable
models.

3. Proposed Fine-tuning for Adversarial Ro-
bustness

The classifiers which are trained on a large number of
images share a strong relationship between the input and
output. As shown by Goswami et al. [24] and Szegedy et
al. [42], there might be individual filters that can be af-
fected by the specific properties of the input or adversar-
ial pattern such as stroke in the upper round portion of a
digit image, spiky flowers or color of the input. In addition,
they have also observed that adversarial examples modify
the local regions which are also highlighted in the filter re-
sponses [23]. The proposed data augmentation is inspired
by this understanding of the adversarial examples and filter
maps of CNN. The proposed algorithm minimizes the de-
pendency of the network on the input data and adds a non-
deterministic function layer between the input and the first
layer of the system.

Specifically, for fine-tuning a pretrained CNN architec-
ture, corresponding to each input xi a random function is
selected. The function alters the local patch of size w start-
ing from the location (m,n). We have used a square size
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patch around the center of an image. The modified in-
put image is then augmented with the original image and
passed to the network for fine-tuning. The objective func-
tion with such randomized data augmentation can be re-
ported as minθ

∑N
i=1 L(ϕ((xi, xj), θ), y) where, ϕ is the

CNN classifier function mapping input to class output and
N is the total number of original training images. xi and
xj are the clean and modified versions of the input. θ rep-
resents the parameters of the network optimized concerning
input and output class label y. The entire network’s fine-
tuning is performed similarly as the network is trained us-
ing gradient descent optimization. For a particular sample, a
randomized function modifying the local region in an image
remains the same throughout the fine-tuning process, i.e., it
does not change with the epoch or batch. The randomiza-
tion is applied only at the time of training; the testing is
performed on the clean or adversarially modified images.

In the proposed data augmentation, a randomized func-
tion q is chosen and applied to the local region of an in-
put image xi. To increase the randomness, multiple func-
tions are used, and randomly few of them are selected. The
functions selected to modify the local patches include Gaus-
sian blur, various types of noises such as Gaussian noise,
Salt&Pepper noise, Speckle noise, Poisson noise, mild ro-
tation of regions, pixel nullification, and horizontal and ver-
tical pixel flip. The proposed data augmentation can be con-
nected to two concepts: (i) dropout and drop connect [41]
and (ii) vulnerability of CNNs against patch-based attacks.
It is observed that the network trained with all clean neurons
might lead to good accuracy on training examples but less
robust on the testing set [8, 35]. Dropout and drop connect
help in increasing the randomness in the system and reg-
ularizing the network. We take advantage of this concept
in fine-tuning the pretrained networks. In the proposed set-
ting, instead of perturbing the structure, we manipulate the
input at a local level through randomly selected functions
on a particular image. Another reason for choosing the ma-
nipulation of local image patches for augmentation can be
seen from the vulnerability of CNNs against patch-based
attacks [29, 47]. These works show the importance of local
regions in the decision-making process of CNNs, therefore
reducing their dependency can increase the robustness.

3.1. Functions Used for Randomization in the Pro-
posed Data Augmentation

1. Rotation: The local region of an image is rotated 10 de-
grees in the clockwise direction. This operation helps
make the deep classifiers robust to handle the geomet-
ric transformation, which might be present in the nat-
ural images. The missing values, if generated through
rotation are filled using bicubic interpolation;

2. Translation: Another common transformation in the
real world is the translation of different parts of an

image at different locations in different images. The
missing values are filled with the mean of the patch
shifted/translated 2 pixels in the horizontal and verti-
cal direction;

3. Gaussian Noise: We have applied the Gaussian noise
with mean value 0 and variance 0.05;

4. Poisson Noise: The Poisson distributed noise is gener-
ated from the information of the local patch itself. For
example, if the pixel intensity input value is k, then the
output value is generated from the Poisson distribution
using k as the mean value;

