
A. Appendix

A.1. Limitations and Broader Impacts

In this paper, we presented a novel Mutual Informa-
tion Maximization based knowledge distillation framework
(MIMKD). Our method uses the JSD based lower-bound
on mutual information which is optimized using only one
negative sample. However, despite its favorable proper-
ties, our lower-bound may be less tight on the mutual in-
formation than the infoNCE bound as it approximates the
mutual information by being monotonically related with
it. Additionally, as we use only one negative sample, the
performance of the method may be hindered by the pres-
ence of false negatives. The performance of the method is
also effected by the architecture of the discriminator func-
tions which can be explored further. We presented three
information maximization formulations and demonstrated
the value of region-consistent information maximization on
distillation performance. We observe that the performance
is slightly-sensitive to the hyper-parameters that control the
relative value of our global, local, and feature information
maximization formulations. This has been explored in great
detail in our ablation sections and further demonstrated in
figures 4, 5, and 6. Our method transfers representations
from the teacher to the student. As such, harmful biases
that the teacher has learnt are transferred to the student as
well. And further exploration is required to alleviate the
transfer of such biases during distillation.

A.2. Hyper-parameters for other methods

The student is trained with the following loss function
which is a combination of the distillation loss and the cross-
entropy loss for classification:

L = αLcls + (1− α)LKD + βLdis (7)

Note that we set α = 1 for all methods except KD ß [12]
and the value of β is set to the value recommended in the
original work as follows:

1. KD [12]: α = 0.9, β = 0

2. Fitnet [19]: β = 100

3. AT [28]: β = 1000

4. VID [1]: β = 1

5. CRD [24]: β = 0.8, for CRD evaluation, we use a
original work inspired self-implementation with 4096
negative samples and i ̸= j negative sampling method-
ology as described in the original work.

A.3. Pairing Intermediate Representations

A.3.1 Similar CNN Architectures.

Consider the case of distillation when the teacher network
is a pre-trained WRN-40-2 and the student network is a
WRN-16-1. We use 4 same-sized representations extracted
from intermediate layers of the networks. Therefore, the
set R = {(f (k)

t (x), f
(k)
s (x))}Kk=1 contains k pairs of same-

sized 2-dimensional representations. Table 4 describes the
sizes of the intermediate representations used for feature-
based mutual information maximization. It can be seen that
for this combination we use k = 4 in our formulation.

Table 4. Dimensions of intermediate representation in the form
channels× height×width used for feature-level mutual infor-
mation maximization between a teacher WRN-40-2 and a student
WRN-16-1 network. Alternatively, each value of k represents a
pair of elements in the set R.

WRN-40-2 WRN-16-1
k f

(k)
t (x) f

(k)
s (x)

1 16 × 32 × 32 16 × 32 × 32
2 32 × 32 × 32 16 × 32 × 32
3 64 × 16 × 16 32 × 16 × 16
4 128 × 8 × 8 64 × 8 × 8

A.3.2 Dissimilar CNN Architectures.

Similar approach of defining the set R is followed in cases
where the teacher and student networks have significantly
different architectures. For instance, Table 5 shows the
dimensions of intermediate representations used when the
teacher network is a ResNet34 while the student is a Shuf-
fleNetV2. Here k = 4 is used, however, for some combi-
nations of different standard architectures we use k = 3 if
only 3 pairs intermediate representations from the teacher
and the student have the same size. Note that our method is
invariant to the number of channels in the representations.
Therefore, mismatch in the number of channels in pairs of
representations in R is inconsequential for the formulation
of our losses.

A.4. Mutual Information Discriminators

The parameterized mutual information discriminator
functions (Tωg , Tωl

, and Tωf
) can be modeled as neural

networks. In our experiments, we use two distinct discrimi-
nator architectures inspired from the functions presented in
Deep InfoMax [13].



Table 5. Dimensions of intermediate representation in the form
channels× height×width used for feature-level mutual infor-
mation maximization between a teacher WRN-40-2 and a student
WRN-16-1 network. Alternatively, each value of k represents a
pair of elements in the set R.

ResNet34 ShuffleNetV2
k f

(k)
t (x) f

(k)
s (x)

1 64 × 32 × 32 24 × 32 × 32
2 512 × 16 × 16 116 × 16 × 16
3 1024 × 8 × 8 232 × 8 × 8
4 2048 × 4 × 4 464 × 4 × 4

A.4.1 Convolve Architecture.

In this method, the representations from the teacher and the
student are concatenated together and passed through a se-
ries of layers to get the score. For global information max-
imization, the final representations from both networks is
concatenated together to get [fs(x), ft(x)]. This vector is
then passed to a fully connected network with two 512-unit
hidden layers, each followed by a ReLU non-linearity (ref.
table 6). The output is then passed through another linear
layer to obtain the final score.

Table 6. The architecture of the discriminator used for global in-
formation maximization. Here LL denotes Linear Layer and d(v)
refers to the number of dimensions in vector v.

