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Abstract

In this work, we propose Mutual Information Maximiza-
tion Knowledge Distillation (MIMKD). Our method uses a
contrastive objective to simultaneously estimate and max-
imize a lower bound on the mutual information of local
and global feature representations between a teacher and a
student network. We demonstrate through extensive exper-
iments that this can be used to improve the performance of
low capacity models by transferring knowledge from more
performant but computationally expensive models. This can
be used to produce better models that can be run on de-
vices with low computational resources. Our method is
flexible, we can distill knowledge from teachers with arbi-
trary network architectures to arbitrary student networks.
Our empirical results show that MIMKD outperforms com-
peting approaches across a wide range of student-teacher
pairs with different capacities, with different architectures,
and when student networks are with extremely low capac-
ity. We are able to obtain 74.55% accuracy on CIFAR100
with a ShufflenetV2 from a baseline accuracy of 69.8% by
distilling knowledge from ResNet-50. On Imagenet we im-
prove a ResNet-18 network from 68.88% to 70.32% accu-
racy (1.44%+) using a ResNet-34 teacher network.

1. Introduction
Recent machine learning literature has seen a lot of

progress driven by deep neural networks. Many such
models that achieve state-of-the-art performance on dif-
ferent benchmarks require large amounts of computation
and memory capacities [14]. These requirements limit the
wider adoption of these models in resource-limited scenar-
ios. To this end, Knowledge Distillation (KD) has been used
to transfer knowledge from a stronger teacher network to
a smaller and less computationally expensive student net-
work [4, 12]. This often allows student networks to outper-
form identical models trained without a teacher. However
there is still much room for improvement in knowledge dis-
tillation so that students can extract as much knowledge as
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Figure 1. Accuracy-efficiency trade-off of various CNN models on
the CIFAR100 dataset. Inference time is the average over a single
input. MIMKD provides significant gains over baseline student
network accuracies and KD [12] across a range of student-teacher
pairs. Notice that Conv4-MP, which is a simple 4-layer CNN, after
distillation performs close to a more standard ShuffleNetV2. Note:
Runtimes were computed on an Intel(R) Xeon(R) Gold 5218 CPU
@ 2.30GHz.

possible from the teacher network.
In this paper, we look at knowledge distillation from

an information-theoretic perspective. For better distilla-
tion, the student needs to generate representations that
share maximum information with the representations gen-
erated by the teacher. Based on this intuition, we propose
Mutual Information Maximization Knowledge Distillation
(MIMKD). Multiple approaches have been proposed to es-
timate the mutual information between high-dimensional
continuous variables [2, 13]. Belghazi et al [2] propose a
KL-divergence based formulation of mutual information.
We observe that this approach can be extended to maxi-
mize the mutual information in a contrastive setup. Con-
trastive methods have had an outsized impact in other prob-
lems such as self-supervised learning [6, 10], however they
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rely on sampling a rather large number of paired inputs to
optimize their objective functions. We find that by using
a Jensen-Shannon divergence (JSD) based formulation we
obtain a more stable objective to optimize where the perfor-
mance is invariant to the number of negative samples while
being monotonically related to the true mutual information
as also shown in Hjelm et al [13].

The previous work of [12] performed distillation by min-
imizing the Kullback–Leibler Divergence (KLD) between
the output logits of two models. Since then, several other
output-based knowledge distillation approaches have been
developed [5, 12, 24, 31]. Some of these methods try to
match the final outputs of two networks by minimizing a
distance metric. Other works have also encouraged addi-
tional knowledge transfer by minimizing a metric between
intermediate representations [1, 19, 28].

However, models with significantly different architec-
tures have distinct data-abstraction flows, and the complex-
ity of the patterns recognized at different depths in the
model varies significantly with model architecture (i.e. the
number of filters in convolutional layers). Therefore, min-
imizing a non-parameterized distance metric on the repre-
sentations imposes an additional structural constraint that
might not be ideal for knowledge transfer. In our work, we
are still able leverage both local and global information by
maximizing mutual information instead of a rigid distance
metric between representations.

