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Abstract

Constructing annotated paired datasets for low-light im-
age enhancement is complex and time-consuming, and ex-
isting deep learning models often generate noisy outputs
or misinterpret shadows. To effectively learn intricate re-
lationships between features in image space with limited
labels, we introduce a deep learning model with a back-
bone structure that incorporates both spatial and layer-
wise dependencies. The proposed model features a base-
line image-enhancing network with spatial dependencies
and an optimized layer attention mechanism to learn feature
sparsity and importance. We present a progressive super-
vised loss function for improvement. Furthermore, we pro-
pose a novel Multi-Consistency Regularization (MCR) loss
and integrate it within a Multi-Consistency Mean Teacher
(MCMT) framework, which enforces agreement on high-
level features and incorporates intermediate features for
better understanding of the entire image. By combining
the MCR loss with the progressive supervised loss, student
network parameters can be updated in a single step. Our
approach achieves significant performance improvements
using fewer labeled data and unlabeled low-light images
within our semi-supervised framework. Qualitative evalua-
tions demonstrate the effectiveness of our method in lever-
aging comprehensive dependencies and unlabeled data for
low-light image enhancement.

1. Introduction

Low-light conditions significantly degrade the visibility
of captured images due to reduced contrast and loss of de-
tail, which can negatively impact the performance of com-
puter vision systems designed for high-quality input im-
ages. Researchers have attempted to address the low-light
image enhancement problem using methods like Histogram
Equalization (HE) [9, 16, 35], which enhance image con-
trast by expanding the dynamic range, and Retinex-based
methods [14] that improve images by decomposing them
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Figure 1. Visual illustration of the proposed method for low-light
image enhancement. (a) is an input low-light image from the LOL
dataset [28] and (c) is the corresponding ground-truth image. (d)
shows the prediction of our method trained in a fully supervised
manner. (b) presents the output of our network trained in a semi-
supervised manner using only 10% of the labeled images and the
remaining unlabeled low-light images. Our semi-supervised ap-
proach with fewer labels outperforms other state-of-the-art com-
parison methods trained in a fully supervised fashion.

into reflectance and illumination components. Recent ad-
vances in deep learning have led to numerous deep models
for low-light image enhancement. However, these models
often suffer from limitations such as generating noisy out-
puts, under/over-enhanced predictions, and the necessity of
large amounts of labeled data for supervised learning.

In this paper, we propose a novel end-to-end semi-
supervised deep neural network for low-light image en-
hancement that addresses these limitations. Our method
incorporates a Comprehensive Residual Network (CRNet)
designed to preserve information-rich features by consider-
ing spatial, channel, and inter-layer dependencies. Recog-
nizing the importance of understanding the entire image for
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image enhancement tasks, our approach exploits both inter-
mediate and high-level features, which allows for a more ac-
curate representation of the image content. We introduce a
new progressive enhancement loss function for the training
of the proposed structure and a Multi-Consistency Mean-
Teacher (MCMT) approach, which extends the Mean-
Teacher method [24] by utilizing a Multi-Consistency Reg-
ularization (MCR) loss for semi-supervised low-light im-
age enhancement. Our MCMT approach emphasizes mul-
tiple consistencies to better leverage unlabeled data for the
complex mapping of image enhancement. We encourage
the student network to be consistent with the temporally en-
sembled teacher model by defining distances between their
intermediate output results and predictions as the MCR loss
function for semi-supervised learning. We update the pa-
rameters of the proposed model using the weighted sum of
the progressive enhancement loss and MCR loss functions.

Our network demonstrates competitive performance
in both synthetic and real paired datasets when trained
in a fully supervised manner. Additionally, our pro-
posed method outperforms several state-of-the-art super-
vised methods when learning in a semi-supervised setting
using only 10% of the labels. Qualitative results confirm
that our model effectively preserves important features by
considering comprehensive dependencies and utilizes unla-
beled data for low-light image enhancement. The contribu-
tions of our method are summarized as follows:

• We propose a novel network that preserves informa-
tive features by considering spatial, channel, and inter-
layer dependencies, along with a progressive enhance-
ment loss function to achieve more precise predictions
by constraining the intermediate output results.