Input Operation Output
[ft(x), fs(x)] LL + ReLU O1

O1 LL + ReLU O2

O2 LL score

For local information maximization, we replicate the
final representation from the teacher ft(x) to match the
mK × mK size of the student’s last intermediate feature
map (f (K)

s (x)). The resulting replicated tensor is then con-
catenated with f

(K)
s (x) to get [ft(x), f

(K)
s (x)] which serves

as the input for the critic function (ref. table 7).

Table 7. The architecture of the discriminator used for local and
feature mutual information maximization. Note that for feature
mutual information maximization the input at the first layer is
[f

(k)
t (x), f

(k)
s (x)].

Input Operation Output
[ft(x), f

(K)
s (x)] 1× 1 Conv + ReLU O1

O1 1× 1 Conv + ReLU O2

O2 1× 1 Conv scores

Similarly, consider feature mutual information maxi-

mization, for each pair in the set R we use a distinct dis-
criminator T

(k)
ωf . For a given k, each pair of intermedi-

ate feature representations in the set R are concatenated
together to get [f

(k)
t (x), f

(k)
s (x)]. Which is then passed

through two convolutional (1 × 1 kernels and 512 filters)
where each layer is followed by a ReLU non-linearity. The
output obtained is then further passed into a convolutional
layer (1 × 1 kernels and 1 filter) to give mk × mk scores
(ref. table 7).

A.4.2 Project and Dot Architecture.

In this method, the representations from both the teacher
and the student are first projected using an appropriate pro-
jection architecture with a linear shortcut. The dot-product
of these projections is then computed to get the score. Posi-
tive and negative pairs of representations are passed through
the discriminator to get respective scores to be passed into
equation (2) to get the estimates on the lower bound of
the mutual information. One-dimensional representations
are projected using the architecture described in table 8,
whereas for two-dimensional intermediate feature maps,
projection architecture described in table 9 is used.

Table 8. The projection architecture used for one-dimensional
inputs. Here, LL denotes linear layer while LN denotes layer nor-
malization. Both ft(x) and fs(x) are projected using this archi-
tecture and their dot product is computed to get scores.

Input Operation Output
ft(x) or fs(x) LL + ReLU + LL O1

ft(x) or fs(x) LL + ReLU O2

O1 + O2 LN proj

Therefore, for (1) global information maximization, both
ft(x) and fs(x) are projected using the one-dimensional
projection architecture, for (2) local information maximiza-
tion, the final teacher representation, ft(x), is projected us-
ing the one-dimensional projection architecture and dupli-
cated to match the size of the projected intermediate student
representation projected using the two-dimensional projec-
tion architecture, a dot product of these outputs is then com-
puted to get the scores, while for (3) feature information
maximization, both representations in each pair of the set
R is projected using a respective two-dimensional projec-
tion architecture.

A.5. ImageNet results

In this experiment we train a student ResNet-18 with
a pre-trained teacher ResNet-34 on the ImageNet dataset
(ILSVRC). Note that we do not perform any hyper-
parameter tuning specifically for this configuration and use
the same values we obtained for the CIFAR-100 dataset i.e.



Table 9. The projection architecture used for two-dimensional
inputs. Here, LL denotes linear layer while LN denotes layer nor-
malization.

Input Operation Output
f
(k)
s (x) 1× 1 Conv + ReLU + LL O1

f
(k)
s (x) 1× 1 Conv + ReLU O2

O1 + O2 LN proj

Table 10. Observed top-1 validation accuracy (in %) of the student
network on the ImageNet dataset using our method (MIMKD)
and other distillation frameworks. In similar settings, the more
recent Contrastive Representation Distillation (CRD) method re-
ports comparable performance with an improvement of +1.42
from a student network [24].

Student Network ResNet-18
Teacher Network ResNet-34

Student Accuracy 68.88
Teacher Accuracy 72.82+3.94

Knowledge Distill. (KD) 69.66+0.78
Attention Transfer (AT) 69.70+0.82

MIMKD (this work) 70.32+1.44

α = 0.9, λg = 0.2, λl = 0.8, λf = 0.8. We observed that
our method is able to reduce the gap between the teacher
and the student performance by 1.44%. Results are pre-
sented in Table 10.