More comparable to our work is the recently proposed
Contrastive Representation Distillation (CRD) frame-
work [24]. This method uses a Noise Contrastive Estima-
tion (NCE) objective [9,16] to transfer structured relational
knowledge from the teacher to the student. However, a
caveat of this approach is that it ignores intermediate dis-
tillation for feature level information and requires a large
number of negative samples requiring large batches [6] or
memory banks [10, 26]. We extend this work by using
a JSD-based contrastive objective that is insensitive to the
number of negative samples. This enables us to impose ad-
ditional region-consistent local and feature-level constraints
with just one negative sample.

We propose three mutual information maximization ob-
jectives between the teacher and student networks: (1)
Global information maximization, which aims to maximize
the shared information between the final output representa-
tions. This pushes the student network to generate feature
vectors that are as rich as the ones generated by the teacher.
(2) Local information maximization, which pushes the stu-
dent network to recognize complex patterns from each re-
gion of the image that are ultimately useful for classifica-
tion. This is achieved by maximizing the mutual informa-
tion between region-specific vectors extracted from an in-
termediate representation of the student network and the fi-
nal representation of the teacher network. Finally, (3) Fea-

ture Information Maximization, which is designed to struc-
turally improve the granular feature-extraction capability of
the student by maximizing the mutual information between
region-consistent local vectors extracted from intermediate
representations of the networks.

Our experimental results in Section 4 demonstrate that
these objectives are effective across a wide range of student-
teacher pairs and conduct extensive ablation studies of the
effect of each proposed objective. We particularly demon-
strate the effectiveness of our method in knowledge distilla-
tion across student-teacher network pairs with different ca-
pacities, student-teacher network pairs with different archi-
tectures, and in the extreme case where student networks
are extremely low capacity. We show that MIMKD pro-
vides consistently better results across all these testing sce-
narios. Figure 1 shows a summary of results for various
student networks on CIFAR-100 when compared to regu-
lar KLD-based knowledge distillation [12]. Moreover, we
compare the transferability of features learned with knowl-
edge distillation from MIMKD and SOTA baseline. Our
results show that MIMKD learns general and transferable
representations.

2. Related Work
In this section, we discuss previous efforts in improving

knowledge distillation, and in estimating mutual informa-
tion which are the key areas of contribution of our work.

2.1. Knowledge distillation.

The concept of knowledge distillation (KD) was intro-
duced in the works of Buciluǎ et al. [4] and later formal-
ized for deep neural networks by Hinton et al. [12]. In
knowledge distillation, the goal is to train smaller models
that can mimic the performance of larger models. Hinton et
al. [12] proposed a knowledge distillation method in which
the student network is trained using soft labels extracted
from teacher networks.

Attention transfer [28] introduced the idea of transferring
intermediate attention maps from the teacher to the student
network. Fitnets [19] also presented the idea of adding more
supervision by matching the intermediate representation us-
ing regressors. Yim et al. [27] formulated the distillation
problem using the flow of solution procedure (FSP), which
is computed as the gram matrix of features across layers.
Sau et al. [22] proposed to include a noise-based regular-
izer while training the student with the teacher. Specifi-
cally, they perform perturbation in the logits of the teacher
as a regularization approach. In Correlation Congruence for
Knowledge Distillation (CCKD) [18], the authors present a
framework which transfers not only instance-level informa-
tion but also the correlation between instances. In CCKD,
a Taylor series expansion-based kernel method is proposed
to better capture the correlation between instances. Tung et
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Figure 2. Overall schematic of our proposed method for mutual information maximization based knowledge distillation (MIMKD). Top:
Representations generated by teacher and student networks for image x and a negative sample x′. Note that our method uses only one
negative sample. Bottom: (a) Positive and negative pairs of final feature vectors are passed into the discriminator function to get scores.
(b) Teacher’s final representation is replicated to match student’s last intermediate representation. (c) For each group of same-sized
intermediate feature maps in set R, positive and negative pairs are passed into a distinct discriminator function to get scores. The positive
and negative scores obtained are then used with equation (2) to estimate and maximize a lower-bound on mutual information.

al. [25] propose a loss that is based on the observation that
semantically similar inputs produce similar activation pat-
terns in trained networks. Variational Information Distilla-
tion (VID) [1] uses a variational lower-bound for the mutual
information between the teacher and the student representa-
tions by approximating an intractable conditional distribu-
tion using a pre-defined variational distribution.

