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Abstract

Convolutional neural networks (CNNs) and Transform-
ers have achieved significant success in image signal pro-
cessing. However, little effort has been made to effectively
combine the properties of these two architectures to satisfy
image deraining. In this paper, we propose an effective de-
raining method, dilated convolutional Transformer (DCT),
which can enlarge the receptive fields of the network to ag-
gregate global information. The fundamental building unit
of our approach is the dilformer block containing multi-
dilconv sparse attention (MDSA) and multi-dilconv feed-
forward network (MDFN). The MDSA calculates the multi-
scale query to generate accurate similarity map so that rich
multi-scale information can be better utilized for the high-
quality image reconstruction. In addition, we adopt ReLU
to replace the original softmax to enforce sparsity in the
Transformer for better feature aggregation. The MDFN is
further established to better integrate the rain information
of different scales in the feature transformation. Extensive
experiments on the benchmarks show the favorable perfor-
mance against state-of-the-art approaches.

1. Introduction

Single image deraining is a typical signal processing
problem emerging in the last decade, whose aim is to re-
cover the clean and rain-free background from its rain-
degraded version. As rain streaks and clear image are un-
known, it is a challenging ill-posed problem. Early stud-
ies [12, 15] usually solve this problem by performing a
mathematical statistic to obtain a roughly generalized prior,
but these priors are hard to align well with the real-world
rain distribution, limiting their practical application.

With the success of the deep learning techniques, convo-
lutional neural networks (CNNs)-based approaches [7, 11,
14, 24, 35, 38] have emerged for image deraining task and
verified better restoration performance than those of tradi-
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tional algorithms. These CNN-based methods have greatly
advanced the progress thanks to the elaborately-designed
network architectures and learning strategies [4]. However,
these approaches still suffer from performance bottlenecks
due to the intrinsic characteristics of the convolutional oper-
ations, i.e, local receptive fields and independence of input
content, which limits the ability to eliminate long-range rain
streaks.

Recently, Transformers [6,29,32,37], as the new network
backbone, have achieved significant improvements boost
over CNN models, because they can better model the non-
local information for high-quality image reconstruction. Al-
beit these methods have achieved initial success, we observe
that they fail to recover the fine spatial details of images
and even invole implausible artifacts, especially in heavy
rainy conditions highly degraded by intensive rain streaks.
In fact, since the rain streak layer and rain-free background
layer are highly interlaced, global and local representation
learning are equally important for the challenging image de-
raining task, while the self-attention in Transformer does
not manipulate the local invariance that CNNs do well.
Thus, it is of great need to develop a hybrid network that
combines the features by CNN and Transformer to obtain
more robust deraining performance.

Towards this goal, we propose a dilated convolutional
Transformer (DCT) for image deraining. Importantly, our
approach incorporates dilated convolution operators with
Transformer, thereby enlarging the receptive fields and
producing contextually enriched feature representations.
Specifically, the heart in DCT is the dilformer block, which
covers two well-designed components. First, as not all
the tokens from the queries are relevant to those in keys,
using all similarity relations does not effectively facilitate
the high-quality image reconstruction. Here, we develop a
multi-dilconv sparse attention (MDSA) to select the most
useful similarity values for global feature aggregation. On
the other hand, existing Transformer-based deraining meth-
ods [32, 37] lack the utilization and exploitation of multi-
scale rain information. In our model, a multi-dilconv feed-
forward network (MDFN) is further established to better
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characterize the local rain streaks distribution. With above-
mentioned designs, our proposed hybrid architecture can
not only enrich the locality but also empower the capabil-
ity of global feature exploitation, in order to facilitate rain
removal.

The contributions of this paper are summarized as fol-
lows:

• We design an effective multi-dilconv sparse attention
in Transformer, which is capable of generating more
accurate representation for chasing high-quality de-
raining outputs.

• We design a novel multi-dilconv feed-forward network
based on multi-scale fusion, where the rain informa-
tion can be fully exploited to enrich inter-level feature
transformation.

• Extensive experimental results on the commonly used
benchmarks considerably demonstrate that our pro-
posed DCT outperforms existing state-of-the-art de-
raining approaches.

2. Related Work
In this section, we will briefly introduce the recent re-

lated works for single image deraining and vision Trans-
former.