• We introduce a semi-supervised low-light image en-
hancement method, the Multi-Consistency Mean-
Teacher approach, which effectively utilizes unlabeled
data, reducing data acquisition costs for training deep
models.

• Our proposed method demonstrates competitive per-
formance when using 100% of the labels. Further-
more, when trained with our semi-supervised method
using only 10% of the labels, our approach outper-
forms several state-of-the-art supervised methods.

2. Related Work
Low-Light Image Enhancement Traditional low-light
image enhancement techniques include histogram equal-
ization (HE) methods that enhance image contrast by ex-
tending the dynamic range at global or local levels [2, 9,
16, 22, 35], and Retinex-based approaches that decompose
images into reflectance and illumination maps, adjusting
the illumination maps [6, 10, 11, 14, 17, 21, 26]. However,

these methods may struggle to adaptively restore images
in various situations. Recent deep-learning-based meth-
ods [1,12,18,25,28,34] show promising results but can still
suffer from artifacts, loss of detail, and color degradation
in complex scenes. To address these issues, our proposed
architecture takes into account spatial, channel, and inter-
layer dependencies.

Semi-Supervised Learning Supervised approaches re-
quire a large amount of paired data, resulting in substan-
tial data acquisition costs. By utilizing additional unla-
beled data, Semi-Supervised Learning (SSL) can achieve
better performance than using only a limited amount of la-
beled data. Consistency regularization-based methods are
popular in SSL, as they assume that predictions from the
original input and the perturbed input should be similar.
Temporal-ensemble [13] applies augmented input data for
consistency regularization and ensembles the results using
an exponential moving average of the model’s predictions.
Inspired by the Mean-Teacher approach [24], which cre-
ates a teacher network that is a weighted average of the
student network’s parameters for consistency targets, we
propose a new multi-level consistency loss that leverages
temporally emsenbled teacher-generated pseudo-labels and
intermediate feature targets to enhance consistency regular-
ization. This approach enables our model to capture both
high-level and low-level feature consistency, improving the
effectiveness of semi-supervised learning for low-light im-
age enhancement.

Importance Mechanisms Importance mechanisms en-
able networks to preserve informative features and obtain
more accurate results by emphasizing crucial components
[7, 8]. Various deep models have incorporated importance
mechanisms for tasks such as image generation [32], im-
age classification [7], and image restoration [33]. In the
context of super-resolution tasks, HAN [20] introduces the
Layer Attention Module (LAM), which considers spatial
and channel importance as well as inter-layer correlations
to emphasize hierarchical features. Our proposed network
incorporates a feature gating mechanism [23] by attaching
mask learning convolution layers with a sigmoid function in
parallel. This Masked Convolution (MC) module considers
both spatial and channel dependencies, effectively integrat-
ing importance mechanisms for improved low-light image
enhancement performance.

3. Method
Figure 2 presents the proposed Comprehensive Resid-

ual Network (CRNet) structure, which accounts for spatial,
channel, and inter-layer dependencies. Figure 4 illustrates
the overall process of our proposed method, employing
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Figure 2. An overview of the CRNet structure. Given an input low-light image, the LMRGs of the CRNet produce intermediate output
images. We propose a mid-step loss function to encourage the model to learn a gradual enhancement process. ⊕ denotes pixel-wise
addition.
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Figure 3. A detailed illustration of the CRNet modules. ⊕, ⊙, and
⊗ represent pixel-wise addition, element-wise multiplication, and
matrix multiplication, respectively.

multi-consistency regularization for semi-supervised learn-
ing (SSL) within our network.

3.1. Progressive Low-Light Enhancement

While existing methods demonstrate promising results,
they may generate noisy predictions or misidentify low-
light regions as shadows. Furthermore, they often suffer
from incomplete details in revealed low-light areas. To ad-
dress these limitations, we design our network to consider
spatial, channel, and layer dependencies, and introduce a
novel loss function tailored for low-light image enhance-
ment.

