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Abstract

Recent advances in deep learning have been pushing im-
age denoising techniques to a new level. In self-supervised
image denoising, blind-spot network (BSN) is one of the
most common methods. However, most of the existing BSN
algorithms use a dot-based central mask, which is recog-
nized as inefficient for images with large-scale spatially
correlated noise. In this paper, we give the definition of
large-noise and propose a multi-mask strategy using mul-
tiple convolutional kernels masked in different shapes to
further break the noise spatial correlation. Furthermore,
we propose a novel self-supervised image denoising method
that combines the multi-mask strategy with BSN (MM-BSN).
We show that different masks can cause significant per-
formance differences, and the proposed MM-BSN can ef-
ficiently fuse the features extracted by multi-masked layers,
while recovering the texture structures destroyed by multi-
masking and information transmission. Our MM-BSN can
be used to address the problem of large-noise denoising,
which cannot be efficiently handled by other BSN meth-
ods. Extensive experiments on public real-world datasets
demonstrate that the proposed MM-BSN achieves state-of-
the-art performance among self-supervised and even un-
paired image denoising methods for sRGB images denois-
ing, without any labelling effort or prior knowledge. Code
can be found in https://github.com/dannie125/MM-BSN.

1. Introduction
Image denoising is a key step in image processing, and

the denoising performance has a significant impact on the
subsequent image processing tasks. Traditional image de-
noising methods [8, 11, 27] are time consuming and costly,
but usually have poor robustness in real-world applications.
With the advancement of deep learning, learning-based im-
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(a) DnCNN [43]
(Supervised)

(b) C2N [16]+DIDN [39]
(Unpaired)

(c) AP-BSN [22]
(Self-supervised)

(d) MM-BSN
(Self-supervised)

Figure 1. Visual comparison of our MM-BSN with other com-
peting methods on the DND benchmark. (a) DnCNN is trained
on real-world noisy-clean pairs from the SIDD Medium dataset
[1]. (b) C2N uses clean SIDD [1] and noisy DND [33] samples
to simulate the real-world noise distribution in an unsupervised
manner. (c) AP-BSN is trained directly on the noisy images in
the SIDD Medium dataset [1]. (d) MM-BSN is trained on images
with real noise from SIDD. We mark the PSNR (dB) and SSIM
with respect to the groundtruth for the quantitative comparison.

age denoising algorithms have made great progress and can
be divided into two classes, supervised methods and self-
supervised methods.

The supervised denoising methods [2,5,7,12,40,41,43]
have relatively better performance than the self-supervised.
However, supervised image denoising requires a large num-
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ber of noisy-clean image pairs, which are difficult to collect
in practical applications, and generating such image pairs
requires massive human effort and cost. One of the most
common ways is to add simulated real-world noises, such as
Additive White Gaussian Noise (AWGN), to clean images
to artificially synthesize noisy images so as to obtain syn-
thetic noisy-clean pairs [12,17,25,32,43,44]. Nevertheless,
there is always an unavoidable gap between the synthetic
noise and the real noise, which severely affects the perfor-
mance of these supervised models trained on synthetic noise
in the real-world image denoising applications. In addition,
in some cases, it is also difficult to obtain clean images.