2.1. Single Image Deraining

Existing methods for single image deraining can be di-
vided into two categories: prior-based methods and deep
learning-based methods. Early deraining approaches gen-
erally develop different image priors to provide additional
constraints. By correctly framing rain removal as an im-
age decomposition challenge based on morphological com-
ponent analysis, Kang et al. [12] construct a single pic-
ture deraining framework. Li et al. [15] propose a straight-
forward patch-based prior approach for modeling both the
background and rain layers, achieving effective results.The
deep learning-based deraining has shown excellent perfor-
mance. Fu et al. [8] first introduce DetailNet that directly
remove the rain layer by reducing the mapping range. Yang
et al. [34] propose a multi-stage joint rain detection and
estimate network and discuss the possible aspects as at-
tribute and loss that effected on the deraining task. By uti-
lizing convolutional and recurrent neural networks, RES-
CAN [14] proposes a way to make full use of contextual in-
formation for image rain removal. Zhang et al. [39] present
a density-aware multi-stream densely connected CNN al-
gorithm, DID-MDN, for estimating rain density on rain-
streaks. In [24], Progressive Resnet Network (PReNet) car-
ries out the recursive compute to effectively produce the de-
rained images progressively. Jiang et al. [11] introduce a
multi-scale progressive fusion network (MSPFN) for single

image rain streak removal. RCDNet [26] utilizes a convo-
lution dictionary to depict rain features and streamlined the
network using proximal gradient descent technology. Wang
et al. [27] develop a multi-decoding structure allows for
optimal deraining features to be generated in each feature
space by imposing individual supervision. Zou et al. [42]
propose a novel data-free compression framework for de-
raining networks. Xiao et al. [32] present an efficient and
effective transformer-based architecture for image derain-
ing, which can capture long-range and complicated rainy
artifacts.

2.2. Vision Transformer

Google introduces the Transformer [25], which exhibits
exceptional performance in natural language processing
(NLP). Numerous endeavors have been made to investi-
gate the usage of the Transformer model in computer vi-
sion tasks, owing to the Transformer model’s triumph in
NLP. Recent studies shows that Transformers have achieved
great success in high-level vision tasks such as image clas-
sification [1, 16, 18], segmentation [33, 41] and object de-
tection [5, 9, 10]. Due to its outstanding performance,
Transformer models have been studied for low-level vi-
sion tasks [2, 3, 20, 30]. Liang et al. [17] propose a
strong baseline model SwinIR for image restoration based
on the Swin [18] Transformer. Wang et al. [29] intro-
duce a high-performing Transformer-based network called
Uformer for image restoration. Lee et al. [13] present a at-
tention mechanism for image restoration, named k-NN Im-
age Transformer (KiT). Zamir et al. [37] suggest an effec-
tive Transformer for image restoration that can handle large
images while modeling global connections. Transformers
are better than CNNs at identifying long-range connections
within data thanks to their global self-attention dependen-
cies. Therefore, developing a hybrid network that combines
CNN and Transformer features is crucial for achieving more
robust deraining performance.

3. Proposed Method
In this section, our DCT architecture is presented first

in this section (see Fig. 1). After describing the basic ele-
ments of the proposed dilformer block, we discuss its major
components.

3.1. Overall Framework

Given an input rainy image Irain ∈ RH×W×3, where
H×W represents the spatial resolution of the feature map,
we utilize a standard 3×3 convolutional layer as the projec-
tion of input and output. Our network architecture consists
of a series of stacked Ni∈[1,2,3,4] encoder/decoder dilformer
units, which allows us to extract rich information for rain
distribution that varies throughout space. It is necessary to
concatenate the encoder features with the decoder features
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Figure 1. The overall architecture of the proposed dilated convolutional Transformer (DCT) for image deraining.

by means of skip connections in order to facilitate the recov-
ery process. Instead of directly predicting a deraining im-
age Iderain, the proposed model predicts a residual image
Ires to which the degraded input image is added to obtain:
Iderain = Irain + Ires.

In each dilformer block, given the input features at the
(l-1)-th block Xl−1, the encoding procedures of dilformer
block can be reformulated as

X′
l = Xl−1 + MDSA (LN (Xl−1)) , (1)

Xl = X′
l + MDFN (LN (X′

l)) , (2)

where X′
l and Xl represent the outputs from the multi-

dilconv sparse attention (MDSA) and multi-dilconv feed-
forward network (MDFN). A layer normalization is referred
to as an LN.

For simplicity, we leverage the pixel-wise loss by the L1
function to impose supervision on the learning process. We
optimize our DCT end-to-end with the following objective:

Lpixel = ∥Iderain − Igt∥1 (3)

where Iderain and Igt denote the output derained image and
the ground-truth image, respectively.