3.1.1 Comprehensive Residual Network

The proposed Comprehensive Residual Network (CRNet) is
constructed by stacking masked basic blocks, memory mod-
ules, and Layer Attention Modules (LAM) [20]. Figures 2
and 3 depict the detailed structure of our network. The CR-
Net comprises N Masked Residual Groups with Layer At-
tentions (LMRG), with each LMRG containing G Masked
Residual Blocks (MRB) and an LAM. Each MRB con-
sists of two Masked Convolution Modules (MC) designed
to capture spatial and channel dependencies.

ŷ = Ex

[
fθ(x)

]
,

= Ex

[
gθ,N (· · · (gθ,1(x))

]
.

(1)

In this equation, x represents the low-light input, fθ(·) cor-
responds to the CRNet, and gθ,n(·) denotes the LMRGs.

Masked Convolution Module Spatial and channel atten-
tion mechanisms are widely recognized for preserving in-
formative features essential for image restoration. To en-
hance feature extraction, we employ a feature gating mech-
anism [23] that creates soft masks, assigning greater weight
to informative features.

Given an input F , the feature extracting convolution ϕf

with activation ρ generates the input’s feature map. Con-
currently, the mask learning convolution ϕm with sigmoid
σ creates a soft mask identifying informative features. We
then acquire an improved feature map that considers spatial
and channel dependencies through element-wise multipli-
cation of the extracted feature map and the generated weight
map, as illustrated in Eq. (2).

MCθ,b(Fi) = ρ{ϕθ,f (Fi)} ⊙ σ{ϕθ,m(Fi)}. (2)
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The Masked Residual Block (MRB) is constructed by
combining two sequential MCs and a skip connection from
the input to the output of the final layer, as demonstrated in
Eq. (3). We utilize the MRB as a foundational block for
building our residual and recurrent network.

MRBθ,g(Fi) = Fi +Mθ,2(Mθ,1(Fi)) (3)

Next, we designate a single MC as the LMRG’s head
part. We then add a convolutional memory module, G
MRBs, and a tail MC. The LMRG features a long skip con-
nection from the input to the output of the tail layer (Fig-
ure 3) and facilitates R recurrent predictions. Subsequently,
we construct the baseline network (CRNet) with N distinct
LMRGs, as depicted in Eq. (1) and Figure 2.

Layer Attention Module Although the masked convo-
lution modules within our CRNet capture the spatial and
channel-wise dependencies of the features, the mask learn-
ing processes operate independently across layers, poten-
tially overlooking inter-layer correlations. To address these
inter-layer dependencies, we incorporate the Layer Atten-
tion Module (LAM) [20] into each masked residual group
of the proposed network, forming the LMRG. Each LMRG
generates advanced feature maps that account for hierarchi-
cal features.

To calculate inter-layer attention scores, we concatenate
the intermediate feature maps of the LMRG, resulting in
a dimension of (GC × H × W ). The LAM reshapes the
integrated feature map (G × CHW ) and multiplies it by
its transpose, subsequently applying the softmax function
to obtain the attention map (G × G). This attention map
reflects the correlation between different layers. We derive
improved features from the matrix multiplication of the in-
tegrated feature map and the attention map. By adding the
residual connection from the input and the predicted atten-
tion map with a scale factor τ , and reshaping the output with
a dimension of (GC×H×W ), the LAM generates the final
prediction.

LAM(Fi) = Fi + τ

G∑
j=1

wj,k · Fi,j , (4)

where Fi denotes the concatenated feature map, Fi,j is the
j-th feature of the Fi. The initial value of τ is 0, and the
network learns the value adaptively. wj,k denotes the inter-
layer weight of the j-th and k-th layers.

3.1.2 Progressive Enhancement Loss Function

We define the structural difference (negative structural sim-
ilarity (SSIM) [27]) between the final output of the CRNet

Student
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Figure 4. An overview of the MCMT. Given an input batch of
labeled and unlabeled data, our student network processes both
sets of data, while the teacher network processes the data with
added Gaussian noise. We compute LPE using labeled data and
the student network output. We also calculate LMC using both
networks’ output results. We update the parameter θ using LSSL,
the weighted sum of LPE and LMC .

and the ground truth as the enhancement loss. We also de-
fine the average L1 distance between the intermediate stage
output of each LMRG and the ground-truth image as the
mid-step loss. We propose the progressive enhancement
loss LPE by adding the weighted mid-step loss Lms to the
enhancement loss LE .