More closely related to our work are methods that
cast knowledge distillation as a mutual information max-
imization problem. Contrastive representation distillation
(CRD) [24] used a contrastive objective similar to Oord et
al. [16] to maximize a lower-bound on mutual informa-
tion between final representations. The objective used by
CRD is a strong lower-bound on the mutual information
but requires a significant number of negative samples during
training, consequently, requiring large batch-sizes or mem-
ory buffers. These practical constraints become even more
limiting if mutual information needs to be minimized at the
feature-level to enforce regional-supervision during student
training. Our work proposes an alternative that bypasses
the needed for such large batch-sizes and thus enables to
optimize for mutual information through three separate ob-
jectives.

2.2. Mutual Information Estimation.

Mutual information is a fundamental quantity that mea-
sures the relationship between random variables but it is no-
toriously difficult to measure [17]. An exact estimate is only
tractable for discrete variables or a small set of problems

where the probability distributions are know. However, both
the mentioned scenarios are unlikely for real-world visual
datasets. Recently, Mutual Information Neural Estimation
(MINE) [2] demonstrated a strong method for estimation
of mutual information between high-dimensional continu-
ous random variables using neural networks and gradient
descent. MINE [2] proposed a general-purpose paramet-
ric neural estimator of mutual information based on dual
representations of the KL-divergence [20]. Following from
MINE [2], Deep InfoMax [13] proposed a mutual informa-
tion based objective for unsupervised representation learn-
ing. Deep InfoMax [13] contends that it is unnecessary to
use the exact KL-divergence based formulation of mutual
information and demonstrated the use of an alternative for-
mulation based on the Jensen-Shannon divergence (JSD).
The authors showed that the JSD based estimator is stable,
and does not require a large number of negative samples. In
addition, Deep InfoMax [13] also demonstrated the value
of including global and local structure-based mutual infor-
mation objectives for representation learning. We lever-
age this line of work in our method to propose a frame-
work for knowledge distillation that leverages both local
and global features without significantly adding memory
overheads during training.

3. Method
In this section, we describe our general framework for

model compression or knowledge distillation in a teacher
student setup. Consider a stronger teacher network ft :
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X → Y with trained parameters ϕ and a student network,
operating on the same domain, fs : X → Y with parame-
ters θ. Let x be the sample drawn from the data distribution
p(x) and ft(x) & fs(x) denote the representations extracted
from the pre-classification layer, while f cls

t (x) & f cls
s (x)

denote the predicted class-probability distributions from the
teacher and the student networks respectively. Now con-
sider a set R = {(f (k)

t (x), f
(k)
s (x))}Kk=1 that contains K

pairs of intermediate representations extracted from the net-
works such that each pair in set R contains same-sized inter-
mediate representations extracted from the networks, where
mk×mk is the size corresponding to the k-th pair in the set.
Each location in these 2-dimensional intermediate represen-
tations corresponds to a specific region in the input image.
Note that we do not include the final representations ft(x)
and fs(x) in the set R.

Our method focuses on maximizing the mutual infor-
mation, (1) between final image representations ft(x) and
fs(x) (global information maximization), (2) between the
global image representation from the teacher network ft(x)
and the last intermediate representation from the student
network f

(K)
s (x) (local information maximization), and (3)

between the pairs in set R (feature information maximiza-
tion). Figure 2 shows an overview of our method.

3.1. Mutual Information Maximization

In order to estimate and maximize mutual informa-
tion between random variables X and Z, we train a neu-
ral network to distinguish samples generated from the
joint distribution, P (X,Z) and the product of marginals
P (X)P (Z). In MINE [2], the authors use the Donsker-
Varadhan (DV) [8] representation of the KL-divergence
as the lower bound on the mutual information. Recently,
another bound on mutual information, formulated as in-
foNCE [16] based on Noise-Contrastive Estimation [9], has
seen wide adoption in representation learning due to its low
variance and accurate estimate of MI. It is defined as fol-
lows;

ÎInfoNCE
ω (X;Z)

:= EP (X,Z)[Tω − EP (X)P (Z)[log
∑

Tω]], (1)

where Tω : X × Z → R is the discriminator neural net-
work with parameters ω. However, as demonstrated in [13],
both DV and infoNCE require a large number of negative
samples during training. Recent works tackle this problem
by using a memory-buffer that keeps representations from
previous samples in memory to be accessed during training.
As implemented in CRD [24], this can be done if mutual
information is maximized only between the final represen-
tations of the networks as the dimensions of the represen-
tations to be kept in memory is limited. In this work, we

extend this infoNCE based MI maximization framework to
include feature and local level information maximization.
As a result, we require negative samples for each location
in the multiple K intermediate feature maps as well as for
the final representations. This becomes unfeasible for most
large state-of-the-art architectures. To this end, in our ap-
proach we adopt Jensen-Shannon divergence based mutual
information estimation, similar to the formulations in [15]
and [3]. The MI estimate from this JSD-based bound on
MI, due to its formulation, is insensitive to the number of
negative samples.

