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Abstract

It is well known that large deep architectures are power-
ful models when adequately trained, but may exhibit unde-
sirable behavior leading to confident incorrect predictions,
even when evaluated on slightly different test examples. Test
data characterized by distribution shifts (from training data
distribution), outliers, and adversarial samples are among
the types of data affected by this problem. This situation
worsens whenever data are biased, meaning that predic-
tions are mostly based on spurious correlations present in
the data. Unfortunately, since such correlations occur in
the most of data, a model is prevented from correctly gen-
eralizing the considered classes. In this work, we tackle
this problem from a meta-learning perspective. Considering
the dataset as composed of unknown biased and unbiased
samples, we first identify these two subsets by a pseudo-
labeling algorithm, even if coarsely. Subsequently, we ap-
ply a bi-level optimization algorithm in which, in the inner
loop, we look for the best parameters guiding the training
of the two subsets, while in the outer loop, we train the final
model taking benefit from augmented data generated using
Mixup. Properly tuning the contributions of biased and un-
biased data, together with the regularization introduced by
the mixed data has proved to be an effective training strat-
egy to learn unbiased models, showing superior generaliza-
tion capabilities. Experimental results on synthetically and
realistically biased datasets surpass state-of-the-art perfor-
mance, as compared to existing methods.

1. Introduction
In classification tasks, it is widely recognized that deep
learning architectures can learn large amount of data, reach-
ing unprecedented outstanding performance. However,
such models are also very sensitive to data, meaning that
they are prone to errors with high confidence whenever test
samples are drawn from a distribution different from that of
the training set. One reason is that, in certain conditions,
these models have problems to generalize well the classes

considered as they likely memorize the training data rather
than learning the salient characteristics of each category of
examples. This behavior is especially evident when training
data are biased, i.e., samples include spurious correlations
with class labels or, in other words, the trained model learns
some “shortcuts” to classify data, so failing to generalize the
class properly [5,9]. For example, a fish can be classified as
such due to the presence of the blue sea in which fishes are
typically depicted, and not for the actual fish structure and
appearance, hence a model may likely fail in case the input
image depicts a fish located on a brown market table. Such
shortcuts are learnt since most of the samples are character-
ized by a bias (fishes in the sea) while only a few samples
are unbiased (fishes in unusual contexts), which prevents
from proper generalization.

When optimizing models under the presence of biased
data, the ground-truth knowledge of the bias is typically
beneficial. For instance, having an additional annotation re-
garding whether the fish is in the sea or not can be used
to drive the optimization towards a data representation in-
variant to such attribute (See Figure 1(a)). Several methods
approached the problem in this way and sought for a data
representation invariant to a known factor [1,2,6,12,20,26,
27,29]: we term this problem supervised debiasing, i.e. the
knowledge of the bias acts as an auxiliary data annotation
that can be useful to consider in training in order to get in-
variance with respect to it. However, the hypothesis of hav-
ing an additional label is unrealistic in most practical sce-
narios as it requires great effort during data annotation, and
in some cases can even be impossible whenever the control
of data gathering is unfeasible, hence the urge of methods
that can generalize even without this additional supervision.

For these reasons, we face here the more challenging set-
ting of the unsupervised debiasing problem: assuming that
the ground-truth knowledge of the bias is not readily avail-
able, we attempt to (implicitly) infer this information while
debiasing our model and achieving a successful generaliza-
tion on the test set (See Figure 1(b)).

In this paper, we devised a two-stage algorithm tackling
the unsupervised debiasing problem. First, we separate bi-
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Figure 1. Problem description. (a) Biased dataset occurs when there is an imbalance regime regarding pairs (class, domain), where each class is observed
mostly under one distribution, leaving other options under-represented. This results in trained models which do not generalize well. In the case of supervised
debiasing case, one has additional annotations regarding the domain distribution. (b) In the unsupervised debiasing case, one has only access to the class
labels. A possible approach to distinguish biased/unbiased samples is via pseudo-labeling. (c) The plots show that the loss for the biased samples are
decreasing much faster than the loss for unbiased samples, proving that the former can be learnt more easily than the latter. (Best viewed in color).

ased from unbiased samples through a pseudo-labeling ap-
proach. Second, equipped with such (noisy) pseudo-labels,
we manage the problem of learning from this data using
a Meta-Learning approach (inspired by Finn et al. [8]) to
produce data representation that can accommodate both bi-
ased and unbiased samples. While existing methods [6, 25]
focused primarily on increasing performance on unbiased
samples, overlooking the need for keeping high accuracy
on biased samples as well, we aim instead at achieving high
accuracy over both types of data.

