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Figure 1. Color and 3D - better together: Objects can be anomalous in both shape and texture. Some shape anomalies are easily detected
as sharp deformations in the 3D shape (marked in red, two leftmost objects - cookie and potato). In such cases, color is ineffective; the
anomalies cannot be detected in top-row views1. Conversely, 3D information often cannot identify texture anomalies e.g., deformation in
cable gland, color of foam (two rightmost objects). These anomalies are easily detected in the 2D color images

Abstract

Despite significant advances in image anomaly detection
and segmentation, few methods use 3D information. We uti-
lize a recently introduced 3D anomaly detection dataset to
evaluate whether or not using 3D information is a lost op-
portunity. First, we present a surprising finding: standard
color-only methods outperform all current methods that
are explicitly designed to exploit 3D information. This is
counter-intuitive as even a simple inspection of the dataset
shows that color-only methods are insufficient for images
containing geometric anomalies. This motivates the ques-
tion: how can anomaly detection methods effectively use
3D information? We investigate a range of shape represen-
tations including hand-crafted and deep-learning-based;
we demonstrate that rotation invariance plays the leading

role in the performance. We uncover a simple 3D-only
method that beats all recent approaches while not using
deep learning, external pre-training datasets, or color in-
formation. As the 3D-only method cannot detect color and
texture anomalies, we combine it with color-based features,
significantly outperforming previous state-of-the-art. Our
method, dubbed BTF (Back to the Feature) achieves pixel-
wise ROCAUC: 99.3% and PRO: 96.4% on MVTec 3D-AD.

1. Introduction

Although 3D understanding is fundamental to com-
puter vision, it has typically not been considered by im-
age anomaly detection and segmentation approaches, prob-
ably because of the lack of suitable datasets. To encour-
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age research into 3D anomaly detection and segmentation
(AD&S), the MVTec 3D-AD [6] dataset was recently intro-
duced alongside several baseline methods for 3D AD&S.
However, despite the existence of a 3D AD&S dataset, the
role of 3D information, as opposed to color-only, is still un-
clear. We conduct a careful study seeking answers to several
questions:

1. Do current 3D AD&S methods truly outperform state-
of-the-art 2D methods on 3D data?

2. Is 3D information potentially useful for AD&S?

3. What are the key properties of successful 3D AD&S
representations?

4. Are there complementary benefits from using 3D
shape and color modalities?

As very few previous image AD&S methods have used
3D information, we conducted a preliminary investigation
of baseline methods on the MVTec-3D dataset. Perhaps
surprisingly, color-only methods (e.g. PatchCore [33]) out-
perform all current 3D AD&S methods by a wide margin.
Next, we ask whether 3D information is potentially use-
ful for AD&S. Encouragingly, we find that several types
of anomalies go undetected when using color-only infor-
mation (see Fig. 1 leftmost two, top row). In the bottom
row, we present another view of the same objects, rendered
using the 3D point cloud, where the anomalies are easily
detected1.

Having shown that 3D information is often needed for
AD&S, our goal is to identify effective 3D representations
for AD&S. We investigate a broad range of hand-crafted
and deep representations and find that rotation invariance is
key for 3D AD&S. Our surprising result: a classical, hand-
crafted 3D point cloud descriptor outperforms all other cur-
rent methods, including learning-based representations.

Notwithstanding the previous results, it is clear that color
information is helpful. E.g., we present some examples
from MVTec 3D-AD where the anomaly is much clearer
in the color than in the shape (Fig. 1, rightmost two ex-
amples). This motivates our final approach, BTF (Back to
the Feature) which combines 3D and color to achieve the
best-recorded result on the MVTec 3D-AD dataset by a very
wide margin (99.3% Pixel-wise ROCAUC, 96.4% PRO, and
87.3% Image ROCAUC).

Our main contributions in this paper are:

• Conducting a thorough analysis of the important and
unexplored field of anomaly detection and segmenta-
tion for images with color and 3D information.

1Note that the black back-plane of the images was removed for visu-
alization purposes. In some cases, this removal is only possible given the
3D information (e.g. We cannot tell apart the hole from the chocolate by
looking only at the color image, 3D information is needed).