3.2. Multi-Dilconv Sparse Attention

Rain streaks can be automatically identified and removed
using contextual information from an input image for im-
age deraining [34]. Our method utilizes a contextualized
dilated architecture rather than relying on depth-wise con-
volution [37] to aggregate context information at multiple

scales for the purpose of learning rain features. This dilated
convolution increases the receptive field without sacrificing
resolution by weighting pixels with a step size of the dilated
factor [36]:

g[i] =

L∑
l=1

f [i+ r · l]h[l], (4)

where f [i] is the input signal, g[i] is the output signal , h[l]
denotes the filter of length L, and r corresponds to the di-
lation rate we use to sample f [i]. In standard convolution,
r = 1.

The MDSA utilizes linear projection by first applying
1 × 1 convolution. In the next step, MDSA employs three
dilated convolutions to compute the multi-scale query. De-
spite sharing kernel weights, these convolutions have differ-
ent dilation rates: 1, 2, 3. The scale-independent similarities
are then added together using a weighted tally. The three ex-
panded pathways we use all use dilated convolutions with
the same-sized kernel 3× 3. Within the framework of self-
attention, this design employs the usage of multi-scale data
for calculating query and key similarity between any pair of
spatial locations.

Furthermore, we also note that the softmax normaliza-
tion in Transformer will keep all the similarities of the to-
kens from the query and key. However, not all the tokens
from the query are relevant to those in key. Using the soft-
max normalization to generate self-attention would affect
the following feature aggregation. As the ReLU is an effec-
tive activation function that can remove negative features
while keep the positive ones, we use the ReLU to keep
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Table 1. Comparison of quantitative results on five benchmark datasets. Bold and underline indicate the best and second-best results.

Datasets Test100 [40] Rain100H [34] Rain100L [34] Test2800 [8] Test1200 [39] Average
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet [7] 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 23.38 0.835 22.48 0.796
SEMI [31] 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 26.05 0.822 22.88 0.744

DIDMDN [39] 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 29.95 0.901 24.64 0.770
UMRL [35] 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 30.55 0.910 28.02 0.880

RESCAN [14] 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 30.51 0.882 28.59 0.858
PReNet [24] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.43 0.897
MSPFN [11] 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.75 0.903
MPRNet [38] 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.73 0.921
DGUNet [23] 30.32 0.899 30.66 0.891 37.42 0.969 33.68 0.938 33.23 0.920 33.06 0.923

KiT [13] 30.26 0.904 30.47 0.897 36.65 0.969 33.85 0.941 32.81 0.918 32.81 0.926
Uformer-B [29] 29.90 0.906 30.31 0.900 36.86 0.972 33.53 0.939 29.45 0.903 32.01 0.924

IDT [32] 29.69 0.905 29.95 0.898 37.01 0.971 33.38 0.937 31.38 0.908 32.28 0.924
Ours 30.91 0.912 30.74 0.892 38.19 0.974 33.89 0.941 33.57 0.926 33.46 0.929

Table 2. Comparison of quantitative results on real-world rainy images, lower scores indicate better image quality.

Methods Rainy Image MSPFN [11] MPRNet [38] DGUNet [23] Ufomer-B [29] IDT [32] Ours
NIQE / BRISQUE 5.961 / 34.147 4.947 / 33.027 4.821 / 32.116 4.419 / 27.654 4.537 / 28.619 4.227 / 26.237 4.103 / 24.795

the most useful attentions for feature aggregation, automat-
ically ensuring the sparse property of the attention weight.

Formally, we respectively apply a reshaping function to
the query Q, key K, and V and obtain Q̂ ∈ RHW×C ,
K̂ ∈ RHW×C , and V̂ ∈ RHW×C . Finally, we compute
the sparse attention A ∈ RC×C by:

SparseAttention = ReLU

(
Q̂⊤K̂

α

)
V̂, (5)

where α is a learnable parameter.

3.3. Multi-Dilconv Feed-Forward Network

Transformer allows the data to expand/reduce the dimen-
sion of the token and perform non-linear transformations
on each token through the feed-forward network. Here, we
propose a MDFN to enhance locality and increase the size
of the receptive field in order to retrieve more contextual in-
formation. In fact, rich multi-scale representation has been
fully demonstrated its effectiveness [11] in better removing
rain. Similar to MDSA, the representations of the three con-
volution routes with varying dilation factors and receptive
fields are aggregated to provide the final output features.
MDFN also has the ability to apply random rates of dilation
during the process, automatically expanding the receptive
fields of the network without adding new modules, which
is important for removing rainy effects of different appear-
ances.

4. Experiments

In this section, we perform both quantitative and qual-
itative evaluations to validate the effectiveness of our pro-
posed DCT on commonly used benchmark datasets. Here,
we compare our method with 12 state-of-the-art image de-
raining approaches, including DerainNet [7], SEMI [31],
DIDMDN [39], UMRL [35], RESCAN [14], PReNet [24],
MSPFN [11], MPRNet [38], DGUNet [23], KiT [13],
Uformer-B [29], and IDT [32].