To this end, grounding on the intuition that meta-learning
is a suitable approach to learn effectively different tasks,
we propose to treat the learning from biased and unbi-
ased data as different (meta-)training tasks, followed by a
meta-validation step devoted to produce data representa-
tions which are suitable for both, aimed at better general-
ization. For the latter, we generate (augment) new data by
linearly interpolating [32] biased and unbiased samples, so
producing samples which are more “neutral” than the orig-
inal biased and unbiased images, so reducing the contri-
bution of spurious correlations in the prediction (See Fig.
1(c)) and overall regularizing the training. We can generate
more “neutral” representations by mixing biased and unbi-
ased samples even if they are not perfectly subdivided by the
initial pseudo-labeling stage. In other words, the method
is robust to some level of contamination between the es-
timated biased and unbiased subsets. Interestingly, this is
a notable characteristic of our approach making it suitable
in realistic scenarios. In fact, we do not need to perfectly
identify the biased/unbiased samples, nor knowing or deter-
mining the bias affecting the data: the splitting performed
by any pseudo-labeling algorithm can be managed by the

subsequent meta-learning and data augmentation stage, to
regularize the training.

We validate our method on several benchmarks that are
both synthetic with controlled bias (colored MNIST and
Corrupted CIFAR-10) and more realistic (Waterbirds and
BAR), showing outstanding performance as compared with
existing methods.
To recap, the contributions of our work are:

• We face the challenging unsupervised debiasing problem
by introducing a two-stage approach that, after the initial
coarse identification of the biased and unbiased samples,
can modulate the contribution of each example during the
model training by a meta-learning strategy.

• Specifically, our novel approach considers learning from
biased and unbiased samples as separate meta-training
tasks, while generating new data by augmentation, man-
aged as a (meta-)validation task. By jointly optimiz-
ing the original meta-training and the meta-validation
tasks, we inject a strong regularization in the training pro-
cess, so compensating the imbalance problem between bi-
ased/unbiased samples by neutralizing the bias, and ulti-
mately leading to more general representation learning.

• Our approach, validated on datasets with controlled bias
and realistic benchmarks, showed to outperform state-of-
the-art performance by a significant margin.

The rest of the paper is organized as follows. In Section 2,
we describe the related literature, highlighting the original
aspects introduced. Section 3 reports our method, where we
detail our two-stage approach. Section 4 presents the results
and a thorough ablation analysis. Section 5 wrap-ups the
work and sketches future research directions.
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2. Related Works
Learning from biased data can be seen as a specific case
of Out-Of-Distribution (OOD) domain generalization. This
topic has been addressed with different methodologies, in-
cluding meta-learning. Here, we briefly review the most
related literature.
Learning from biased data. The problem of learning from
biased data has been explored in past years in the super-
vised debiasing setting, i.e. when labels for the factor (bias)
to be removed are available. Several methods approached
the problem seeking an invariant data representation to a
known factor. Such approaches rely on adversarial learn-
ing [1, 12, 31], variational inference [7, 23, 24], Informa-
tion Theory [26], re-sampling strategies [20], or robust op-
timization [27]. Invariant Risk Minimization [2] seeks an
optimal representation which is invariant across domains
while EnD [28] attempts to disentangle useful information
from biased in the data features.

Few recent works [3, 18, 22, 25] have addressed the un-
supervised debiasing problem. [3] formalizes the cross-bias
problem where malicious shortcuts exist, easing the fit of
training data, whereas the same shortcuts result harmful at
inference stage. The solution is learning a debiased model
which is statistically independent from the one computed
by a parallel computational stream that is guaranteed to be
affected by the bias by design. In [25], the nature of the
aforementioned “shortcuts” is analyzed in terms of fitting
speed at training time. Nam et al. show that biased samples
are learnt faster than the unbiased ones. The relative dif-
ficulty of each sample is cast into a weight that modulates
its learning rate: in this way, at training time, it is given
more importance to the few outlying samples that do not
follow the shortcuts. To this end, an ensemble of networks
is trained, similarly to [3]. [18] tackles the problem via ro-
bust optimization, considering a worst case loss of a sub-
population of the dataset (typically samples with the high-
est loss). In [13,22], the training data is split in two subsets,
relying on the predictions of a baseline model. In [22], the
most difficult samples (likely those that do not follow short-
cuts) are then upsampled. [13] identifies patches from the
two splits and then swaps them in order to produce addi-
tional samples with which to train the debiased model.

