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Abstract

Currently, image-to-image translation methods have
achieved significant performance with the help of deep
CNNs and GANs, but most existing models are not suit-
able for autonomous driving scenarios due to their inter-
pretability. In this paper, we develop a high-quality im-
age translator (i.e. night → day), N2D-LPNet, to facilitate
nighttime driving scene dperception. Instead of pursuing a
complex network structure, we first attempt to explore the
inter-frequency relation knowledge to simplify image trans-
lation process. Specifically, the lightweight Laplace pyra-
mid is introduced as the backbone architecture to decom-
pose the feature maps of nighttime image into high- and
low-frequency components. Considering the similar mor-
phological properties of different frequency components, we
design a flexible inter-frequency guiding strategy which uti-
lizes each lower frequency information to refine the higher
frequency feature in a progressive manner. Benefiting from
the advantage of constraint from inter-frequency priors, our
method can process the nighttime image better under the
practical driving system while still persevere competitive re-
sults. We also discuss the potential value of N2D-LPNet for
other high-level vision tasks.

1. Introduction

In nighttime scenarios, autonomous vehicles are often at
risk because the cameras are not able to accurately iden-
tify more details in the dark. How to solve the ”sluggish-
ness” of self-driving at nighttime is the direction that many
researchers have been working on [18]. Therefore, it is of
great interest to develop a high-quality image translator (i.e.
night → day, N2D) to work well under any light conditions.

Recently, numerous deep learning-based methods [1, 3,
11, 13, 14, 20, 23, 25, 28, 29] have been proposed to realize
N2D task, which are mainly divided into two categories.
The early way is to make nighttime images brighter with
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Figure 1. The MSE of image frequencies under different Laplace
pyramid levels. We can observe that the morphological similarity
between different frequency components of images, which can be
explored to guide N2D task.

low-light image enhancement strategies [11, 14, 23], which
propose to regularize the network training using the infor-
mation extracted from the input data. However, these meth-
ods which baesd on enhancement cannot be well extended
to nighttime driving scenes due to their performance bottle-
necks.

The another popular way has been designed to simplify
the N2D problem by directly learning day-to-night image
translation via generation adversarial networks. CycleGAN
[29] has been successfully applied to address the unpaired
image-to-image translation, in order to achieve an unsuper-
vised transfer process. To the best of our knowledge, there
are only a few efforts for nighttime driving images transla-
tion. For exemple, TodayGAN [1] first utilizes image re-
trieval technology and migrates it to the visual localization
system. Zheng et al. [28] present a ForkGAN to disentan-
gle domain-invariant and domain-specific features between
the nighttime domain and the daytime domain to realize
N2D task. Lately, AU-GAN [13] has been developed based
on an asymmetric CycleGAN architecture for adverse do-
main translation. Although these models show great perfor-
mance, there are still the following inevitable problems in
the actual nighttime driving scenes:
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1) The existing approaches merely perform the GAN
structure, while do not make full use of image priors which
could be helpful to better boost the performance of deep
models.

2) The learning-based models take the amount of com-
puting resources and network parameters as the cost to
achieve the satisfactory translation results. Due to the poor
real-time performance, especially when processing high-
resolution images, their application in automatic driving is
limited.

3) These GAN-based translation algorithms have inade-
quate interpretability, and their results tend to leads to the
destruction of the structure and semantic information of
original images. Taking these images as input will bring
trouble for subsequent high-level vision tasks such as vehi-
cle detection [9] and road segmentation [22], which is con-
trary to our original intention.

To overcome the above problems, we introduce the inter-
frequency priors with the lightweight Laplace pyramid pat-
tern to design a high-quality image translator, named N2D-
LPNet, which can contain fewer parameters than GANs.
Taking into consideration the inherent properties of N2D
task, we introduce Laplace pyramid framework as the back-
bone architecture to decompose the feature maps of night-
time image into high- and low-frequency components. Ex-
plicitly, the image illumination and color are mainly con-
centrated on the low-frequency components, while the im-
age content details are mainly concentrated on the high-
frequency component. In other words, the difference be-
tween daytime and nighttime images is mostly dominated
in the low-frequency component. Motivated by the simi-
lar intuition in [10], Fig. 1 shows that the energy distri-
bution of the nighttime image frequency obeys the recip-
rocal power law at different pyramid levels. In general,
different frequency levels share the similar image morpho-
logical characteristics (i.e., structure, texture, edge, etc.).
Therefore, this motivates us to explore the inter-frequency
relation knowledge in the network learning, so as to fur-
ther simplify image translation process. To better process
low-frequency components and reconstruct the images from
Laplace pyramid, we build a flexible inter-frequency guid-
ing strategy which utilizes each lower frequency informa-
tion to refine the higher frequency feature in a progressive
manner. The overall framework is trained end-to-end in
an unsupervised fashion via unpaired adversarial learning
strategy.