In this situation, many self-supervised image denoising
methods [3,15,18,19,23,45] that do not require noisy-clean
image pairs have been proposed. Noise2Noise [23] used
noisy-noisy image pairs to train the model, which achieved
comparable performance to supervised algorithms. But it
requires two perfectly aligned noisy images, which are diffi-
cult to obtain in practice. Noisier2Noise [29] and NAC [38]
added the same type of noise as the existing noise to the
original noisy image to form noisier-noisy pairs as the train-
ing set. This requires the model users to know the spe-
cific types of the noise in the image, which is unrealistic
in practice because the causes of noise are diverse and the
type of noise can change constantly in real-world. IDR [45]
adopted an iterative approach, taking the noisy images as in-
puts to the existing denoising model trained by noisier-noisy
pairs, and treating the output as the next round optimization
target to further refine the denoising model. In this way, the
denoising model is optimized by iterations, which can eas-
ily lead to the final denoised image being over-smoothened.
Noise2Void [18] proposed a blind spot network (BSN) de-
noising method based on the assumption that pixel signals
in the image are spatially correlated in the image, and noise
signals are spatially independent with zero-mean. In recent
years, several publications [13, 18, 20, 37] have shown that
BSN is effective in synthesizing noise for denoising. How-
ever, real-world noise is usually spatially continuous. In
most existing BSN denoising methods [3,13,18,19,22,37],
the masks used to generate blind spots have a single pixel
blinded in the center, which makes it difficult to denoise
when the noise correlated area is large. Zhang et al. [42]
combined Transformer and CNN to achieve a trade-off be-
tween denoising images with global spatially correlated
noise and preserving local detail. However, Transformer is
computationally intensive, making it difficult to deploy in
practical applications on mobile devices [36].

Motivated by the fact that different shapes of convolution
kernels can extract different features, we propose a variety
of masks with different shapes to generate blind spots, such
as ’+’-shaped mask, ’□’-shaped mask, ’×’-shaped mask,
and so on. The multi-masks with different blind spots are
used to mask the surrounding pixels at different positions,

so as to destroy the spatial correlations of the noise in multi-
direcion. And we systematically demonstrate the effective-
ness of using different masks or different mask combina-
tions for image denoising. In addition, we propose an en-
hanced BSN that combines with the multi-mask strategy,
namely MM-BSN, to more efficiently integrate multi-mask
paths, recover the destroyed textures, and control the model
size. Extensive experiments demonstrate the effectiveness
and superiority of the proposed method.

The main contributions of our work are as follows:
1.To the best of our knowledge, we are the first to ex-

plore the combination of different convolution kernels with
multi-mask to extract features, and to perform denoising on
images with large-scale spatially correlated noise in self-
supervised. Furthermore, our multi-mask strategy can be
integrated with other methods.

2. We propose a novel self-supervised MM-BSN that can
integrate the features extracted by multi-masked convolu-
tion kernels, control the model size growth, and preserve
the image detail when denoising.

3. Our approach achieves the state-of-the-art perfor-
mance among published self-supervised sRGB image de-
noising methods, which is significant for practical applica-
tions.