Our work does not rely on an ensemble of networks
to have a reference biased model. Instead, we perform a
pseudo-labeling approach to split the dataset in two sub-
sets and then treat them as two separate tasks to be learned
via meta-learning. We also avoid data upsampling as in
[22] and [20], whereas we pursue a data augmentation ap-
proach to combine biased and unbiased samples. Inspired
by Mixup [32], we mix factors which are peculiar of the
bias regime (likely representing a shortcut to infer the class)
with those that do not follow such rules. The newly gener-
ated samples are expected to break the spurious correlations

that affect the original data.
Meta-Learning for Out-Of-Distribution domain gener-
alization. A class of meta-learning methods based on bi-
level optimization (e.g., Model Agnostic Meta-Learning
[8]), relies on an inner-loop stage optimizing model’s meta-
parameters on source data, and an outer-loop stage that up-
dates the model parameters on (meta-)validation data. This
nested optimization which involves computing a gradient
through a gradient, has been shown to be effective for a fast
adaptation of the model to the validation data. The goal is
learning from an (empirical) training task distribution so to
generalize and learn faster (i.e., with fewer samples) the val-
idation task. Subsequently, other methods have tackled the
problem of Domain generalization (DG) ( [4,19,21], to cite
a few), casting the problem of learning from multiple tasks
to learning from multiple distributions/domains.

We adopt the same general scheme, however we face a
considerably distinct problem: while in DG, different do-
mains are fairly balanced, we deal with a severe data im-
balance, that is, biased vs. unbiased, seen here as domains.
This domain data imbalance is so dramatic that the model
likely learns domain attributes to perform inference, ham-
pering its generalization capabilities. This requires a tai-
lored solution that we found effective through data augmen-
tation, in order to attempt to reduce the imbalance problem.
Moreover, differently from previous methods that rely on
multiple source domains, we relax the hypothesis of hav-
ing domain labels and adopt a pseudo-labeling approach to
overcome this issue.

3. The Method
We consider supervised classification problems with a train-
ing set Dtrain = {xk, yk, dk}Nk=1, where xk are raw input
data, yk class labels and dk domain labels. In the case of a
biased dataset, Dtrain has several classes yi, i = 1, ..., C,
which are considered to be observed under different do-
mains dj , j = 1, ..., D; D can be different from C but here,
for clarity and without losing generality, we consider the
case of D = C. When the majority of samples of a specific
class yi is observed under a single domain dj , while other
domains are under represented in the dataset, we say that
the pair (yi, dj) is biased, i.e. there is a spurious correlation
between class and domain.

We define Dbias as the subset of training samples that ex-
hibit spurious correlations and Dunbias as the subset of sam-
ples with under represented pairs. Such subsets are highly
imbalanced, i.e. |Dbias| >> |Dunbias|. For instance, in a
cats vs. dogs classification problem, most of the cats may be
observed in an indoor home environment, while most of the
dogs may be observed in outdoor scenes. For both classes,
very few images are outside of the main distribution.

We aim to tackle the unsupervised debiasing problem,
which means that we do not have access to domain la-
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bels d nor to other bias information, hence we consider
a training set containing only input data and class label,
D = {xk, yk}Nk=1. We want to train a neural network fθ
on D, with parameters θ, to be deployed on test data Dtest

not seen during training. θ are usually found via Empirical
Risk Minimization (ERM), i.e. minimizing the expected
Cross-Entropy loss over the training data:

min
θ

E
x,y∼D

L(D, fθ)

L(D, fθ) = yT log(σ(fθ(x)))
(1)

where σ is the softmax function. In such scenario, when
trained via ERM, a model focuses mostly on the more nu-
merous biased samples, underfitting the unbiased ones: this
results in a biased model that uses spurious correlation (e.g.,
background) as a possible way to make inference, instead
of correctly learning the class semantic. In general, Dtest

follows a data distribution different from Dtrain, i.e. the
biased pairs may be not the majority of samples. Hence it
is important to have a model that can be deployed on both
biased and unbiased pairs.

Our method tackles the unsupervised debiasing problem
with a two-stage approach. In the first stage, we separate
biased from unbiased samples through a pseudo-labeling
algorithm. Equipped with such pseudo-labels, we train a
model to produce a data representation that can accommo-
date both biased and unbiased samples. In the following,
we detail the two main stages of our method.

3.1. Bias Identification

In this stage, our goal is to split the training set D into two
disjoint subsets D̂bias and D̂unbias that should resemble the
actual, ground-truth Dbias and Dunbias. In [25], it is shown
how the biased samples are learnt faster than the unbiased
ones: the imbalanced nature of the dataset makes the model
more prone to learn first the numerous biased samples and
later those unbiased. This behaviour can be observed by
looking at the loss function trends of the two subsets (See
Fig. 1(c)). We exploit the fact that samples from Dbias are
easily learnt during training, to design a strategy for split-
ting the dataset. We train a neural network fϕ via ERM
until it reaches a training accuracy of γ, where γ is a hyper-
parameter denoting the target accuracy. When the model
reaches the desired accuracy level, the training stops and a
forward pass of the entire training set is performed. Now,
samples that are correctly predicted are assigned to D̂bias

while those not correctly predicted are assigned to D̂unbias.
More formally:

D̂γ
bias = {(x, y) ∈ D | σ(fγ

ϕ (x)) = y}

D̂γ
unbias = {(x, y) ∈ D | σ(fγ

ϕ (x)) ̸= y}
(2)

Using γ as hyper-parameter is convenient for two rea-
sons. First, our setting of the amount of desired accuracy is

dataset agnostic. This is different from prior work [22] that
employs a similar strategy, but with the hyper-parameter
controlling the number of epochs to train the model: in that
case, the number of epochs are strictly dependent on the
dataset that the model is trained on. Second, we can have
a precise control of the amount of samples assigned to the
two splits, e.g. γ = 0.85 implies that 85% of training data
are assigned to D̂bias and 15% to D̂unbias. In real use cases,
we do not know the correct assignments of the samples to
the splits, so we have to rely on a priori setting of this pa-
rameter.

3.2. Bias-invariant representation learning

Provided with pseudo-labels for the two estimated subsets
D̂bias and D̂unbias, we deal with the problem of learning
data representations that are not only good for the biased
data but can generalize well to unbiased samples. We adopt
a neural network fθ, trained from scratch, and we designed
a bi-level optimization algorithm inspired by meta-learning
to learn efficiently from such data.
Inner loop step. This is a meta-training step where we seek
the best parameters θ for the two subsets D̂bias and D̂unbias

via gradient descent:

θ∗ = θ − η ∇θ [(1− γ) L(D̂bias, fθ) + γ L(D̂unbias, fθ)] (3)

where η is the learning rate. In this step, the two splits
of the training data are treated as two separate tasks: we
scale the two loss functions with two coefficients to deal
with data imbalance (|D̂bias| >> |D̂unbias|). To rebalance
the contributions from the two splits, an obvious choice is
to set weights inversely proportional to the cardinality of
the two subsets, which is nothing else than the fixed and
controllable hyper-parameter γ.
Outer loop step. Standard meta-learning usually optimizes
for the meta-test task using the parameters found in the in-
ner loop, relying on a (typically small and clean) validation
set. Here, we get rid of this assumption since do not have
access to any held-out nor clean data, therefore we opt for a
data augmentation approach in order to provide unseen data
to the model.

We seek a representation that can conciliate both bi-
ased and unbiased samples and at the same time prevent
the model from overfitting the meta-training data (the two
subsets D̂bias and D̂unbias), which is a common problem
in meta-learning. We take inspiration from Mixup [32] as
a way to combine samples from the two subsets. Mixup
provides a convex combination of both input samples and
labels and it has demonstrated its efficacy as an effective
regularizer. Specifically, we feed the model with samples
resulting from the mix of examples from biased and unbi-
ased data, aiming at likely breaking the shortcuts present in
the dataset (see Fig. 2).
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Figure 2. Starting from the current parameter configuration θ,
gradients on L(D̂bias, fθ) and L(D̂unbias, fθ) are evaluated to
produce the new configuration θ∗. The regularization step using
mixed data aims at producing a contribution that decreases the loss
function on D̂bias, D̂unbias, and D̂mix, simultaneously, the latter
estimated over the configuration θ∗. (Best viewed in color)

We construct D̂mix by mixing samples of D̂bias, D̂unbias,
sampling the parameter λ ∼ Beta(α, β):

xmix = λ x̂1 + (1− λ) x̂2

ymix = λ ŷ1 + (1− λ) ŷ2

(x̂1, ŷ1) ∈ D̂bias , (x̂2, ŷ2) ∈ D̂unbias

(4)

Computed the augmented samples xmix, ymix, the
model is updated in the outer loop:

L := (1− γ) L(D̂bias, fθ) + γ L(D̂unbias, fθ)︸ ︷︷ ︸
Weighted ERM

+ ζ L(D̂mix, fθ∗)︸ ︷︷ ︸
Regularizer

(5)

where ζ is a hyper-parameter controlling the regulariza-
tion. Note that the first two losses are evaluated on the
current parameters configuration θ, while the loss over the
augmented samples is evaluated in the meta-state θ∗ (see
Eq. 3). This implies that the model has to compute a
gradient through a gradient, similarly to what happens in
optimization-based meta-learning methods. The hyperpa-
rameter ζ controls the amount of regularization in the final
loss: if ζ = 0, the method corresponds to a (weighted) ERM
in which the contributions of the losses on the two subsets
are scaled by (1 − γ) and γ. When ζ > 0 the weighted
ERM optimization trajectory is corrected by the regulariza-
tion term. This corresponds to find parameters θ that are
good for both D̂bias and D̂unbias, but can also possibly re-
duce the loss value on the newly generated data samples