Several advantages can be gained from the proposed
method. Firstly, our N2D-LPNet can process nighttime im-
ages and realize N2D, which successfully closes the gap
in real-world automatic driving applications. Secondly, we
make full use of low-frequency information to refine the
high-frequency components, which is conducive to formu-
lating a more compact network. Compared with other ap-

proaches, quantitative and qualitative experiments indicate
the performance advantages of our developed method. We
also show how N2D-LPNet can improve downstream tasks
such as object detection.

2. Related Work
2.1. Image-to-Image Translation

The idea of image-to-image translation can be regarded
as first proposed by Hertzmann et al.’s Image Analogies [7],
who adopt a nonparametric texture model [4] on input- and
output-image pair when training. Recently, for improving
the time efficiency, many models [6,15,27] are adviced. [6]
introduces two new layers, a multiplicative operation for
affine transformation and a data-dependent lookup that en-
ables slicing into the bilateral grid. [27] designs an algo-
rithm for user-guided image colorization using deep learn-
ing. The system maps a grayscale image, along with sparse,
local user ”hints” to an output colorization with convolu-
tional neural networks. Gharbi et al. [15] presents a frame-
work for analyzing universal style transfer methods, which
includes an effective and efficient algorithm that learns lin-
ear transformations. In addition, most researchers attempt
to employ GANs to improve the quality of image transla-
tion. For example, Zhu et al. [29] applies a symmetric archi-
tecture based on bidirectional cycle consistency loss, which
is considered a standard framework for unsupervised do-
main transfer methods. The work of [13] presents an asym-
metric and uncertainty-aware GAN model to address image
translation in adverse weather. The transcription and recon-
struction of adverse domain images were separated by us-
ing a feature transfer network to enhance disentanglement
of encoded features. Instead, we aim to explore the inter-
frequency priors to simplify image translation process.

2.2. Laplacian Pyramid

In digital image processing, Laplacian pyramid [2] have
long been used which main idea is that an image is lin-
early decomposed into a set of high- and low-frequency
bands, then it is possible to reconstruct the original image
exactly. The work of [5] has shown that the decomposi-
tion of Laplacian pyramid demonstrates to be capable of
capturing a narrower distribution of describing both rain
streaks and objects’ details at different scales. The grad-
ual masking strategy employed by [16] refines the high-
frequency components effectively by using a Laplacian
translation network. Inspired by these methods, we con-
struct a lightweight Laplace pyramid network to take advan-
tage of inter-frequency relation knowledge on N2D task.

3. Proposed Method
Fig. 2 illustrates the overall architecture of the proposed

N2D-LPNet. In addition, the inter-frequency guiding strat-
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Figure 2. The framework of our developed N2D-LPNet for nighttime driving scenes. The red boxes are the input and output streams of the
pyramid network. We make full use of inter-frequency priors which utilize each lower frequency information to refine the higher frequency
feature in a progressive manner.

egy is designed to make each low-frequency component
progressively refine the high-frequency components at the
adjacent pyramid level.

3.1. Pyramid Network Architecture

We first decompose the input nighttime image P0 ∈
R

h×w×3 into its Laplacian pyramid [2], obtaining a set
of high-frequency parts PH = [F0, F1, · · · , FL−1] ∈
R

h

2L−1 × w

2L−1 ×3 and a low-frequency component PL ∈
R

h

2L
× w

2L
×3, where L is the number of decomposed lev-

els of the network. Here, we use the Laplacian pyramid as
the backbone of the network, and the objective is twofold.
First, N2D-LPNet performs multi-scale decomposition, al-
lowing the model to take advantage of each level of sparsity.
On the other hand, Laplacian Pyramid is a mature opera-
tion with small computation, which can be easily implanted
into the driving system with GPU acceleration. For the low-
frequency sub-band, we translate the initial features of pyra-
mid decomposition using a lightweight network. For other
sub-bands with higher resolution, we progressively interact
with the learned inter-frequency guide map to adaptively
refine the high-frequency information. The guidance opera-
tion is performed multiple times on the different frequency
sub-bands. Finally, after all refinement and combination,
N2D-LPNet reconstructs high-quality output results from
nighttime input images. The inter-frequency priors are de-
scribed below.