I(X;Z) ≥ ÎJSD
ω (X;Z) := EP (X,Z)[−log(1 + e−Tω )]

− EP (X)P (Z)[log(1 + eTω )]. (2)

Overall, we optimize the parameters θ of the student net-
work fs and parameters ω of the critic network Tω by simul-
taneously estimating and maximizing mutual information
between the representations of the frozen teacher network
and the student network.

3.2. Global information maximization

Our global objective aims to maximize the mutual infor-
mation between the richer final representation of the frozen
teacher network ft(x) and the final representation of the
student network fs(x) to encourage the student to learn
richer representations. This objective uses a discriminator
function Tωg , where ωg are the trainable parameters. We
use the infoNCE bound for global MI maximization as it
is computationally feasible to maintain a memory bank of
negative samples due to the lower dimensionality of the fi-
nal representations from the networks. We optimize the pa-
rameters of the student and the discriminator function si-
multaneously as:

(ω̂g, θ̂) = argmax
ωg,θ

Î infoNCE
ωg

(ft(x), fs(x)). (3)

3.3. Local information maximization

In this objective we maximize the mutual information
between a richer final representation of the teacher network
and representations of local regions extracted by the student
network. This objective draws from the assertion that the
final teacher representations contains valuable information
required for downstream classification. Hence, this objec-
tive encourages the student network to extract information
from local image regions that is ultimately useful for classi-
fication.

We enforce this objective between ft(x) and the last in-
termediate representation from the student network in the
set R. Therefore for k = K, f (K)

s (x) is a mK × mK

feature map where each location roughly corresponds to an
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H/mK × W/mK patch in the input image where H,W
are the height and width of the image. The representation
of each such patch {f (K)

s (x)}i,j is then paired with ft(x),
where i, j ∈ [1,mK ] denotes the specific location in the
feature map. The pairs are then used with the mutual infor-
mation estimator to optimize the parameters as follows:

(ω̂l, θ̂) = argmax
ωl,θ

1

m2
K

mK∑
i=1

mK∑
j=1

ÎJSD
ωl

(ft(x), {f (K)
s (x)}i,j)

(4)
where a discriminator neural network Tωl

with parameters
ωl is used.

3.4. Feature Information maximization

This objective aims to maximize the mutual informa-
tion between region-consistent intermediate representations
from the networks. In neural networks, the complexity
of captured visual patterns increases towards the later lay-
ers [30]. Intuitively, to mimic the representational power of
the teacher, the student network needs to learn these com-
plex patterns hierarchically. In order to motivate such hi-
erarchical learning, mutual information is maximized be-
tween intermediate features at different depths in the net-
works. This enables the student to learn to identify complex
patterns in a bottom-up fashion and systematically learn to
generate richer features. Note that within each pair of inter-
mediate feature maps in set R, mutual information is max-
imized between vectors corresponding to the same location
in the image. This information maximization pushes the
student network to extract features from each region of the
image that share maximum information with the features
extracted by the teacher network from the same region. For
a pair (f

(k)
t (x), f

(k)
s (x)) ∈ R, information is maximized

between pairs of region-consistent vectors {f (k)
t (x)}i,j and

{f (k)
s (x)}i,j for each i, j ∈ [1,mk] as follows:

(ω̂f , θ̂) = argmax
ωf ,θ

1

K

1

m2
k

K∑
k=1

mk∑
i=1

mk∑
j=1

ÎJSD
ωf

({f (k)
t (x)}i,j , {f (k)

s (x)}i,j) (5)

where a discriminator neural network Tωf
with parame-

ters ωf is used.