A.6. Shallow CNN Architectures

In this section, we describe our experiments where we
distill knowledge from a standard teacher network into a
shallow custom-designed CNN. This is done to demonstrate
that it is feasible to design and distill information into light-
weight models such that they perform competitively with
standard CNN architectures while running faster. For our
experiments we use 2 shallow CNNs; (1) Conv-4 with 4
convolutional-blocks followed by average pooling opera-
tion and a linear layer, where each convolutional-block is
made-up of a convolutional layer with kernel size 3× 3 and
stride 2 followed by batch-normalization and a ReLU non-
linearity, (2) Conv-4-MP which has 4 convolutions blocks
followed by average pooling and a linear layer at the end,
where each convolutional-block contains a convolutional
layer with kernel size 3× 3 and stride 1 followed by batch-
normalization, ReLU and a max-pooling layer. These ar-
chitectures were chosen as they are compact and run rel-
atively faster on standard CPUs. Table 11 compiles our
results compared to other distillation methods for custom-
designed shallow CNN architectures. Notice how a simple

model such as Conv-4-MP becomes competitive with Shuf-
fleNetV2’s base student accuracy. Our method is able to
outperform all other methods in this setup. Additionally,
we can see that distillation is most successful with ResNet-
32x4 as the teacher than for other architectures. This could
be because of the larger gap in the baseline accuracy of the
networks. Under this more controlled experiment with fixed
students, larger gaps between student-teacher pairs also led
to larger gains after distillation.

A.7. Computational cost and negative sampling.

We contextualize the memory and computational over-
head of our work with respect to CRD. Our global MI ob-
jective has the same footprint as CRD (i.e. an additional
600MB over standard Resnet18 training for storing nega-
tives). In addition, our feature and local MI objective use
projection layers which add an additional 100MB of GPU
memory. As the computation of our JSD-based objective is
computationally trivial, we observe negligible reduction in
training speed wrt CRD (2.2 epochs/hr v. 2.4 epochs/hr).
Note that no additional memory is used for sampling neg-
atives for local and feature information maximization. The
4096 negatives are only used for global MI as storing 1-D
representations is relatively inexpensive.

A.8. Ablation Study

In this section we present additional accuracy landscape
plots for our extensive ablation study that demonstrates the
value of each component of our mutual information max-
imization objective. We use a ResNet-32x4 as the teacher
network and ResNet-8x4 as the student network where the
baseline accuracy of the teacher is 79.24% and that of
the student network is 72.44%. The values of the hyper-
parameters λg , λl and λf — that control the weight of the
global, local and feature mutual information maximization
objectives respectively – were varied between 0 and 1 with
an increment of 0.25 while the weight for the cross-entropy
loss, α was set to 1. The following contour plots shows
the test accuracy landscape with respect to a pair of hyper-
parameters when the third hyper-parameter is set to distinct
values. Overall, this demonstrates the value of maximiz-
ing region-consistent local and feature-level mutual infor-
mation between representations in addition to just global
information maximization.



Table 11. Observed test accuracy (in %) of shallow student networks trained with teacher networks of higher capacity and standard
architectures on the CIFAR100 dataset using our methods MIMKD and other distillation frameworks.

Student Net. Conv-4 Conv-4-MP

Teacher Net. ResNet-110 VGG-13 ResNet-32x4 ResNet-110 VGG-13 ResNet-32x4

Student Acc. 59.97 59.97 59.97 66.09 66.09 66.09

Teacher Acc. 73.82+13.85 74.62+14.65 79.24+19.27 73.82+7.73 74.62+8.53 79.24+13.15

FitNets 60.58+0.61 61.81+1.84 62.89+2.92 67.38+1.29 66.52+0.43 67.21+1.12

AT 61.65+1.68 62.16+2.19 63.10+3.13 67.52+1.43 66.21+0.12 66.03–0.06

VID 61.93+1.96 62.49+2.52 63.45+3.48 67.76+1.67 67.40+1.31 67.86+1.77

KD 61.98+2.01 62.10+2.13 62.87+2.90 67.51+1.42 67.84+1.75 68.04+1.95

CRD 62.13+2.16 62.54+2.57 63.76+3.79 67.96+1.87 68.06+1.97 68.52+2.43

MIMKD (ours) 62.91+2.94 62.95+2.98 64.32+4.35 68.77+2.68 68.91+2.82 69.09+3.00
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Figure 4. Results from the ablation studies on CIFAR100 dataset using a student resnet8x4 (baseline acc. 72.44%) with teacher resnet32x4
(baseline acc. 79.24%). Contour lines represent the final test accuracy of the student. Grid search was performed by varying the values of
λf , λg , λl from 0 to 1 with increments of 0.25. In each plot, the accuracy landscape is shown with λg set to a constant value.
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Figure 5. Results from the ablation studies on CIFAR100 dataset using a student resnet8x4 (baseline acc. 72.44%) with teacher resnet32x4
(baseline acc. 79.24%). Contour lines represent the final test accuracy of the student. Grid search was performed by varying the values of
λf , λg , λl from 0 to 1 with increments of 0.25. In each plot, the accuracy landscape is shown with λf set to a constant value.
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Figure 6. Results from the ablation studies on CIFAR100 dataset using a student resnet8x4 (baseline acc. 72.44%) with teacher resnet32x4
(baseline acc. 79.24%). Contour lines represent the final test accuracy of the student. Grid search was performed by varying the values of
λf , λg , λl from 0 to 1 with increments of 0.25. In each plot, the accuracy landscape is shown with λl set to a constant value.