3.2. Inter-frequency Priors Guidance

Different from previous methods [5] that directly convo-
lute the large-scale high frequency features, we explore the
inter-frequency priors by excavating similarity information
from each lower frequency information to refine the higher
frequency feature, enforcing the communication within dif-
ferent pyramid levels. Thus, we exploit enough prior in-
formation to translate domain-specific features (i.e., colors
or illuminations in the N2D task) on low-frequency compo-
nents with reduced resolution, which can significantly re-
duce the number of learnable parameters while maintaining
remarkable performance. Specifically, we first use 1 × 1
convolution layer to extend the feature map channel of PL.
To compensate for the loss of information caused by fea-
ture decomposition, we stack five residual blocks to further
enhance low-frequency feature propagation. Each residual
block consists of two 3 × 3 convolution layers with stride
number of 1 and a Leaky ReLU activation function. After
achieving the translation of low-frequency sub-bands, the
high-frequency components should also be carefully refined
from PL to P̂L, so as to achieve high-quality reconstruction.
The final output P̂0 is reconstructed through using P̂L and
the refined feature

[
F̂0, F̂1, · · · , F̂L−1

]
. Thus, we propose

a simple yet effective inter-frequency guiding strategy for
PL−1 and progressively share the feature tensor for refin-
ing high-frequency sub-bands, thanks to the morphological
similarity between different frequency components of im-
ages. As shown in Fig. 2, we progressively upsample the
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Table 1. Quantitative comparison of running speed and model size of different algorithms on BDD100K and Dark Zurich datasets.

Methods BDD100K (1K) / s Dark Zurich (2K) / s Average Speed / s Size / M
UNIT [17] 5.740 7.730 6.375 /

CycleGAN [29] 6.806 15.541 11.174 11.378
TodayGAN [1] 3.584 6.856 5.220 6.262

CUT [20] 1.965 5.359 3.662 11.378
EnlightenGAN [11] 0.968 3.622 2.295 8.237

Ours 0.280 0.715 0.498 0.589

Figure 3. Visual comparison of translation results on the BDD100K dataset.

pixel attention-based guide map
[
ÂL−2, ÂL−1, · · · , Â0

]
at the adjacent pyramid level. We can refine all high-
frequency components of the pyramid network by the fol-
lowing operations:

P̂L−1 = PL−1 ⊗AL−1, (1)

where ⊗ represents the pixel-wise multiplication. Note that
bilinear interpolation is employed in the upsampling opera-
tion.

3.3. Loss Function

Since the proposed N2D-LPNet is performed in an un-
paired training setting, we adopt jointly optimize the recon-

structive loss and adversarial loss in the image space for
high quality. Reconstructive Loss. We apply a common-
used reconstructive loss between the input image P0 and the
recovered image P̂0 to facilitate faithful translation, which
can be given as:

Lrecon = E
∥∥∥P0 − P̂0

∥∥∥2
2
. (2)

Adversarial Loss. To make the generated images look
more realistic, the adversarial loss is introduced to match
the target distribution, which is formulated based on the
Least-Square GAN (LSGAN) [19] and the multi-scale dis-
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Figure 4. Comparison of object detection results on the BDD100K dataset.

criminator [24]:

Ladv = E[logD(P ∗
0 )] +E [log (1−D (G(P0))] , (3)

where P ∗
0 denotes the unpaired ground-truth images.

Total Loss. The overall objective function used for train-
ing our network is thus calculated as:

L = Lrecon + λLadv, (4)

where λ is a weight parameter. Here, we empirically set
λ = 0.1 to balance the two losses.

4. Experiments
In this section, the proposed N2D-LPNet is evaluated.

We first describe the datasets and training details. Then we
compare our method with other algorithms quantitatively
and qualitatively. Finally, the ablation study and user study
are provided to show the effectiveness of the N2D-LPNet.