Algorithm 1 Learning to learn unbiased representations
1: Input: Dataset D, initialized weights θ0, learning rate η,

hyper-parameters ζ, γ, T .
2: Output: learned weights θ
3: Initialize: θ ← θ0

4: Identify D̂bias and D̂unbias by pseudo-labeling (Eq. 2)
5: for t = 1, ..., T do
6: Sample (xb,yb), (xu,yu) from D̂bias, D̂unbias

7: Compute θ∗ (Eq. 3) ▷ Inner loop step
8: Sample (x̂1, ŷ1), (x̂2, ŷ2) from D̂bias, D̂unbias

9: Construct D̂mix (Eq. 4) ▷ Produce augmented samples
10: Update θ (Eq. 5) ▷ Outer loop step

D̂mix. Accuracy is not so affected by the choice of the ζ
value: indeed, it increases as long as this ζ assumes posi-
tive values up to reaching high performance quite steadily,
after that the contribution of the regularization becomes too
strong and accuracy decreases. We set the value of ζ to a
fixed value (= 10) for all experiments. Further analysis on
this parameter is reported in the Supplementary Material.
The complete method is summarized in Algorithm 1.

4. Experiments
We show the effectiveness of models trained by our method
in a series of benchmarks, ranging from toy problems with
synthetic biases to more realistic image classification tasks.
We compare with methods that tackle the same bias prob-
lem in both supervised and unsupervised way.

4.1. Benchmarks

Synthetic bias datasets. To control the bias in the data and
for the sake of comparison, we adopt two benchmarks that
have been employed by Nam et al. [25], namely Colored
MNIST and Corrupted CIFAR-101,2. The first is a modi-
fied version of the standard digit recognition dataset [17],
in which colors are added in order to artificially induce a
bias in the dataset. The dataset is made of 60,000 training
RGB images and 10 classes. Each sample is colored with a
color tone which is randomly sampled from a Gaussian dis-
tribution whose mean is specific for each class; in practice,
each class in the training data is observed mostly under a
certain color tone, while the test set has no specific correla-
tion between classes and colors and is balanced. Corrupted
CIFAR-10 is a modification of the original dataset [15] that
has been introduced in [11]. There are 50,000 training
RGB images and 10 classes. The bias here stems from
the fact that each image is corrupted with a specific noise
(e.g., Gaussian blur, salt and pepper noise, etc.). Specifi-
cally, each class has a privileged type of noise under which
it is observed during training (e.g., most of car images are
corrupted with motion blur). There are two versions of
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this dataset, namely Corrupted CIFAR-101 and Corrupted
CIFAR-102, with different types of noise.
Realistic bias datasets. We tested our method on real
image datasets, Waterbirds and Bias Action Recognition
(BAR). Waterbirds has been introduced by [27] and com-
bines bird photos from the Caltech-UCSD Birds-200-2011
(CUB) dataset [30] with background images from the
Places dataset [33]. There are 4,795 training images and
the goal is to distinguish two classes, namely landbird and
waterbird. The bias here is represented by the background
of the images: most landbirds are observed on a land back-
ground while most waterbirds are observed on a marine
background. BAR has been introduced by [25] as a real-
istic benchmark to test model’s debiasing capabilities. It is
constructed using several data sources and consists of 1,941
photos of people performing several actions, and the task is
to distinguish them in 6 classes: Climbing, Diving, Fishing,
Racing, Throwing and Vaulting. The bias arises from the
context in which action photos are observed at training: for
instance, climbing actions are performed in a dry mountain
scenario at training time, whereas in the test set, they are set
in a snowy environment. For details, readers can refer to the
original paper [25].

4.2. Performances

We report the performance of our approach on the differ-
ent benchmarks, starting from the Colored MNIST and cor-
rupted CIFAR-10 since they have controlled bias for which
we can better discuss the results. Since we deal with biased
training data and balanced data in testing, we report both
accuracies on the testing subset of unbiased samples only
(those under-represented in the training data) as well as over
the entire test set (biased + unbiased), to assess how much
we lose on the biased samples. In fact, as we learn features
having higher generalization capacity, spurious correlations
are likely less exploited to classify biased examples, and
this may cause a drop in performance on such samples.