3.5. Classification objective

Here the cross-entropy loss is minimized between the
output of the classification function f cls

s (x) and the target
label y as follows:

(θ̂) = argmin
θ

LCE(y, f
cls
s (x)), (6)

where LCE denotes the cross-entropy function.
Our overall objective is a weighted-summation of all the
above individual objectives with weights α (cross-entropy
loss), λg (global MI maximization), λl (local MI maximiza-
tion), and λf (feature MI maximization)

3.6. Mutual Information Discriminators

The parameterized mutual information discriminator
functions (Tωg , Tωl

, and Tωf
) can be modeled as neural

networks. In our experiments, we use two distinct discrimi-
nator architectures inspired from the functions presented in
Deep InfoMax [13]. For global information maximization,
we use the standard project and dot architecture. The rep-
resentations from both the teacher and the student are first
projected using an appropriate projection architecture with
a linear shortcut. The dot-product of these projections is
then computed to get the score. Positive and negative pairs
of representations are passed through the discriminator to
get respective scores to be passed into equation 2 to get the
estimates on the lower bound of the mutual information.
Whereas, for local and feature information maximization
we use a convolution based architecture as it is cheaper for
higher dimensional inputs.

Input Operation Output
[ft(x), f

(K)
s (x)] 1× 1 Conv + ReLU O1

O1 1× 1 Conv + ReLU O2

O2 1× 1 Conv scores

Specifically, for local
information maximiza-
tion, we replicate the fi-
nal representation from
the teacher ft(x) to match the mK × mK size of the stu-
dent’s last intermediate feature map (f (K)

s (x)). The result-
ing replicated tensor is then concatenated with f

(K)
s (x) to

get [ft(x), f
(K)
s (x)] which serves as the input for the critic

function (ref. table on right). Similarly, consider feature
mutual information maximization, for each pair in the set
R we use a distinct discriminator T (k)

ωf . For a given k, each
pair of intermediate feature representations in the set R are
concatenated together to get [f (k)

t (x), f
(k)
s (x)]. Which is

then passed through two convolutional (1 × 1 kernels and
512 filters) where each layer is followed by a ReLU non-
linearity. The output obtained is then further passed into
a convolutional layer (1 × 1 kernels and 1 filter) to give
mk × mk scores (ref. table on right). Further details are
provided in supplementary.

3.7. Implementation Details

We adopted the generally established approach for train-
ing CNNs on the CIFAR-100 dataset. We use SGD with
momentum 0.9, weight decay 5×10−4, and an initial learn-
ing rate of 0.05 for a total of 240 epochs with batch-size 64.
The learning rate is decayed by 0.1 at the 150th, 180th and
the 210th epoch. We used random horizontal flips and ran-
dom crop for augmenting the dataset during training. For
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Figure 3. Results from the ablation studies on CIFAR100 dataset using a student ResNet-8x4 (baseline acc. 72.44%) with teacher ResNet-
32x4 (baseline acc. 79.24%). Contour lines represent the final test accuracy of the student. The study was performed by varying the values
of λf , λg , λl from 0 to 1 with increments of 0.25 while α was kept constant at 1. In each plot, the accuracy landscape is shown with λg

set to a constant value. Plots for remaining values of λ have been added to the appendix.

ImageNet, we use the standard PyTorch training scheme for
ResNets [11]. Code implementation will be made public on
publication.

4. Experiments
In this section, we demonstrate the efficacy of our frame-

work using various ablative and quantitative analyses. We
first establish the value of each of our mutual informa-
tion maximization formulations by performing an exten-
sive ablative study (sec. 4.1). Further, we demonstrate the
prowess of our distillation framework based on model com-
pression performance in the following setups: (1) Under
similar student-teacher network architectures (sec. 4.2), (2)

under dissimilar architectures (sec. 4.3), (3) under a set-
ting with custom designed shallow student networks (ref.
appendix for results), (4) in a larger scale setting on Ima-
genet (ref. appendix for results), and (5) in terms of transfer
learning performance (sec. 4.4) as a measure of the trans-
ferability of distilled representations. Our model compres-
sion experiments are performed on the CIFAR-100 dataset
which contains colored natural images of size 32 × 32. It
has 50K training images with 500 images in each of 100
classes and a total of 10K test images. In our experi-
ments, we use standard CNN architectures of varied capac-
ities, such as ResNet [11], Wide ResNet (WRN) [29], Mo-
bileNet [21], ShuffleNet [32], and VGG [23]. We compare