2. Related Work
Supervised image denoising. Zhang et al. [43] first pro-

posed a deep learning based image denoising method called
DnCNN, which trained the model with generating noisy-
clean pairs by manually adding AWGN to clean images.
Subsequently, many researchers proposed other image de-
noising methods [2, 5, 9, 10, 17, 21, 25, 32] based on deep
learning by adding AWGN to clean sRGB images. How-
ever, the denoising performance of these models in the real
world was unsatisfactory due to the large gap between artifi-
cial and real-world noise. Scholars [4, 28] proposed to con-
vert sRGB images to rawRGB first, and then added Pois-
son noise corresponding to shot noise and Gaussian noise
corresponding to read noise to rawRGB. After denoising in
rawRGB space, the final denoised result image was con-
verted back to sRGB space using ISP tools. For this denois-
ing method, accurate noise estimation and modelling was
essential for success. Although the noise obtained by statis-
tical modelling reduced the gap between the synthetic noise
and the real noise, the injected noise was not real and exter-
nal factors could alter the accuracy of the noise modelling.
To this end, it was recognized that the most effective way
to denoise was to use the noisy-clean pairs [7, 14, 34, 41]
directly from the real-world when available. However, such
a noisy-clean pair dataset requires a huge amount of human
labour to collect and a huge amount of time to construct
in the real world, and was even more impractical given the
diverse application scenarios.
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Self-supervised image denoising. Noise2Noise [23]
used two perfectly aligned noisy images from the same
scene as input and target, respectively. L2 loss was used
to minimize the difference between the two noisy images
in order to make the model capable of denoising. Then
Noise2Void [18], Noise2Self [3], Probabilistic Noise2Void
[19], Neighbor2Neighbor [15], IDR [45], CVF-SID [30],
Blind2Unblind [35] and AP-BSN [22] were proposed to
use only noisy images for training. As the most widely
used self-supervised denoising method, BSN was firstly
proposed in Noise2Void [19], which is a special CNN that
masks pixel in the center of the receptive field, and uses
the surrounding information to reconstruct the information
of the masked pixels. Its denoising capability is restricted
to the assumption that the noise is spatially independent.
Noise2Void [19] took the masked image as the input and
the fully noisy image as the target to train the model. The
masked pixels are not used during training, which can eas-
ily lead to loss of detail and over-smoothing of the im-
age. Neighbor2Neighbor [15] synthesized two sub-noisy-
images by randomly selecting two adjacent pixels from the
4×4 neighbourhood of the rawRGB image. Two sub-noisy-
images were used as input and target for training, respec-
tively, forming noisy-noisy pairs. However, training di-
rectly on sub-noisy-images would inevitably lose some im-
age detail. To improve this, Blind2Unblind [35] used all the
pixels for training by generating sub-masked-images with
pixels masked at different positions, and then used a global
mask strategy to collect all pixels from the masked posi-
tions in the sub-masked-images after denoising. Although
Blind2Unblind makes full use of all pixel information, it is
difficult to denoise large-noise using only dot-based masks.

Laine19 [20] occluded half of the receptive fields in four
different directions, achieving the effect that the center of
the receptive field is not seen. D-BSN [37] and David et
al. [13] used the center-masked convolution kernel and the
dilated convolution layer (DCL) with a specific step size to
construct the BSN. The publications proved that BSN is ef-
fective in synthesizing noise for denoising. However, the
real-world noise is usually spatially continuous and BSNs
would fail to handle it. To break the spatial correlation
of real-world noise, AP-BSN [22] adopted Pixel-shuffle
Downsampling (PD) with 5-pixel stride on images before
training, and utilized center-masked convolution kernel and
dilated convolution layer (DCL) to achieve the effect of
blind spots during training. However, AP-BSN relies on the
PD with limited stride to break the spatial correlation of the
noise. If large-noise exists in the image, blindly increasing
the PD stride will cause irreversible damage to image de-
tails [22]. Therefore, it is challenging for AP-BSN to strike
a balance between the noise removal and texture informa-
tion preservation, especially when denoising large-noise.
In this paper, we propose a joint feature-extraction method

(a) Spatially correlated noise shown by the black area in different shapes.

(b) Proportion of different noise area on a full image
Figure 2. Noise detail on the 0228 N.png from SIDD validation.

using multi-masked convolutional kernels to destroy large-
noise correlations. We also propose a novel architecture that
combines the multi-mask convolutional kernels with BSN
(MM-BSN) to make full use of the extracted features and
preserve texture structures of the original image as much as
possible.

3. Motivation

We explore the noise spatially correlations that have dif-
ferent shapes as shown in Figure 2. The sub-images in
Figure 2a all have a size of height×width as 10×10, which
shows that the correlation area is large. We also computes
the proportion of spatially correlated noise in different areas
of the image in Figure 2b. We define the spatially correlated
noise with a area bigger than 25 as large-noise. Figure 2b
shows that the large-noise, which theoretically cannot be
handled by PD stride not bigger than 5, occupies more than
1/3.

Recently published BSN methods, either the mask in
the input [3, 15, 18, 19, 35] or the mask in the network
[13, 22, 37], which used a dot-based mask, is not enough to
break the correlation of large-noise. In this way, the blind
pixels recovered from the surrounding information would
still contain noise. Motivated by the prior knowledge that
filters with different shapes can be designed to target dif-
ferent types of noise, such as ’+’, ’□’, etc., we propose a
novel multi-mask strategy, which ultilizes different convo-
lution kernels masked in different shapes to further destroy
the spatial connection of noise.