For Colored MNIST, our network fθ is an MLP with
3 hidden layers with 100 neurons each. We used ResNet-
18 [10] as a backbone for Corrupted CIFAR-10 and BAR,
and ResNet-50 as backbone for Waterbirds. We remove the
last layer from such backbones, adding a 2-layer MLP head
on top of it. ResNet is pre-trained on ImageNet [16]. The
meta-parameter θ∗ is computed only for the last two fully
connected layers while the backbone is trained with only
the contribution of the weighted ERM in Eq. 5 (ζ = 0). We
set the learning rate η = 0.001 for all datasets with batch
size of 256 on synthetic biased data and 128 for realistic
bias data. We used Adam [14] as optimizer. All the ex-
periments comply the same evaluation protocol used in the
competing methods for a fair comparison. Implementation
details are reported in the Supplementary Material.
Results for synthetic bias datasets. Tables 1 and 2 present

the performance on synthetic biased datasets, reporting the
overall average accuracy and the one for unbiased samples
only, respectively. We compare against two baselines, a
model trained by Empirical Risk Minimization (ERM) and
our method with ζ = 0, which cancels out the contribution
of the regularization brought by the outer loop step in Eq.
5. This second baseline only weighs the contributions of
the two splits found via pseudo-labeling. We also compare
our approach with several former methods to learn unbiased
representations, either using annotation for the bias or not.
For the methods requiring explicit knowledge of the bias,
we consider REPAIR [20], which does sample upweight-
ing, and Group-DRO [27], which tackles the problem using
robust optimization. We finally report the performance of
Learning from Failure (LfF) [25], which learns a debiased
model without exploiting the labeling of the bias.
We consider different ratios of the bias (ranging from 95%
up to 99.5%) as in [25]. This ratio indicates the actual per-
centage of the dataset belonging to Dbias and Dunbias. This
ratio is also linked to the parameter γ used in the pseudo-
labeling stage, but in actual use cases it is not known.
Hence, in all experiments, we made an arbitrary, largely
loose choice for it, and fix the hyper-parameter γ = 0.85,
i.e. we consider 85% of the training data as biased, and then
assigned to D̂bias, and the remaining 15% to D̂unbias. Since
γ is a sensitive parameter, we provide an ablation analysis
in which we show how the performance changes as γ varies
(see Section 4.3 below). We set ζ = 10 throughout all the
experiments: in the Supplementary Material, we report an
ablation about this parameter.

We observe consistent better results with respect to the
competitors, for all datasets and all possible bias ratios. In-
terestingly, the difference from the baselines increases as
the dataset is more biased (higher bias ratio): this indicates
that our method is more effective as the bias is more severe.
We note that these performances are reached starting from
a very coarse split of the data (85/15%), while the actual
biased/unbiased sets are much more corrupted (from 95/5%
to 99.5/0.5%): this robustness towards the pseudo-labeling
subdivision is particularly useful in actual scenarios where
the bias ratio is unknown. We report an ablation study in
this regard in Section 4.3. The weighted ERM (ζ = 0) is al-
ready a strong baseline that surpasses, in some cases, former
debiasing methods. Please, note that for both the unbiased
samples and, in average, over the whole test set, the im-
provement is significant by a large margin. This shows that
our method is not only better at generalizing over unbiased
samples, but also maintains high accuracy on the biased set.
Results on the realistic biased datasets. In these tri-
als, we still compare against the ERM baseline and Group
DRO, as supervised method as before, and four unsuper-
vised algorithms, LfF [25], CVaR DRO [18], ReBias [3],
and JTT [22]. Performances are reported in Table 3. For
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Dataset Bias ratio ERM REPAIR [20] Group-DRO [27] LfF [25] Ours, ζ = 0 Ours, ζ = 10

Colored-MNIST

95% 77.6± 0.44 82.5± 0.59 84.5± 0.46 85.3± 0.94 82.3± 0.99 89.3 ± 1.02
98% 62.3± 1.47 72.9± 1.47 76.3± 1.53 80.5± 0.45 73.8± 0.87 83.4 ± 0.97
99% 50.3± 0.16 67.3± 1.69 71.3± 1.76 74.0± 2.21 68.3± 0.98 81.6 ± 0.96
99.5% 35.3± 0.13 56.4± 3.74 59.7± 2.73 63.4± 1.97 57.1± 1.05 72.2 ± 0.87

Corrupted CIFAR-101

95% 45.2± 0.22 48.7± 0.71 53.1± 0.53 59.9± 0.16 54.3± 1.40 63.3 ± 1.11
98% 30.2± 0.77 37.9± 0.22 40.2± 0.23 49.4± 0.78 44.4± 0.90 56.2 ± 0.89
99% 22.7± 0.97 32.4± 0.35 32.1± 0.83 41.4± 2.34 33.4± 0.91 50.5 ± 0.98
99.5% 17.9± 0.86 26.3± 1.06 29.3± 0.11 31.7± 1.18 26.1± 0.94 43.3 ± 0.97

Corrupted CIFAR-102

95% 41.3± 0.46 54.1± 1.01 57.9± 0.31 58.6± 1.18 53.8± 1.21 62.5 ± 0.91
98% 28.3± 0.77 44.2± 0.84 46.1± 1.11 48.7± 1.68 43.2± 0.96 55.2 ± 0.98
99% 20.7± 0.81 38.4± 0.26 39.6± 1.04 41.3± 2.08 37.0± 0.99 49.8 ± 1.01
99.5% 17.4± 0.85 31.0± 0.42 .342± 0.74 34.1± 2.39 30.6± 0.89 43.6 ± 1.32

Table 1. Accuracy on whole test set. Accuracy (in %) evaluated on biased + unbiased test samples for different bias ratios. Best performance in bold.