5. Salt&Pepper Noise: It acts as a switch between the
input and output, i.e., the input value is replaced with
either zero or max value of the data type. Each pixel
value is assigned with a probability value uniformly
generated between (0,1) to assign a value to a pixel.
Suppose the probability value lies in the range [0,d/2].
In that case, the input pixel is assigned 0 in the output
image, and if the probability value lies in the range
[d/2,d], the maximum value of the image data type is
assigned. For the probability value in the range [d,1],
the pixel value remains unchanged. d is the density of
the noise, and the value of 0.5 is used in this research;

6. Speckle Noise: It is a multiplicative noise, i.e.,

Imageout = Imagein + n ∗ Imagein

where, n is the random uniform noise, generated
from the specific mean and variance. Imageout and
Imagein are the noisy and clean image, respectively.
We have used 0 mean and 0.05 variance value;

7. Gaussian Blur: In this operation, an image is blurred
using a Gaussian kernel with a standard deviation of
1.5. It can help in reducing the sensitivity of the deep
classifier on high-frequency information as it is one of
the critical components for generalizability [44] and
can be used for adversarial perturbations [7, 11];

8. Pixel Masking: Some parts of the image may get cor-
rupted or missed out because of occlusion, and camera
angle; therefore, an exemplary system should make the
correct decision even in such cases. To evaluate, we
have masked the local patch(es) of an image to give
partial information while learning the network;

9. Flipping: The image parts might be deformed or pre-
sented in other forms, such as objects flipped upside
down. We have incorporated this by adding horizontal
and vertical flips of local patches.
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Table 1. Configuration of the custom CNNs.
CNN Configuration

F-MNISTconv

Conv(8× 8× 64), ReLU, Conv(6× 6× 128),
ReLU, Conv(5× 5× 128), ReLU,
Fully Connected(10), SoftMax

CIFARconv

Conv(5× 5× 32), ReLU, MaxPool(3× 3),
Conv(8× 8× 64), ReLU, AvgPool(3× 3),
Conv(8× 8× 64), ReLU, AvgPool(3× 3),
Fully Connected(64),
Fully Connected(10), SoftMax

Original Training Image 2 Patch Modified 
Training Image

N, (x,y), w 
op

New Training Images for Fine-tuning

Figure 2. Shows the generation of augmented data for proposed
network fine-tuning. The parameters for data augmentation are lo-
cation (x,y) in the image to be modified, size (w) of the patch, and
number (N ) of patches. op represents the randomized operation
to be applied. The original and local region modified is combined
to find the new training data for fine-tuning.

4. Experimental Results and Analysis
In this section, first, we present the details of databases,

networks, and attacks used to showcase the adversarial re-
siliency of the proposed defense in the white-box setting.
Later, the results and analysis related to adversarial defense
are provided.

4.1. Evaluation Settings

Databases: We have used three databases namely
Fashion-MNIST (F-MNIST) [46], CIFAR-10 [30], and a
subset of ImageNet [19].

CNN: Multiple CNN models, including state-of-the-art
models for object recognition such as VGG [40] and ResNet
[25] along with custom models, are used. The configuration
of CIFARconv and F-MNISTconv are given in Table 1.

Adversarial Attacks: Three challenging gradient-based
adversarial attacks are selected for extensive experimenta-
tion: (i) Fast Gradient Sign Method (FGSM), (ii) Itera-
tive FGSM (IFGSM), and (iii) Projected Gradient Descent
(PGD). Recent studies [34, 38, 44] have shown attack de-
tection methods can defend against optimization attacks
such as C&W l2 [13] and classifier-based adversaries such
as DeepFool [33], however, fail significantly for gradient-
based attacks. The parameters used in the generation of ad-
versarial samples are given in Table 2.