4. Main Method

Multi-Mask Strategy. We propose to use the multi-
mask strategy to further destroy the spatial connection of
the noise, while preserving useful texture information of the
image. Figure 3 shows the shapes of different masks when
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(a) o (b) — (c) + (d) / (e) ×

(f) □ (g) | (h) ⊞ (i) \ (j) ⋇
Figure 3. Multi-mask is shown on 5×5 kernel. Gray dots rep-
resent 0, and blue dots represent 1. (a) is the central mask with a
single blind spot and (f) is a ’□’-shaped mask. (b) is a ’—’-shaped
mask and (g) is a ’|’-shaped mask. (c) is a ’+’-shaped mask and
(h) is a ’⊞’-shaped mask. (d) is a ’/’-shaped mask and (i) is a
’\-shaped mask. (e) is a ’×’-shaped mask and (j) is a ’⋇’-shaped
mask.

the convolution kernel size is 5×5, such as ’+’, ’□’, ’—’,
’|’, ’/’ , ’\’, ’×’, etc.

Theoretically, we can arbitrarily combine multiple masks
of different shapes to achieve different denoising results.
When using n number of types of masked convolutional
kernels types, the same operations are performed for each
path until the final concatenation, where all features ex-
tracted by several different masked convolutional kernels
are fused together. In this way, we can obtain a number of
basis multi-mask BSN models, whose architectures contain
multiple branches corresponding to the number of masks.
However, the model size obtained by this naive method of
simple stacking is almost n times the size of the basic net-
work. Consequently, the workload on the hardware device
is multiplied by n. To control the model size, make full use
of the information around the blind spot and avoid infor-
mation redundancy, we generally use a combination of only
two masks. The feature extracted by ’o’-shaped mask con-
tains complete information. However, it may contain more
unconducive information for denoising because it could not
break the spatial connection of the noise sufficiently. The
other types of masks mask more pixels of the surrounding
pixels, which can break the spatial connection of the noise
more, but lose more image information. So we can combine
the feature extracted by ’o’ to provide more detail and the
other shape of masks to break the spatial correlation of the
noise and reinforce each other to get a better denoising per-
formance. Of course, two masks with complementary mask
shapes also can break the spatial connection of the noise
while extracting information from the surrounding pixels.
Multi-mask combinations can be flexibly adjusted accord-
ing to the real noise distribution.

Our multi-mask strategy can be integrated with other
methods by simply stacking the different mask paths. How-
ever, in this way, the increasing number of different mask
types will explode the model size. In addition, the fea-
tures extracted by different masks have no interaction be-

tween the processing paths at the intermediate stages before
the final concatenation. Without such interaction, informa-
tion transfer and co-optimization between these processing
paths is not possible. Therefore, how to use multi-mask to
destroy the spatial connection of noise while retaining more
texture information is also a challenge. Last but not the
least, as the mask area increases, the texture information of
the image itself is increasingly destroyed. Finally, we pro-
pose a novel MM-BSN, to address these challenges.

MM-BSN Architecture. MM-BSN is initially motivated
by AP-BSN [22]. We also use masked convolutional kernels
to extract the shallow features. But instead of using only the
center mask, we add other shapes of masks to extract the
masked features.

The architecture of MM-BSN is shown in Figure 4. The
workflow consists of four steps. First, a linear transforma-
tion is performed on the noisy image with a 1×1 convolu-
tional layer, and the output feature containing the complete
image information passes through several different masked
convolutional layers in parallel. Second, each masked fea-
ture passes through three layers in parallel, two 1×1 con-
volutional layers and a Concatenation-based Dilated Con-
volutional Layer (CDCL). CDCL contains a small number
of DCLs (set to 2 in this article) and its output features
are combined with one linearly transformed feature from
a 1×1 convolutional layer using a concatenation according
to the mask size. The features extracted by the same size
but different masked convolution kernels are fused together.
Third, after passing through several DCLs (set to 7 in this
article), all features are concatenated together, and the fea-
tures extracted by different masked convolution kernels of
different sizes are fused. Finally, the output is obtained by
channel transformation and feature fusion with several 1×1
convolutional layers.