4.1. Datasets Setup

To evaluate our network and other algorithms, we collect
two experimental datasets from BDD100K [26] and Dark
Zurich [21]. 1) BDD100K (1K image resolution) consists

of 100,000 images of the urban roads for autonomous driv-
ing which is used 3,600 images to be training set and 400
images as a test data. 2) Dark Zurich (2K image resolution)
includes 2,890 daytime images and 2,567 nighttime images
which is used to evaluate the generalization ability of the
model.

4.2. Training Details

Our entire network is implemented in PyTorch and we
use Adam optimizer [12]. The pyramid level L is set to 3.
All of our experiments use a batch size of 16 and they are
performed on one Tesla V100 GPU. All images are loaded
in original size then cropped to 256×256 patches. Random
flipping or rotation is applied for data augmentation. The
final model is trained for a total of 300,000 iterations with
the learning rate of 0.0001. Note that we shuffle above-
mentioned images randomly in order to achieve unpaired
supervised learning.

4.3. Comparison Results

We first present the results of qualitative comparison
with five N2D methods, i.e., UNIT [17], CycelGAN [29],
TodayGAN [1], CUT [20], and EnlightenGAN [11]. Fig. 2
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Table 2. Ablation study on different pyramid levels.

Number of Level L = 3 (default) L = 4 L = 5
FID / Run Time 69.149 / 0.280 80.093 / 0.382 74.289 / 0.397

Figure 5. Comparison of user study on the BDD100K dataset.

shows two visual examples for comparison. Obviously, our
developed method obtains the best image translation perfor-
mance with less artifacts, blur, and reflections. In addition,
we also perform quantitative analysis. As recorded in Tab.
1, other methods tend to take longer time to run which can
be fatal for autonomous driving. It is heartening that our
model uses fewer number of parameters and less running
time. According the value of FID [8] in Fig. 7 (a), our
method get the lower score which means the output has a
higher image translation quality.

For further general verification in the high-level vision
tasks, the translated images are further evaluated for the
task of object detection. As can seen in Fig. 4, other ap-
proaches have poor capability for object detection, due to
their translation results cause the destruction of the seman-
tic information of the original image. However, our method
can detect more objects and get higher scores. The above
results can surely reflect the practicability and robustness of
the designed N2D-LPNet.

4.4. Ablation Study

In order to verify the design rationality of model param-
eters, we perform ablation experiments to validate the influ-
ence of different number of pyramid levels L on the N2D
task. For fair comparison, training settings of these vari-
ants are the same, and the values of FID and running time
are listed in Tab. 2. We can easily find that N2D-LPNet
receives the more superior consequences on all tested indi-
cators with L = 3 than that with L = 4 or L = 5. We also
provide visual observation in Fig. 6. By observing zoomed

Figure 6. Comparison of FID quantitative results on the
BDD100K dataset.

Figure 7. Visual comparison of different pyramid levels on
BDD100K dataset.

color boxes, our results (L = 3) achieve better performance
without distortion and artifacts in the translation results of
other pyramid levels.

4.5. User Study

Our research goals are to assist autonomous driving, so
that the related evaluation is the perceptual feeling with
drivers. We designed a questionnaire online to make it ob-
jectively and easier for participants. The participants con-
sisted of 50 professional drivers, who are willing to take
part in the online survey. The survey included 20 questions
about visual effect and image selection, such as “which pic-
ture do you prefer as a driving scene?”, “which image is the
most useful for driving at night?”, “which image can guide
drivers to accurately judge road conditions?” and so on. The
results are shown in Fig. 7 (b). The proportions of the dif-
ferent parts of the pie chart represent the percentage of peo-
ple who support that side. The survey helps us to define
the degree of N2D translation and our approach has earned
the largest number of votes in all above methods. The other
methods do not perform well on this subjective task since
there are visible structural distortions and artifacts of their
results.

5. Conclusion
In this paper, we have introduced an effective image

translator N2D-LPNet for exploring the benefits from tak-
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ing advantage of inter-frequency prior as guidance in N2D
task. Based on the lightweight Laplacian pyramid, the inter-
frequency guiding strategy is adaptively introduced into the
pyramid structure for progressive feature refinement. At-
tributed to the constraint from inter-frequency priors of im-
ages, our developed N2D-LPNet exhibits not only has fewer
network parameters but also comparable translation perfor-
mance. Furthermore, our method has potential values for
high-level vision tasks in self-driving field.
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