4.2. Results

In the proposed randomized data augmentation, the two
important parameters are the number of patches and the
patch size. We have either modified a single patch or two

Table 2. Attack parameters for each database.
Attack Parameters

CIFAR-10

PGD-v1
ϵ = 0.1, α=0.01,
Iterations = 100, Restarts = 10

PGD-v2
ϵ = 0.03, α=0.01,
Iterations = 100, Restarts = 10

FGSM-v1 ϵ = 0.1
FGSM-v2 ϵ = 0.03
IFGSM-v1 ϵ = 0.1, α=0.01, Iterations = 100
IFGSM-v2 ϵ = 0.03, α=0.01, Iterations = 100

F-MNIST

PGD-v1
ϵ = 0.3, α=0.01,
Iterations = 100, Restarts = 0

PGD-v2
ϵ = 0.3, α=0.01,
Iterations = 100, Restarts = 10

FGSM ϵ = 0.3
IFGSM ϵ = 0.3, α=0.01, Iterations = 100

ImageNet

PGD-v11
ϵ = 0.1, α=0.01,
Iterations = 100, Restarts = 0

PGD-v12
ϵ = 0.1, α=0.01,
Iterations = 100, Restarts = 10

PGD-v21
ϵ = 0.03, α=0.01,
Iterations = 100, Restarts = 0

PGD-v22
ϵ = 0.03, α=0.01,
Iterations = 100, Restarts = 10

FGSM-v1 ϵ = 0.1
FGSM-v2 ϵ = 0.03
IFGSM-v1 ϵ = 0.1, α=0.01, Iterations = 100
IFGSM-v2 ϵ = 0.03, α=0.01, Iterations = 100

patches. We have tried to select these patches near the cen-
ter of the image. The analysis will provide an estimate of
how big and small of a patch can be selected for perturba-
tion and the number of patches to be used to increase the
randomization in the network. In the experiments, the per-
turbation of patch size 7×7 and 11×11 with random func-
tion is referred to as n-Pk. n ∈ (7, 11) represents the size
of the patch, and Pk represents the k number of patches
modified through functions chosen randomly. First, the re-
sults on the CIFAR-10 dataset are reported using multiple
pre-trained CNN models along with the comparison with
existing defense algorithms and adversarial training. Later
the experimental analysis of the F-MNIST dataset is pro-
vided. Finally, to showcase the practicality of the defense,
experiments on high-resolution images from the subset of
ImageNet [19] are also performed.

4.3. Results and Analysis on CIFAR-10

To demonstrate the generalizability of the proposed fine-
tuning, multiple CNNs are used on the CIFAR-10 database,
including VGG-16 and ResNet. The proposed fine-tuning
aims to not only defend the models from adversarial attacks
but also retain or improve the accuracy of clean natural im-
ages. The VGG and ResNet yield 83.91% and 91.81% clas-
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Table 3. Clean and adversarial examples accuracy of the pre-trained and fine-tuned (defended) CNN models under white-box attack setting
on CIFAR-10. Best viewed in color.

CNN Clean/Attack Undefended Defended
7-P1 11-P1 7-P2 11-P2

VGG-16

Natural 83.91 86.71 84.01 82.14 82.54
PGD-v1 0.87 60.73 50.27 54.81 52.42
PGD-v2 0.57 70.40 65.32 49.06 55.65
FGSM-v1 3.35 64.58 59.28 61.26 58.12
FGSM-v2 7.49 67.64 67.13 62.29 55.89
IFGSM-v1 2.61 64.36 53.85 61.02 68.09
IFGSM-v2 2.75 55.61 66.33 59.60 61.81

ResNet

Natural 91.81 91.40 90.57 90.40 90.27
PGD-v1 0.53 15.17 13.43 15.33 18.18
PGD-v2 0.0 43.14 41.14 43.10 40.92
FGSM-v1 6.54 50.96 48.39 47.26 48.73
FGSM-v2 6.48 48.99 48.19 47.80 45.37
IFGSM-v1 2.20 51.00 47.25 48.04 45.84
IFGSM-v2 2.20 49.86 47.54 47.94 45.48

Table 4. Comparison of the proposed fine-tuning based defense
with several existing defenses such as EMPIR [38] and adversarial
training (AT) on clean and various adversarial attack images. The
results are reported on CIFAR-10 using CIFARconv .