Due to the interaction between different feature path-
ways, the resulting MM-BSN parameter set of 5.3M is
larger than AP-BSN of 3.7M, but much smaller than the
model size of a simple stack of AP-BSN with multi-mask
(namely SMM-BSN) of 7.3M. The ablation experiments of
several models are detailed in Section 5.3.

Loss Chosen. In this paper, we use L1 loss function to
train our MM-BSN:

E = ∥Iout − IN∥1 (1)

Iout = PD−1(M(PD(IN ))) (2)

Where M denotes the MM-BSN model, Iout is the result of
PD−1, and IN is the noisy input. Similar to AP-BSN [22],
we use PD to preliminarily break the spatial connection be-
tween the noises of adjacent pixels. After PD with stride
Spd, we obtain a group of small sub-images that are inputs
to MM-BSN. The denoised result Iout, which has the same
size as the original image, is decoded by operating PD−1

to the outputs of the model.
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Figure 4. MM-BSN Architecture. The channel of feature maps that are not marked is 128. N indicates that DCL repeats N times.

5. Experiments
5.1. Implementation Details

Datasets. We take the public datasets of SIDD [1] and
DND [33] for our experiments. We take the noisy sRGB
images in SIDD Medium dataset that contains 320 pairs
of noisy-clean images as the training set and SIDD vali-
dation as the valid set, respectively. SIDD validation and
SIDD benchmark can be used as test sets. DND dataset that
contains only 50 noisy image are generally used as the test
dataset. Since only noisy images are needed to train our
self-supervised models, we use DND as both the training
set and the test set.

Training Details. All models are trained with the same
hyperparameters. The batch size is 8 and the number of
training epochs is 30. The optimization function adopted is
Adam. The initial learning rate is 0.0001, and the learning
rate of every 8 epochs is multiplied by 0.1. The images are
resized to 128×128, and are randomly rotated within a range
of 90° in the horizontal or vertical direction before training.
All experiments are run on a server with python 3.8.0, py-
torch1.12.0, and Nvidia Tesla T4 GPUs. For a relatively fair
comparison, unless otherwise stated, we set the PD stride as
5 for training, 2 for testing, and the same post-processing as
AP-BSN [22].

Mask SIDD Validation SIDD Benchmark

Spd=2 ’o’ 24.27/0.361 27.48/0.627
’□’ 35.29/0.854 36.84/0.932

Table 1. Quantitative comparison of the same network us-
ing different masks with Spd=2. PSNR/SSIM results are cal-
culated between the denoised-clean pairs using the Python toolkit
for SIDD validation, and the official toolkit for SIDD benchmark.

5.2. Analyzing Multi-Mask strategy in BSN

To compare the performance of the proposed method
with different mask combinations, we trained several MM-

(a) Noisy (b) Spd=2, ’o’ (c) Spd=5, ’o’ (d) Spd=2, ’□’
Figure 5. Visualization performance of several models with the
same architecture but different mask type or different Spd.
(a) Noisy image. (b)With a small stride factor Spd=2 and cen-
ter mask, the method cannot remove noise from noisy image. (c)
With Spd=5 and ’o’-shaped mask, the model can denoise better.
(d) With Spd=2 and ’□’-shaped mask, the model can get a better
performance than that with ’o’-shaped mask.

BSN models with different masks on SIDD Medium
dataset. All trained models are quantitatively evaluated on
SIDD validation and benchmark. Existing Python toolkits
are used to compute the PSNR/SSIM of SIDD validation.
At the same time, we upload the denoised results of SIDD
benchmark to the official website and obtain the reported
PSNR/SSIM.