Dataset Bias ratio ERM REPAIR [20] Group-DRO [27] LfF [25] Ours, ζ = 0 Ours, ζ = 10

Colored-MNIST

95% 75.2± 0.87 83.3± 1.23 83.1± 0.81 85.8± 0.66 82.1± 0.88 89.2 ± 1.09
98% 58.1± 0.56 73.4± 0.79 74.3± 1.09 80.7± 0.56 73.3± 0.73 83.4 ± 0.85
99% 44.8± 0.84 68.3± 0.75 69.6± 0.63 74.2± 1.94 67.6± 0.92 81.6 ± 0.79
99.5% 28.1± 0.45 57.3± 0.61 57.1± 0.78 63.5± 1.94 56.8± 0.79 72.1 ± 0.94

Corrupted CIFAR-101

95% 39.4± 0.75 50.0± 0.89 49.0± 0.48 59.6± 0.03 54.3± 0.89 63.3 ± 1.10
98% 22.6± 0.45 38.9± 0.64 35.1± 0.92 48.7± 0.70 44.1± 0.83 56.1 ± 0.92
99% 14.2± 0.91 33.0± 0.57 28.0± 0.68 39.5± 2.56 32.3± 0.84 49.6 ± 0.85
99.5% 10.5± 0.28 26.5± 0.46 24.4± 0.48 28.6± 1.25 25.6± 0.91 42.1 ± 0.88

Corrupted CIFAR-102

95% 34.9± 0.84 54.5± 1.04 54.6± 0.61 58.6± 1.04 53.6± 0.86 62.3 ± 1.04
98% 20.5± 0.64 44.6± 0.83 42.7± 0.77 48.9± 1.61 43.8± 0.84 55.5 ± 0.98
99% 12.1± 0.75 38.8± 0.75 37.1± 1.22 40.8± 2.06 36.4± 0.93 49.7 ± 0.94
99.5% 10.0± 0.84 31.4± 0.53 30.9± 0.89 32.0± 2.51 29.8± 0.91 43.0 ± 0.85

Table 2. Results on unbiased test samples. Accuracy (in %) evaluated only on the unbiased samples for different bias ratios. Best performance in bold.

these datasets, we remind that we do not have the full con-
trol of the bias ratios. Specifically, in BAR we do not know
exactly the biased/unbiased samples and, differently from
Colored MNIST and Corrupted CIFAR-10, which have a
balanced test set, Waterbirds test set is also imbalanced.
In these cases, it is also important not only to cope with
unbiased samples, but also to maintain accuracy on biased
data. Hence, we aim here at finding a good trade-off be-
tween generalizing to unbiased samples while keeping high
performance on biased data as well: that is why perfor-
mances in Table 3 are reported as accuracies over both the
entire test set (avg) and the unbiased samples for Water-
birds, and over the whole test set only (avg) for BAR. For
Waterbirds, we note that we score favorably with respect
to other unsupervised methods for unbiased sample subset:
we reach comparable performance with JTT, but we outper-
form it on the whole test set. In other words, we are able to
learn bias invariant representations without giving up accu-
racy on the biased samples. ERM and CVar DRO outper-
form ours as per the avg accuracy, but their accuracy dras-
tically drops when considering unbiased samples only. We

Method Bias supervision
Waterbirds BAR

Acc. avg Acc. unbias Acc. avg

ERM No 97.3% 72.6% 53.5%
CVaR DRO [18] No 96.0% 75.9% -
LfF [25] No 91.2% 78.0% 62.9%
ReBias [3] No - - 59.7%
JTT [22] No 93.3% 86.7% -
Ours (ζ = 10) No 94.1% 87.1% 64.3%

Group DRO [27] Yes 93.5% 91.4% -

Table 3. Performance on the whole (avg) and unbiased only test set: com-
parisons with baseline, unsupervised and supervised methods (see text).

show also competitive performance against the supervised
method Group DRO: without using any bias supervision,
our method surpasses its average test accuracy even if the
accuracy on biased data results lower (owing to the supervi-
sion in this case). Concerning the BAR dataset, since there
is no ground-truth for the bias we report only the average
accuracy over the whole test set: our method outperforms
all other competitors by a considerable margin.
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Bias Identification Oracle Random split