LPE = LE + α · Lms, (5)

where α is the weight for the mid-step loss,

LE = −SSIM(ŷ, y),

Lms =
1

(N−1)

N−1∑
n=1

[
|Ex[gθ,n(x)]− y|1

]
.

(6)

3.2. Multi-Consistency Mean-Teacher

We propose the Multi-Consistency Mean-Teacher
(MCMT) method, based on [24], to train our model while
reducing data acquisition costs. To the best of our knowl-
edge, this is the first end-to-end semi-supervised method
for low-light image enhancement.

Weighted Averaged Consistency Target The mean-
teacher method [24] employs two separate models with
identical structures, referred to as the student (with weights
θ) and teacher networks (with weights θ′). The consistency
loss LC is defined as the distance between the student’s and
teacher’s predictions.
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LC = Ex,x′

[
|fθ(x)− fθ′(x′)|22

]
. (7)

The student model’s parameter θt is updated using the con-
sistency loss, while the teacher’s parameter θ′t is defined as
the exponential moving average (EMA) of θt at training step
t.

θt = λθ′t−1 + (1− λ)θt. (8)

Multi-Consistency Regularization Loss Inspired by the
performance improvement observed in supervised learning
when applying progressive enhancement loss (Table 2), we
propose a new multi-consistency regularization loss that
maintains consistency between intermediate outputs. We
add the weighted mid-consistency loss Lmc to LC , result-
ing in the multi-consistency loss function LMC .

LMC = Ex,x′

[
|fθ(x)− fθ′(x′)|22

]
,

+ β · Ex,x′

[
1

N−1

N−1∑
n=1

|fθ,n(x)− fθ′,n(x
′)|22

]
.

(9)

In this equation, fθ,n(x) represents the output of the n-th
LMRG of fθ, and β is the weight for Lmc. Our proposed
method guides the student model to maintain more con-
strained consistency while leveraging information from the
unlabeled data.

3.3. The Objective Function

Our CRNet learns from both the paired dataset in a su-
pervised manner and unlabeled data in a semi-supervised
manner. For fully supervised training, we only use the pro-
gressive enhancement loss LPE . To incorporate unlabeled
data into the deep model’s training, we employ the total
loss LSSL for end-to-end semi-supervised learning, which
is calculated as the weighted sum of LPE and LMC .

LSSL = LPE + γ · LMC . (10)

The weight γ for the multi-consistency loss function is em-
pirically set to 1.

4. Experiments
In this section, we first evaluate our proposed structure

against other state-of-the-art methods on both synthetic and
real paired datasets in a fully supervised setting. Next, we
reduce the number of labeled samples in the real dataset
and train our CRNet using the proposed loss for semi-
supervised learning, comparing its performance with pre-
vious semi-supervised and fully supervised methods. We
reproduce other state-of-the-art methods using their origi-
nal codes and settings for comparison purposes.

4.1. Settings

Datasets Our model is compared with other state-of-the-
art methods on synthetic and realistic paired datasets [28].
The authors of [28] collect 1000 raw images from RAISE
[3] and generate a synthetic dataset by adjusting the his-
togram of the Y channel. We divide the 1000 image pairs of
the synthetic dataset into 900 training and 100 testing pairs.
The real dataset [28] consists of 485 image pairs for training
and 15 images for testing. For the semi-supervised learning
experiment, we randomly select a portion of pairs and use
them as labeled pairs. We also evaluate our network and
other comparison methods on unlabeled real-world low-
light images [6, 15].

Implementation Details Our CRNet consists of 4 LM-
RGs, with each LMRG having 2 recurrences. We set the
number of MRBs to 5. Convolution layers are applied with
a kernel size of 3, a stride of 1, and padding of 1. The in-
put, intermediate, and output convolution channels are 6,
32, and 3, respectively. For training, we randomly crop 30
patches of 100 × 100 pixels from each input image. The
coefficients α, β, and γ for the loss function are all set to
1. We train the model for 100 epochs using the Adam opti-
mizer with default parameters. The EMA coefficient, λ, is
set to 0.99. The learning rate is initially set to 0.0005 and
halved at epochs 20, 40, 60, and 90. We train our model on
NVIDIA Titan Xp, RTX, and V GPUs.