Significant effect on breaking the noise structure. To
check the effectiveness of the mask in breaking the structure
of large-noise, we take the image after PD with Spd=2 as in-
put to train. Figure 5 shows the denoising performance of
the models with different Spds or masks but the same other
settings. AP-BSN [22] shows that when Spd=2, the spa-
tial connection of the noise in the image cannot be broken
well. Using only the center mask, the model is weakly able
to denoise, as shown in Figure 5b. But if we use the ’□’
mask when Spd=2, the denoised result is even better than
the ’o’-shaped masked model with Spd=5 [22] as shown
in Figure 5c and 5d. Table 1 quantitatively shows that,
the PSNR/SSIM on the SIDD validation and benchmark
datasets are greatly improved when the center mask is re-
placed with the ’□’ mask when Spd=2. This proves that the
large-noise structure can be better broken by the ’□’ mask,
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(a) Clean (b) Noisy (c) AP-BSN (d) ’o’ + ’+’ (e) ’o’ + ’⊞’ + ’+’
Figure 6. Qualitative comparison of several methods with different mask combinations on SIDD validation dataset. (a) Clean
images. (b) Noisy images. (c) Denoised images by AP-BSN [22]. (d) Denoised images by SMM-BSN using a combination of ’o’ mask
and ’+’ mask. (e) Denoised images by SMM-BSN using a combination of ’o’, ’⊞’ and ’+’-shaped mask.

and it is not only an exception shown in Figure 5, but also a
common case.

Quantitative comparison of MM-BSN models. We
summarize the following points from Table 2: (1) Differ-
ent mask combinations achieve different denoising perfor-
mance. The reason is that different masks target different
noise correlations, and it is common sense that the final de-
noised result will be different. (2) The mask combinations
combined with ’o’ are overall better than the combinations
without it, due to that the feature extracted by the ’o’-shaped
mask preserves the texture information of the image itself
more completely. (3) The combination of ’/’ and ’\’ gives
the best performance, followed by the combination of ’o’
and ’/’, which indicates that the dataset has more ’/’ and ’\’
shaped spatially related noise. For different datasets, the
noise structures are different, and users can freely choose
the combination of masks or design the mask shape suitable
for the real dataset according to the needs.

Comparison of BSN models with increasing mask
types. Figure 6 shows the qualitative denoising perfor-
mance of models with different number of mask types in the
same framework on the SIDD validation dataset. Compar-
ing Figure 6c, 6d and 6e, it can be observed that by adding
other types of masks based on the ’o’-shaped mask, the de-
noising performance is significantly improved. Especially
in the second row, the denoised result of AP-BSN has unac-
ceptable color shifts, while SMM-BSN restores the original
color perfectly, indicating that adding masks of other shapes
can effectively destroy the noise correlation during feature
extraction. In addition, it can be seen from the second row
of Figure 6b and Figure 6c that the PSNR value after denois-
ing decreases from 22.62dB to 21.69dB when only the cen-

Masks Test datasets
o — | ⊞ + / \ ⋇ × Validation Benchmark
✓ ✓ 37.34/0.881 37.31/0.937
✓ ✓ 37.30/0.881 37.30/0.937
✓ ✓ 37.32/0.882 37.31/0.936
✓ ✓ 37.28/0.879 37.28/0.936
✓ ✓ 37.37/0.882 37.35/0.936
✓ ✓ 37.18/0.878 37.18/0.935
✓ ✓ 37.24/0.881 37.23/0.934
✓ ✓ 37.24/0.881 37.24/0.934

✓ ✓ 37.12/0.879 37.12/0.934
✓ ✓ 37.19/0.880 37.18/0.934

✓ ✓ 37.38/0.882 37.37/0.936
✓ ✓ 37.11/0.879 37.11/0.933

Table 2. Quantitative comparison of MM-BSN with differ-
ent mask combinations on SIDD validation and benchmark
datasets with PSNR/SSIM.
ter mask is used, but it increases to 39.84dB/39.66dB when
the multi-mask is used. This indicates that when the spa-
tially correlated noise region is large, the center mask alone
cannot break the noise structure sufficiently. Since the fea-
tures extracted by the center mask alone may still be noisy,
the final denoising result will be biased by massive noise.
Figure 6d and 6e show that increasing the number of mask
types does not always improve the denoising performance.
The possible reason for this is that features extracted by in-
creasing types of masks lead to the information redundancy,
which is unsensive and unuseful for denoising.