Data FGSM-AT PGD-AT EMPIR EMPIR-AT Proposed
Clean 73.62 73.55 72.56 73.62 74.74
FGSM 41.58 12.45 20.45 31.67 44.35
IFGSM 12.92 10.97 24.59 29.55 45.31
PGD 11.24 8.52 13.55 14.74 44.26

sification accuracy on the clean test set of CIFAR-10, re-
spectively. As expected, both the pre-trained models’ per-
formance dropped significantly when adversarial samples
are processed.

Table 3 shows the experimental results on CIFAR-10 us-
ing VGG and ResNet CNNs. Under the PGD attack with
a strength of perturbation ϵ = 0.03 and ϵ = 0.1, the pre-
trained VGG model’s accuracy degrades to 0.87%. The
proposed fine-tuning, which is performed under a black-
box setting, i.e., without knowledge of the parameters used
in the pre-training, can increase the robustness of the pre-
trained model in a white-box attack setting. The fine-tuned
model shows an improvement of 59.86 (60.73 from 0.87)
when higher strength PGD attack is applied in a white-box
setting. The ResNet model yields better recognition perfor-
mance than VGG but is observed to be highly susceptible to
PGD attacks as well. The accuracy of the model degrades
up to 0.53% from 91.81%. However, the fine-tuning de-
fense boosts the performance significantly. For example,
for a PGD attack with ϵ = 0.03, the fine-tuned model’s per-
formance is 43.14% as compared to 0.0% of the undefended
pre-trained model.

Comparison with adversarial training: Adversarial

training is one of the most vigorous defenses in the literature
and is based on the augmentation of images while training
the deep classifier. Therefore, it is the best fit for compar-
ing with the performance of the proposed fine-tuning-based
defense. The experiments are reported using the CIFAR-
10 database and VGG network; however, similar trends are
observed across other networks. The networks are adver-
sarially trained individually using all three attacks used in
the paper. The results reported in Table 5 show that even
the adversarially trained models are highly vulnerable to
attacks. It is interesting to note that while the adversarial
training uses the same parameter settings such as optimizer
and batch size as the pre-training of the model and even ad-
versarial perturbations still lack performance compared to
the proposed defense.

Comparison with existing defenses: In addition to the
comparison with adversarial training, a comparison with re-
cent work termed EMPIR [38] is also performed. In this
comparison, the CIFARconv , along with the attacks’ param-
eters are chosen as provided in the original EMPIR paper.
The comparison with EMPIR, along with adversarial train-
ing, is provided in Table 4. The proposed fine-tuning not
only outperforms the algorithms in comparison to adver-
sarial robustness but also yields higher accuracy on clean
images. The EMPIR, which is found significantly useful
on C&W l2 attack, fails on the PGD attack; whereas, the
proposed fine-tuning restores the performance with a large
margin. The performance of the proposed defense on PGD
with EMPIR is 36.71% better, and as compared to adversar-
ially trained models, it is at least 35.52% higher.

We further increased the complexity of the PGD attack
(ϵ = 0.03 and α = 0.01) by running it for 100 iterations
and multiple random restarts (5, 10, and 20). The proposed
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Table 5. Comparison of the proposed defense with existing adversarial defense and data augmentation algorithms including adversarial
training (AT). The experiments are performed on CIFAR-10 using the VGG model under a white-box attack setting. The existing algorithms
are: hidden space [34], L2L-DA [27], high frequency [44], mixup [50], manifold mixup [43], and erasing [52].