Bias ratio F1 score Test Acc.(%) F1 score Test Acc.(%) F1 score Test Acc.(%)

95% 0.65 63.3 1.0 66.3 0.37 50.3
98% 0.62 56.2 1.0 59.4 0.34 40.4
99% 0.58 50.5 1.0 54.7 0.33 29.7
99.5% 0.54 43.3 1.0 49.0 0.32 21.5

Table 4. Ablation study on bias identification. F1 score of D̂bias, D̂unbias compared to ground truth annotationsDbias,Dunbias obtained
with our Bias Identification strategy (Eq.2), using an oracle and with subsets generated randomly. We report the final test accuracy on the
whole test set for the three different cases.

Figure 3. Test accuracies at different values of γ (from 0.65 to 0.95) av-
eraged over 3 runs. We compare with ERM baseline, [25], and our method
using the ground-truth bias knowledge as an oracle (D̂bias = Dbias and
D̂unbias = Dunbias).

4.3. Ablation Study

We conducted an ablation analysis using Corrupted CIFAR-
101 (bias ratio= 95%), to assess the contribution of each
step characterizing our approach.

First, we test the robustness of the classification perfor-
mance towards the choice of the hyper-parameter γ that
governs the amount of data that we assign to the pseudo-
labeled subsets (See Figure 3).

Since the dataset is bias, i.e. |Dbias| >> |Dunbias|,
the choice of a skewed value of γ, i.e. from 65% to 95%,
seems reasonable: we observe how the final accuracy does
not change sensibly, meaning that the initial training of the
network fϕ is not a critical step since the biased training
samples can be learnt faster than the unbiased ones. In prin-
ciple it could happen that fϕ might not reach the training
accuracy of γ, however in all our experiments we were able
to reach at least γ = 0.95.

In Table 4 We also assessed the quality of the splitting
obtained, i.e., the influence of the pseudo-labeling (Eq. 2)
on the final test accuracy. Considering F1-score (as a mea-
sure integrating Precision and Recall) as metric to evaluate
the quality of the splitting, we estimate the test accuracies in
the ideal case of perfect subdivision between biased and un-
biased samples (Oracle, F1 = 1), by applying our approach
(F1 = 0.64), and in case of random split (F1 = 0.37).
We noted that passing from the oracle conditions (best) to
the random split (worst), accuracy drops of 4% in case of
our bias identification strategy, and of 10% for the random
split, showing a certain robustness to a coarse initial bi-

Set 1 Set 2

Bias ratio
95% 98% 99% 99.5%

Acc. all Acc. unbias Acc. all Acc. unbias Acc. all Acc. unbias Acc. all Acc. unbias

No augmentation 58.8% 55.3% 46.1% 41.5% 40.0% 34.8% 33.6% 27.1%

D̂bias D̂bias 35.2% 29.7% 34.0% 28.4% 32.9% 26.7% 32.0% 27.5%
D̂unbias D̂unbias 60.2% 63.1% 54.1% 55.3% 48.4% 48.7% 40.4% 42.5%

D̂bias D̂unbias 63.8% 63.3% 56.4% 55.9% 50.9% 49.4% 43.1% 42.7%

Table 5. Ablation analysis on the augmentation strategies. We report
the accuracy resulting from different augmentation strategies and no aug-
mentation, by varying the bias ratio. Our strategy results the winner over
all the other mixing policies.

ased/unbiased sample subdivision. In other words, a coarse
splitting better than random considerably increase the final
performance wrt to ERM training.

Finally, we tested different strategies to perform data
augmentation in the outer loop step. We combined sam-
ples from D̂bias and D̂unbias (Eq. 4). In Table 4 we report
the results when sampling x̂1, x̂2 from different combina-
tions of the subsets. Mixing both samples from D̂bias over-
fits the biased data and results in the worst accuracy, while
mixing both samples from D̂unbias increases the general-
ization over unbiased samples, but provides suboptimal re-
sults, especially for the biased subset. Samples from D̂bias

mixed with D̂unbias corresponds to our policy, which pro-
vides the best performance. We also report the baseline
case in which no augmentation is performed (first row), i.e.
xmix, ymix are just drawn from D, whose results are signif-
icantly distant from our proposal. Further ablations details
are reported in the Supplementary Material.

5. Conclusions

We proposed a novel solution for the problem of unsuper-
vised debiasing using a meta-learning strategy. After having
subdivided by a pseudo-labeling method the training dataset
into two subsets of biased and unbiased samples, we treated
them as tasks to be learned with a bi-level optimization al-
gorithm. The key idea is the mixing of the two subsets to
provide the model with unseen data that can break the spu-
rious correlations between data and class labels.
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