5.3. Analyzing our network architecture

For fairly comparing, all models are trained on SIDD
Medium dataset and evaluated on SIDD validation. AP-
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Models SIDD Validation Parameters(M)

AP-BSN 35.91/0.870 3.7
SMM-BSN 37.16/0.879 7.3
MM-BSN 37.38/0.882 5.3

Table 3. Comparison of Several BSNs. All BSNs are trained on
SIDD Medium dataset. PSNR/SSIM results for SIDD validation
and the model size are shown here.

(a) Noisy (b) AP-BSN [22] (c) MM-BSN
Figure 7. Visual comparison of AP-BSN and MM-BSN on the
SIDD benchmark. They are trained on SIDD Medium dataset
using the same center mask. (a) Noisy image. (b) Denoised result
by AP-BSN [22]. (c) Denoised result by MM-BSN.

Figure 8. Comparison of denoising results of AP-BSN and
MM-BSN on the noisy sets of SIDD Validation.

BSN [22] uses only the center mask, SMM-BSN and MM-
BSN use the combination of ’/’-shaped mask and ’\’-
shaped mask for training, and other settings are the same
as before.

Table 3 compares AP-BSN and its corresponding ex-
tended versions SMM-BSN, which indicates that the de-
noising performance is significantly improved by applying
the multi-mask strategy. The PSNR/SSIM of SIDD valida-
tion shows that MM-BSN (37.38/0.882) outperforms AP-
BSN (35.91/0.870) by a large margin. Figure 7b shows that
using AP-BSN, the alphabets in the yellow box of the im-
age are blurred and a lot of detail is lost. Figure 7c shows
that the alphabets in the yellow box are generally preserved.
This observation suggests that by adding concatenation-
based skip-connections from the shallow features in MM-
BSN, the lost detail can be supplemented in time.

We classify images with different large-noise ratios for
SIDD validation and calculate the average PSNR of AP-

BSN and MM-BSN in each image set, as shown in Fig-
ure 8. Our MM-BSN with multi-mask strategy outperforms
AP-BSN with only ’o’ masks by a large magin, with PSNR
improvements of up to 4, particularly in large-noise.

5.4. MM-BSN in real-world sRGB image denosing

The proposed MM-BSN aims to denoise large-noise
in sRGB images by combining multi-mask in the self-
supervised manner, while preserving the texture detail and
controlling the model size.

Table 4 quantitatively compares the denoising perfor-
mance of several traditional algorithms, supervised de-
noising algorithms, unsupervised and self-supervised algo-
rithms on SSID and DND benchmarks. The table shows
that MM-BSN performs best in self-supervised methods
and even outperforms some supervised algorithms. Further-
more, our MM-BSN does not require rawRGB images and
noise estimation like R2R, nor real noisy-clean pairs like
supervised models. Therefore, in practical applications, re-
searchers can train MM-BSN directly on the noisy images
from the target scene for denoising, avoiding degradation of
the model performance when the scenario changes.

Figure 9 qualitatively compares the visual denoising per-
formance of state-of-the-art models on a random image in
SIDD and DND benchmarks. Compared with its yellow
box in the upper images, the lines area denoised by self-
supervised models in Figure 9d and Figure 9e are more
smoothing, while there are unwanted but obvious burring
effects near the lines denoised by other models shown in
Figure 9a, Figure 9b and Figure 9c. MM-BSN performs
better than most of the models, and can even compete with
the supervised method of CBDNet [12] with slightly lower
PSNR/SSIM. Comparing the yellow box in the lower im-
ages, our MM-BSN has a more clear boundary contour of
outer boundary of the alphabets, and the noise on the alpha-
bets themselves is more obviously reduced.