Attack Hidden Space L2L-DA
High
Frequency Mixup

Manifold
Mixup Erasing

FGSM
AT

IFGSM
AT

PGD
AT

Proposed
(7-P1)

FGSM-v2 47.70 45.77 35.60 28.12 29.26 21.45 39.96 43.67 36.30 70.40
IFGSM-v2 32.60 50.26 22.04 24.56 29.71 18.62 35.08 44.64 34.63 67.41
PGD-v2 27.20 39.69 33.70 21.76 24.20 19.89 32.12 34.31 37.93 65.61

Table 6. Adversarial robustness using F-MNISTconv under white-
box attack setting on Fashion-MNIST.

Clean/Attack Undefended Defended
7-P1 11-P1 7-P2 11-P2

Clean 91.49 90.47 89.27 90.21 89.86
PGD-v1 0.41 88.09 85.42 83.02 77.63
PGD-v2 0.01 52.69 40.29 47.34 34.92
FGSM 1.97 87.85 75.13 83.46 73.46
IFGSM 1.11 86.65 83.61 82.38 74.64

Table 7. Adversarial robustness under white-box attack setting on
ImageNet. Best viewed in color.

Clean/Attack Undefended Defended
P1 P2

Natural 84.73 84.86 84.37
PGD-v11 0.37 42.94 43.94
PGD-v12 0.12 36.16 35.06
PGD-v21 0.37 44.16 43.59
PGD-v22 0.60 42.95 41.15
FGSM-v1 6.90 44.61 42.16
FGSM-v2 1.47 45.31 42.54
IFGSM-v1 5.37 44.02 42.76
IFGSM-v2 1.37 44.64 42.95

defense can retain the accuracy to at least 44.88%, which is
∼ 36% better than the pre-trained CIFARconv model. The
proposed security can resist even the higher perturbation
(ϵ = 0.1 and α = 0.01) computed from 100 iterations and
multiple random restarts (5, 10, and 20), and yields ∼ 35%
better performance than the pre-trained model.

Comparison with other defenses such as restriction
of CNN hidden space [34], L2L-DA [27] and data
augmentation-based techniques such as Mixup [50], Man-
ifold mixup [43], and random erasing [52] are also per-
formed. The results of these existing methods and the pro-
posed fine-tuning of VGG on CIFAR-10 are given in Table
5. The proposed algorithm can surpass each algorithm in
a computationally efficient manner. The attacks are per-
formed using standard parameters with ϵ = 0.03 for each
attack and α = 0.01 for iterative attacks.

4.4. Results and Analysis on Fashion-MNIST

Another popular database explored in the literature is the
Fashion-MNIST database to showcase robustness against
adversarial attacks. The experiments are performed using
the F-MNISTconv and multiple attacks (with ϵ = 0.3), in-
cluding iterative PGD and IFGSM variants. The results are
reported in Table 6. Clean test images show the classifi-
cation performance of 91.49%. The proposed fine-tuning
shows a slight drop in performance; however, able to in-
crease the robustness of the network significantly. The
PGD attack with ten random restarts reduces the perfor-
mance of the undefended model from 91.49% to 0.01%.
On the other hand, in the fine-tuned model, the attack can
reduce the performance up to 52.69% only. In the case of
another challenging iterative FGSM attack, the fine-tuned
model shows 85.54% higher performance than the unde-
fended pre-trained model. The high robustness can also be
noticed against other variants of FGSM and PGD attacks.
Similar to CIFAR-10, we have observed that single patch
modification with small size (7 × 7) shows higher robust-
ness than multiple and large patches.