Table 1. The quantitative comparison results with other state-of-
the-art methods on the synthetic and real datasets [28]. The pro-
posed method achieves the new state-of-the-art performance on
both the synthetic and the real datasets. Bold and underline indi-
cate the best and the second-best scores, respectively.

Synthetic [28] Real [28]
Methods PSNR SSIM PSNR SSIM

CLAHE [35] 12.58 0.5604 9.46 0.3854
BPDHE [9] 12.50 0.5771 12.10 0.3559

Dong [4] 17.02 0.7539 17.38 0.5895
DHECE [19] 18.14 0.8157 17.97 0.5187

MF [5] 17.75 0.7916 18.03 0.6292
EFF [30] 17.93 0.8096 14.91 0.6866

CRM [31] 19.83 0.8733 18.08 0.7318
LIME [6] 17.67 0.7935 18.10 0.6007
JED [21] 17.05 0.7507 14.17 0.7127

RRM [17] 17.31 0.7471 14.24 0.7150
RetinexNet [28] 18.50 0.8274 17.73 0.7742

KinD [34] 22.34 0.9203 21.56 0.8870
DRBN [29] 23.61 0.9478 22.59 0.8961

CRNet 24.85 0.9613 24.01 0.9281
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(a) Input (b) CLAHE [35] (c) Dong [4] (d) EFF [30] (e) LIME [6]

(f) RetinexNet [28] (g) KinD [34] (h) DRBN [29] (i) CRNet (j) Ground Truth

(k) Input (l) CLAHE [35] (m) Dong [4] (n) EFF [30] (o) LIME [6]

(p) RetinexNet [28] (q) KinD [34] (r) DRBN [29] (s) CRNet (t) Ground Truth

Figure 5. Qualitative evaluation results on the synthetic data [28] in a fully supervised manner.

4.2. Comparison with Other Supervised Methods

Quantitative Evaluation on Paired Datasets We assess
the performance of the CRNet and other state-of-the-art
methods in a supervised setting. Table 1 demonstrates that
our method achieves superior results on both synthetic and
real datasets. CRNet surpasses other methods by at least
+1.24 dB on the synthetic dataset and +1.42 dB on the
real dataset in terms of PSNR. Furthermore, our proposed
method attains the highest results in terms of SSIM, with
scores of 0.0135 on the synthetic dataset and 0.0320 on the
real dataset, respectively.

Qualitative Evaluation on the Paired Dataset Figure 5
showcases the qualitative comparison between our method
and other methods on the synthetic dataset. Previous meth-
ods tend to underexpose images and struggle to capture the
color distribution of the input images accurately. In Figure
5 (h), the method fails to brighten the petals as effectively as

our result in (i). In Figure 5 (l-r), other methods manage to
brighten low-frequency areas, such as the sky, but they per-
form poorly in predicting high-frequency detail areas com-
pared to the CRNet result in (s). These qualitative results
demonstrate that our model effectively restores natural illu-
mination close to the ground-truth images while preserving
high-frequency details, such as the edges of petals and the
statue.

4.3. Comparison with Semi-Supervised Methods

Quantitative Evaluation of Semi-Supervised Methods
Figure 7 displays the evaluation results of our method and
another semi-supervised comparison method. Our SSL
method with 10% labeled data (right, red) achieves supe-
rior performance compared to the state-of-the-art compari-
son method [29] trained with 100% labeled data (left, blue).
When comparing our method with the supervised model us-
ing only 10% of labels (both, gray), it becomes evident that
the proposed method benefits significantly from the unla-
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(a) Input (b) DRBN [29](10%, SSL) (c) Ours(10%, SSL) (d) Ground Truth

(e) Input (f) DRBN [29](10%, SSL) (g) Ours(10%, SSL) (h) Ground Truth

Figure 6. Qualitative evaluation results on the LOL [28] in a semi-supervised manner using only 10% of the labeled data. Our semi-
supervised method trained with 10% of labels successfully suppresses noise and artifacts compared to the previous method [29].