6. Conclusion
In this paper, we propose a multi-mask strategy worked

on BSNs for self-supervised sRGB image denoising. Multi-
mask can significantly break the large-noise structure,
which previously cannot be efficiently handled by the only-
center-masked models. In addition, we develop MM-BSN
to effectively combine the features extracted by multi-
masked convolutional layers and control the model size to
grow without explosion. In particular, the utilization of
concatenation-based skip-connections can help to compen-
sate for the loss of information caused by the masks. Ex-
tensive experiments prove that our method can effectively
denoise the images with a large scale spatially correlated
noise and can preserve more textures, achieving a better
denoising performance than other unsupervised and self-
supervised methods in the literature. Our proposed MM-
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Method SIDD DND
PSNR SSIM PSNR SSIM

Non-learning based BM3D [8] 25.65 0.685 34.51 0.851
WNNM [11] 25.78 0.809 34.67 0.865

Supervised
Synthetic pairs

DnCNN [43] 23.66 0.583 32.43 0.790
CBDNet [12] 33.28 0.868 38.05 0.942

Supervised
Real pairs

DnCNN [43] 36.07⋄ 0.911⋄ 37.81⋄ 0.931⋄

DnCNN [43] 36.07 0.911 37.81 0.931
AINDNet(R)∗ [17] 38.84 0.951 39.34 0.952
VDN [40] 39.26 0.955 39.38 0.952
NAFNet [7] 40.30 0.962 - -

Unsupervised
Unpaired

GCBD [6] - - 35.58 0.922
C2N [16] + DIDN∗ [39] 35.35 0.937 37.28 0.924
D-BSN [37] + MWCNN [26] - - 37.93 0.937

Self-supervised

Noise2Void [18] 27.68R 0.668R - -
Noise2Self [3] 29.56R 0.808R - -
NAC [38] - - 36.20 0.925
R2R [31] 34.78 0.898 - -
CVF-SID (S2) [30] 34.71 0.917 36.50 0.924
AP-BSN [22] 35.97 0.925 38.09 0.937
AP-BSN† [22] 36.91 0.931 - -
MM-BSN(Ours) 37.37 0.936 38.46 0.940
MM-BSN†(Ours) - - 38.74 0.943

Table 4. Quantitative comparison of different denoising models on SIDD and DND benchmarks. By default, we get the official
evaluation results from SIDD and DND benchmark websites. ⋄ indicates that we have retrained the model, uploaded the test results and
received the results. R indicates that the result is reported by R2R [31]. ∗ denotes the method with self-ensemble strategy [24]. † denotes
the model trained with the same training and test data sets. The highest value is highlighted in bold for each type of denoising model.

(a) DnCNN [43]
Supervised-Real SIDD

(b) C2N [16]+DIDN∗ [39]
Unpaired

(c) CBDNet [12]
Supervised-Synthetic noise

(d) AP-BSN [22]
Self-supervised

(e) MM-BSN
Self-supervised

Figure 9. Qualitative comparison between different denoising methods on SIDD and DND benchmarks. (a) DnCNN is trained on the
real paired SIDD Medium dataset. (b) C2N generates a realistic noisy image from the clean input, where the following denoising model,
i.e., DIDN, is trained on the generated pairs. (c) CBDNet is trained in a supervised manner using noisy-clean pairs, where the noisy image
is obtained by adding synthetic noise to the clean image. (d-e) The methods are trained directly on real sRGB images. Note that the DND
benchmark (upper) provides some per-sample PSNR/SSIMs, while SIDD benchmark (lower) does not.

BSN is well suited for a real practical application scenario considering that it only needs noisy sRGB images to train.
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