4.5. Results on High-Resolution Images

While the above two databases are extensively explored
for adversarial defense, they contain images of low reso-
lution. Therefore, to further evaluate the effectiveness of
the proposed defense, a higher resolution subset of Ima-
geNet [19] is also used. The attacks on undefended pre-
trained and the proposed fine-tuned models are performed
and results are reported in Table 7. Through these exper-
iments, we have observed that the proposed fine-tuning-
based defense is effective against a wide range of gradient
attacks on high-resolution images as well. Experiments to
validate the effectiveness of the proposed fine-tuning with
PGD attacks are also performed using XceptionNet [16] and
MobileNet [26]. The XceptionNet and MobileNet models
yield 80.53% and 85.66% accuracy on clean images, re-
spectively; however, fine-tuning improves the performance
by at-least 2%. On the other hand, in the case of adversarial
robustness, higher robustness as compared to VGG is no-
ticed. The networks can achieve at least 67.90% accuracy
on PGD examples (ϵ = 0.03 and α = 0.01).
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Figure 3. Comparison of the Adam (used in pre-training and fine-
tuning) and RMSProp (used in fine-tuning and hence different
from pre-training) optimizer on the performance of fine-tuning for
white-box adversarial robustness of VGG.

Table 8. Time to train a classifier using PGD adversarial train-
ing (AT) and proposed algorithm (including pre-training + fine-
tuning). The reduction in computational cost is also reported to
showcase the impact. For each algorithm, values are reported us-
ing the same machine configuration.

Database CIFAR10 F-MNIST ImageNet
Network VGG ResNet F-MNIST VGG
AT (minutes) ∼245 ∼180 ∼196 ∼380
Proposed (minutes) ∼20 ∼28 ∼39 ∼21
Reduction from AT 12.2x 6.4x 5.0x 18.1x

Table 9. Proposed defense (%) on AutoAttack [17].

Database CNN Undefended
Proposed
Defense

CIFAR10
VGG16 0.23 67.86
ResNet50 0.16 44.59
Wide-ResNet 0.0 54.62

F-MNIST F-MNISTconv 0.0 86.70

ImageNet VGG16 0.80 59.76
Wide-ResNet 0.0 47.69

5. Ablation Studies
Role of optimizer: We have also conducted an ablation
study on the role of network optimizers in fine-tuning for
adversarial robustness. To demonstrate, two optimizer set-
tings are used for fine-tuning: (i) Adam, which is also used
for pre-training the networks, and (ii) RMSprop, which is
different from the optimizer used for pre-training. From
Figure 3, it is interesting to observe that when a different
optimizer is used, the CNN models show higher robustness
against adversarial attacks. The analysis is reported using
10 iterative PGD (ϵ = 0.03, α = 0.01, and 10 restarts) and
100-step FGSM (ϵ = 0.03, α = 0.01) attack.
Computational and Performance Gain: Comparison
with adversarial training (AT), establishes the advantage of

Table 10. Robustness (%) effect of the proposed data augmenta-
tion when used while training the network and when it is used for
finetuning on the ImageNet database. In both scenarios, the pro-
posed approach can surpass the model trained from scratch using
clean images.

Attack Pretrained (Trained from scratch using) M1 Fine-tuned
using proposed
augmentation

Clean Images
only (M1)

Proposed Data
Augmentation (M2)