4.1. Datasets and Metrics

Following [11, 37], we conduct extensive experiments
on the Rain13K training dataset which contains 13, 700
clean/rain image pairs. For testing, five synthetic bench-
marks (Test100 [40], Rain100H [34], Rain100L [34],
Test2800 [8], and Test1200 [39]) are considered for eval-
uation. Note that, we calculate the PSNR and SSIM [28]
scores using the Y channel in the YCbCr color space as
quantitative comparisons. Besides, real-world datasets also
considered to further evaluate the generalization perfor-
mance. For the rainy images without clean labels, two no-
reference indicators, NIQE [22] and BRISQUE [21], are
employed for evaluating performance.

4.2. Implementation Details

The experiments are performed on PyTorch
with 4 NVIDIA GTX 3090 GPUs. In our model,
{N0, Nl, N2, N3, N4} are set to {2, 4, 6, 6, 8}, and the
number of attention heads for five dilformer blocks of the
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Figure 2. Visual quality comparison of deraining images obtained by different methods on the Rain100H benchmark dataset.

Figure 3. Visual quality comparison of deraining images obtained by different methods on the Test100 benchmark dataset.
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Figure 4. Visual quality comparison of deraining images obtained by different methods on the Test1200 benchmark dataset.

Figure 5. Visual quality comparison of deraining images obtained by different methods on real-world rainy images.

same level is set to {1, 1, 2, 4, 8}. The initial channel C
is 48 and the expand ratio is set to 2. We use AdamW
optimizer with batch size of 16 and patch size of 128 for
total 300K iterations. The initial learning rate is fixed as
1× 10−4 for 92K iterations, and then reduced to 1× 10−6

for 208K iters with the cosine annealing [19].

4.3. Comparison with State-of-the-arts

Synthetic Datasets. Table 1 shows the quantitative evalua-
tion results on the commonly used synthetic benchmarks.
For fair comparisons, since UFormer-B and IDT are not
trained on the Rain13K, we retrain the models using the
default settings provided by the authors. For other methods,
we evaluate them with their online codes. Obviously, our

method gets the highest values both in PSNR and SSIM ex-
cept for the SSIM of Rain100H, which can surely reflect the
excellent performance and robustness of our designed DCT.
As shown in Fig. 4 and Fig. 2, Test1200 and Rain100H im-
ages are provided for visual comparison. Fig. 3 shows the
visual results on the Test100 dataset. Benefiting from the
interaction of local and non-local information, our method
can remove rain streaks while retaining more accurate de-
tails and credible textures in the background image.

Real-world Datasets. To further demonstrate the general-
ization of DCT, we compare it with other competing ap-
proaches on real-world dataset. As recored in Table 2,
our net gets the lower NIQE and BRISQUE values, which
means high-quality deraining results with clearer content
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Figure 6. Ablation qualitative comparison for different variants of DCT. The models (a-e) are consistent with the settings in Table 3.

Table 3. Ablation study analysis on the Rain100H benchmark
dataset.

Models (a) (b) (c) (d) (e)
Depth-wise Conv ✓

Dilated Conv ✓ ✓ ✓ ✓
Single-scale Query ✓ ✓
Multi-scale Query ✓ ✓ ✓

r = 2,2,2 ✓
r = 1,2,3 ✓ ✓
ReLU ✓ ✓ ✓ ✓

Softmax ✓
PSNR 29.57 29.79 30.05 30.74 30.21
SSIM 0.877 0.879 0.884 0.892 0.886

and better perceptual quality. Through the visual compar-
ison in Fig. 5, our method can achieve better generalization
performance and high-quality restoration in detail preserva-
tion and rain removal.

4.4. Ablation Studies

To demonstrate the superiority of our framework, we
conduct studies on different variants of DCT. We mainly
consider the following variants: (1) depth-wise or dilated
convolution; (2) single-scale or multi-scale query; (3) same
or different dilation rates; (4) ReLU or Softmax. The quan-
titative results on the Rain100H are listed in Table 3. We
observe that our model (d) performs better than the other
possible configurations, which shows that each design strat-
egy we consider brings their own gains to the final perfor-
mance of DCT. As shown in Fig. 6, our method (d) can
generate a clearer recovery result.

5. Conclusion

In this paper, we have presented an effective dilated con-
volutional Transformer (DCT) for image deraining. We
build the dilformer block with combinations of multi-
dilconv sparse attention and multi-dilconv feed-forward net-
work, and show that it can boost high-quality restoration

performance significantly. Extensive experimental results
show that the proposed DCT achieves favorable deraining
performance against state-of-the-art methods.
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