53



Student Net. WRN-16-1 WRN-16-2 ResNet-8 ResNet-20 ResNet-20 ResNet-8x4 VGG-8

Teacher Net. WRN-40-2 WRN-40-2 ResNet-110 ResNet-110 ResNet-56 ResNet-32x4 VGG-19

Student Acc. 67.01 72.80 59.63 69.10 69.10 72.44 69.67

Teacher Acc. 75.31+8.30 75.31+2.51 73.82+14.19 73.82+4.72 72.31+3.21 79.24+3.80 74.63+4.96

FitNets 68.35+1.34 73.11+0.31 60.36+0.73 69.12+0.02 69.28+0.18 73.80+1.36 71.32+1.65

AT 68.49+1.48 73.37+0.57 60.24+0.61 70.36+1.26 70.18+1.08 73.20+0.76 71.71+2.04

VID 68.95+1.94 73.89+1.09 60.44+0.81 70.32+1.22 70.52+1.42 73.19+0.75 71.52+1.85

KD 68.24+1.23 73.91+1.11 61.01+1.38 70.32+1.22 70.59+1.40 73.21+0.77 72.29+2.62

CRD 69.21+2.20 74.17+1.37 60.82+1.19 71.45+2.35 71.12+2.02 75.21+2.77 73.10+3.43

MIMKD (ours) 70.20+3.19 75.16+2.36 61.81+2.18 71.43+2.33 71.31+2.21 75.83+3.39 73.27+3.60

Table 1. Observed test accuracy (in %) of student networks trained with teacher networks of higher capacity but similar architecture on
the CIFAR100 dataset using MIMKD and other competing methods. MIMKD shows consistent increases in accuracy for all model pairs
and the largest gains overall.

our method with other knowledge distillation methods, such
as (1) Knowledge Distillation (KD) [12], (2) FitNets [19],
(3) Attention Transfer (AT) [28], (4) Variational Informa-
tion Distillation (VID) [1], and (5) Contrastive Represen-
tation Distillation (CRD) [24]. We used the following val-
ues for hyper-parameters based on a held out set: α = 1,
λg = 1, λl = 0.75, λf = 1 for all our experiments. The
infoNCE bound in CRD as well as our global MI is set to
use 4096 negatives. The hyper-parameter choice for other
approaches can be found in supplementary. Additionally,
in order to demonstrate the scalability of our method, we
compare our distillation performance on the ImageNet [7]
dataset against AT [28], and KD [12]. ImageNet is a large-
scale dataset with 1.2 million training images across 1K
classes and a total of 50K validation images.

4.1. Ablation Study

We perform an extensive ablation study to demonstrate
the value of each component of our mutual information
maximization objective. Ablative study experiments are
performed with ResNet-32x4 as the teacher network and
ResNet-8x4 as the student network where the baseline ac-
curacy of the teacher is 79.24% and that of the student net-
work is 72.44%. The values of the hyper-parameters λg ,
λl and λf — that control the weight of the global, local
and feature mutual information maximization objectives re-
spectively – were varied between 0 and 1 with an increment
of 0.25 while the weight for the cross-entropy loss, α was
set to 1. Note that for this study, we use the JSD-based
bound for all MI maximization formulations including for
global MI which is not the case for our final competitive

models presented further. The contour plots in Figure 3
shows the test accuracy landscape with respect to a pair of
hyper-parameters when the third hyper-parameter is set to
distinct values. For instance, we observe that for any value
of λg , better performance is achieved towards higher val-
ues of both λf and λl. Similar trends can be observed in
all the accuracy landscape plots. Overall, this demonstrates
the value of maximizing region-consistent local and feature-
level mutual information between representations in addi-
tion to just global information maximization. Please refer
to the appendix for additional accuracy landscape plots.