FGSM 4.47 46.07 58.13
IFGSM 3.37 45.24 58.75
PGD 0.05 42.75 58.05

the proposed defense over one of the most robust defenses
both in terms of computational complexity (Table 8) and ac-
curacy (Figure 4). The proposed simple and effective fine-
tuning approach outperforms state-of-the-art AT defenses
by a significant margin. The recent research [28] (similar
broad concept of finetuning) for robustness claims to reduce
the complexity by ∼ 10x compared to AT. The proposed ap-
proach not only further reduces the time by ∼ 8x but also
obtains better robustness on both clean and adversarial ex-
amples (Figure 4) as compared to [28].
Practicality: As compared to several adversarial learning
(Figure 4 (a)), the higher performance of the proposed al-
gorithm on the clean images makes the proposed solution
a practical solution. In the literature, it is assumed that the
system in evaluation is expecting either 100% adversarial
images or 0% adversarial images, while this is not the case
in the real world. The adversarial examples might come in
some proportion, therefore, the accuracy of natural exam-
ples must not suffer for such a low number of adversarial
examples. In other words, while improving the adversarial
robustness we should not lose the accuracy of natural ex-
amples and almost every adversarial learning defense fails
in this context. Here, the major advantage of the proposed
defense is the clean examples accuracy which is much bet-
ter than existing adversarial defenses.
Strong Evaluation: We have also evaluated the robust-
ness of the proposed defense against recent and reliable at-
tack [17]. The proposed defense can handle the latest reli-
able attack and aims to evaluate the strong future prospec-
tive defense. Table 9 shows the success of the proposed
defense and makes it an ideal choice for the real world by
being effective against strong attacks and computationally
efficient. We have also performed additional experiments
to further evaluate the robustness of the proposed defense
against another state-of-the-art attack namely BPDA [12].
We have observed that the success rate of BPDA (obfus-
cated gradients) attack reduces by 45% on the Wide-ResNet
model with ImageNet database as compared to the unde-
fended model. Apart from that, the comparisons with re-
cent and state-of-the-art adversarial training based defenses
(Figure 4)) establishes the strength of the proposed defense.
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Figure 4. (a) Robustness (%) of the proposed defense on CIFAR10 database using Wide-ResNet along with comparison using Free
AT [39], Fast AT [45], YOPO [48], ATTA [51], and AFT [28] using same attack parameters. (b) Robustness (%) on ImageNet database
using VGG16 along with PGD adversarial training (AT) on three standard attacks.

Table 11. Ablation (%) study in terms of the number of epochs for
proposed finetuning.

Database Epochs
10 20 30 40 50 60

CIFAR 31.7 41.7 42.8 45.7 52.1 50.9
FMNIST 21.6 35.1 46.0 53.5 60.8 67.8
ImageNet 32.6 43.1 51.0 54.9 56.8 58.1

Fine-tune vs. Pre-train Networks using Proposed Aug-
mentation: The proposed defense aims to improve the
robustness of the pre-trained network through fine-tuning.
We also showcase, the effect of proposed data augmenta-
tion both when used at the time of training the network
from scratch or through fine-tuning (Table 10). Our results
indicate that whether the proposed data augmentation ei-
ther used for fine-tuning the pre-trained (already trained)
networks or used to train the network from scratch shows
higher adversarial robustness than undefended networks.
The recent preliminary research [15] verifies our idea of
fine-tuning for better robustness. However, the authors have
not evaluated the re-trained model against white-box set-
tings and multiple challenging adversaries. The proposed
fine-tuning defense surpasses the above re-training defense
[15] by a significant margin of at least 70%.
Effect of Fine-tuning Epochs: We have also performed an
ablation study in terms of the number of epochs (Table 11).
The higher the number of epochs the better the robustness of
the augmentation. However, there is always a trade-off be-
tween robustness with increased epochs and computational
cost.

6. Conclusion

The popularity and effectiveness of deep neural networks
are continuously growing. Most of these highly accurate
classifiers are trained on a large amount of data and for a

couple of days to a couple of months; therefore, chang-
ing the classifier’s structure completely or retraining from
scratch for adversarial robustness might not be an effec-
tive solution. This research proposes a cost-effective fine-
tuning-based defense against multiple gradient-based at-
tacks in a white-box setting. Inspired by the adversarial
modification at the local level of the images, local patch
modification-based data augmentation is performed using
several randomly selected functions. The proposed defense
takes a few minutes (Table 8) only to boost the perfor-
mance. The extensive experiments performed using mul-
tiple datasets of varying resolutions showcase the effective-
ness of the proposed algorithm. The proposed fine-tuning
can also surpass the existing defense algorithms that are
computationally demanding. The proposed defense can be
seen as a step towards robustness against adversarial attacks
in a computationally feasible manner without modifying the
classifier’s underlying architecture.
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