DRBN Ours
18

19

20

21

22

23

24

25

PS
N
R(
dB
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 10% Labels, SL
 10% Labels, SSL
 100% Labels

Figure 7. Comparison of semi-supervised low-light image en-
hancement methods. Our semi-supervised approach using 10%
of labels (right, red) achieves significant performance gains from
the unlabeled data and outperforms the fully supervised previous
method (left, blue).

beled data, more so than the previous semi-supervised ap-
proach.

Qualitative Evaluation of Semi-Supervised Methods
Figure 6 presents the comparison results between the pre-
vious semi-supervised model and our method. We use only
10% of the paired data and the remaining unlabeled low-
light images for training. The qualitative results demon-
strate that our semi-supervised method effectively reduces
noise and artifacts, improving the perceptual quality of
the recovered output images. In contrast, the comparison
method generates noisy and under-enhanced output results.

Further Evaluation on Unlabeled Real-World Images
We compare our method with state-of-the-art methods on
unlabeled real-world datasets [6, 15]. Figure 8 illustrates

Table 2. Ablation study of the proposed architecture, the mid-step
loss, and the multi-consistency loss on the real-world dataset [28].

Method MC LA Lms LC Lmc PSNR SSIM
RN - - - - - 20.83 0.8904

MRN + - - - - 22.17 0.9287
MRN+ + - + - - 22.38 0.9321
CRNet- + + - - - 23.67 0.9326
CRNet + + + - - 24.01 0.9281

CRNet(10%) + + + - - 21.94 0.9086
Ours-(10%,SSL) + + + + - 22.50 0.9370
Ours(10%,SSL) + + + + + 23.05 0.9354

the comparison results on these datasets.
Our model successfully enhances the input low-light im-

ages while preserving their content and details, as well
as suppressing noise and artifacts. Our approach, as
shown in Figure 8 (j) and (t), demonstrates superior light-
enhancement performance using only 10% of labeled data,
whereas other methods tend to produce suboptimal results
with artifacts or noise. Our method retains the shadow in
Figure 8 (h) and (j), while other models in Figure 8 (c-g) and
(i) mistakenly treat the shadow as low-light regions. These
results suggest that our method is effective in recovering
complex, unseen low-light images in real-world situations.

4.4. Ablation Studies

Table 2 presents the results of ablation studies to ana-
lyze the contributions of the proposed network structure and
SSL framework. Each component of the proposed method
contributes to its advanced performance. RN refers to the
network created by removing the LA and MC from the pro-
posed model. MRN is the structure that adds MC to RN,
and MRN+ denotes the method of applying Lms to MRN.
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(a) Input (b) CLAHE [35] (c) Dong [4] (d) LIME [6] (e) RetinexNet [28]

(f) KinD [34] (g) DRBN [29] (h) CRNet (i) DRBN(10%, SSL) (j) Ours(10%, SSL)

(k) Input (l) CLAHE [35] (m) Dong [4] (n) LIME [6] (o) RetinexNet [28]

(p) KinD [34] (q) DRBN [29] (r) CRNet (i) DRBN(10%, SSL) (s) Ours(10%, SSL)

Figure 8. Qualitative evaluation results on the unlabeled real-world data (upper rows: [6], lower rows: [15]). Our CRNet effectively
enhances the real-world low-light images while suppressing noise and artifacts.

CRNet- is the method of removing Lms from our CRNet.
Ours-(10%, SSL) is trained without Lmc. Each compo-
nent of the network contributes to our method by preserving
informative features and successfully performing low-light
image enhancement through progressive recovery. Addi-
tionally, the proposed loss functions effectively enhance the
performance gains of our approach.

5. Conclusion

Deep models show potential in low-light image enhance-
ment but can produce noisy outputs with lost details. Ad-
ditionally, acquiring labeled data for supervised learning is
costly. To tackle these challenges, we proposed a novel net-
work structure and an end-to-end semi-supervised frame-
work that leverages unlabeled real-world data. Conse-
quently, our method achieved state-of-the-art performance
on both synthetic and real paired datasets. Notably, our
semi-supervised models using only 10% of labels outper-
formed existing supervised methods. Our approach effec-
tively enhances low-light images, highlighting the potential
of semi-supervised learning in this field.
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