4.2. Similar CNN Architectures

We perform knowledge distillation from a teacher net-
work to a student network of the same family (e.g. ResNets
of different capacities). Table 1 presents our results, show-
ing that our method outperforms others in most setups and
always obtains gains with respect to student networks. No-
tice that CRD [24] is able to slightly surpass the perfor-
mance of our method in one setup while being close in
most cases. We find this encouraging as CRD [24] uses
a similar mutual information maximization based formu-
lation in their distillation objective with a tighter lower-
bound. Therefore, if we only use the global objective in our
method, CRD [24] should outperform our method due to
its tighter bound. Despite compromising the lower bound
on mutual information, MIMKD takes advantage of using
region-consistent local and feature-level mutual informa-
tion maximization.
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Student Net. WRN-16-1 WRN-16-2 VGG-8 ShuffleNetV1 ShuffleNetV2 MobileNetV2

Teacher Net. ResNet-110 ResNet-32x4 ResNet-32x4 VGG-13 ResNet-50 VGG-13

Student Acc. 67.01 72.80 69.67 70.51 69.85 61.11

Teacher Acc. 73.82+6.81 79.24+6.44 79.24+9.57 74.62+4.11 79.23+9.38 74.62+13.51

FitNets 67.99+0.98 73.79+0.99 70.28+0.61 72.29+1.78 71.80+1.95 61.42+0.31

AT 66.42–0.59 72.19–0.61 71.77+2.10 71.19+0.68 70.78+0.93 61.96+0.85

VID 67.47+0.46 73.38+0.58 71.52+1.85 72.22+1.71 72.84+2.99 63.01+1.90

KD 68.86+1.85 74.63+1.83 73.46+3.79 72.26+1.75 72.91+3.06 64.47+3.36

CRD 69.71+2.70 75.61+2.81 73.73+4.06 72.86+2.35 73.65+3.80 66.34+5.23

MIMKD (ours) 69.88+2.87 76.24+3.44 74.09+4.42 73.88+3.37 74.55+4.70 65.89+4.78

Table 2. Observed test accuracy (in %) of student networks trained with teacher networks of higher capacity and different architecture on
the CIFAR100 dataset using our method MIMKD and other distillation frameworks.

4.3. Dissimilar CNN Architectures

Here, we perform knowledge distillation from a teacher
network to a student network with a significantly differ-
ent architecture. This tests the flexibility methods to adapt
to distinct data-abstraction flows of dissimilar neural net-
work architectures. Table 2 demonstrates that our method
(MIMKD) outperforms other distillation methods in most
teacher-student combinations increasing the accuracy of a
ShuffleNetV2 by 4.7% while distilling from a much differ-
ent ResNet-50 model. This demonstrates that our method
is able to accommodate significant architectural differences
in teacher-student pairs and does not impose structural con-
straints on intermediate layers that hinder training. While
other methods that work on intermediate feature maps like
AT [28] and FitNets [19] do not show much improvement
from base student accuracy.

4.4. Transferring representations

Finally, we compare the transferability of the features
learned with knowledge distillation from MIMKD and
baselines, on two other datasets: STL-10 and TinyIma-
genet. A WRN-16-2 network is trained with and without
distillation from a pre-trained WRN-40-2 teacher on the CI-
FAR100 dataset. The student is then used as a frozen feature
extractor (pre-classification layer) for images in the STL-10
and the TinyImageNet dataset. A linear classifier is trained
on these extracted features to perform classification on the
test sets of these datasets. The classification accuracy on the
unseen datasets is interpreted as the transferability of repre-
sentations. Results are presented in Table 3 and show that
MIMKD learns more transferrable representations.

STL-10 TinyImageNet

Base Accuracy (no distillation) 69.5 33.8

Knowledge Distillation (KD) 70.6 33.9
Attention Transfer (AT) 70.8 34.4
Contrastive Repr. Distill (CRD) 71.4 35.6

MIMKD (this work) 71.8 36.2

Table 3. Observed test-set accuracy (in %) of the student net-
work on STL-10 and TinyImagenet datasets using our method
(MIMKD) and other distillation frameworks.

5. Conclusion

In this paper, we presented a framework (MIMKD) mo-
tivated by an information-theoretic perspective on knowl-
edge distillation. Utilizing an information-efficient lower
bound on mutual information, we proposed three infor-
mation maximization formulations and demonstrated the
value of region-consistent local and feature-level informa-
tion maximization on distillation. We enable intermediate
distillation using a JSD based lower-bound on MI which we
optimize using only one negative sample. Further works
in this area could explore our contention that if used with a
tighter lower-bound, our feature and local information max-
imization objectives have the potential to surpass even its
current performance.
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