• Identifying that current 2D representations signifi-
cantly outperform 3D representations on 3D data.

• Discovering that rotation invariant representations are
key for 3D AD&S.

• Proposing BTF, a method that combines handcrafted
3D representations (FPFH) with a deep, color-based
method (PatchCore), outperforming the state-of-the-
art by a wide margin.

2. Related Work
Anomaly detection and segmentation. Anomaly de-

tection methods have been researched for several decades,
most approaches are based either on density estimation or
out-of-domain generalization ideas. Classical approaches
include: k-Nearest-Neighbors (kNN) [15], KDE [24],
GMM [18], PCA [23], one class SVM (OCSVM) [39], and
isolation forests [26]. With the advent of deep learning,
these methods were extended with deep representations in-
cluding: DAGMM [44] extending PCA, and DeepSVDD
[34] extending OCSVM. A novel line of work extends
self-supervised approaches to anomaly detection, including
Golan and El-Yaniv [19], and Hendrycks et al. [22] that
extend RotNet [17] and CSI [41] who extend contrastive
methods [10, 20, 21]. We follow another line of works that
assumes the availability of pre-trained representations and
combines them with a kNN scoring function. Such works
include Perera and Patel [28], and PANDA [31]. These
works have been extended to anomaly segmentation includ-
ing SPADE [11], PADIM [13] and PatchCore [33]. Very
recent works have used more advanced density estimation
models on the extracted representation, an example is Fast-
Flow [43]. Other approaches for anomaly segmentation in-
clude Student-Teacher autoencoder approaches [5] as well
as self-supervised methods that synthesize anomalies such
as CutPaste [25] and NSA [38].

Anomaly detection and segmentation with 3D infor-
mation. In contrast to the large amount of research on
2D anomaly detection approaches, 3D anomaly detection
has not been extensively researched. In medical imaging
research, work was performed to adapt anomaly detection
methods to voxel data. Simarro et al. [40] extend f-Anogan
[36, 37] to 3D. Bengs et al. [3] presented a 3D autoencoder
approach for medical voxel data. Voxel data is significantly
different from point cloud 3D data. Bergmann et al. [6] rec-
ognized that a dataset for anomaly segmentation in 3D point
cloud data is missing and introduced MVTec 3D-AD [6].
We expect this to be a critical contribution to the develop-
ment of 3D anomaly detection and segmentation. Concur-
rently to our work, Bergmann and Sattlegger [7] introduced
a 3D point cloud based approach dubbed 3D − ST128 for
anomaly detection, we include this work in our investiga-
tion.
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Figure 2. Anomaly Heatmaps (Pixel-wise): The distance heatmaps are shown for each method. The PRO and P-ROC metrics use these
distances for the final score. Blue colors indicate large distances (i.e., more anomalous) while red colors are smaller distances (i.e., less
anomalous). Anomalies are indicated in red. “iNet“ indicates ImageNet pre-trained features

3. Problem Definition

3.1. Setting

We assume a set of input training samples x1, x2..xN

that are all normal. At test time, we are given a test sample
y. The goal of anomaly detection is to learn a sample-level
scoring function σd, such that σd(y) > 0 for anomalous
samples and σd(y) ≤ 0 for normal ones. The goal of
anomaly segmentation is to learn a pixel-level scoring func-
tion σs, which satisfies σs(y, i) > 0 if pixel i of sample y
is anomalous, and σs(y, i) ≤ 0 if it is normal.

Many current state-of-the-art methods (e.g. SPADE [11],
PatchCore [33]) follow the following stages: i) Extracting
representation of local regions ii) Estimating the probability
density of normal local regions. For example, PatchCore
and SPADE perform the density estimation by the nearest-
neighbor distance to the normal training dataset.

Representation. We first compute a representation of
each local region that may consist of one or more pix-
els. The representation of region j of image x is denoted
ϕ(x, j). In this paper we focus on the representation stage,
particularly, our goal is to find learned or handcrafted rep-
resentations for 3D AD&S.

Anomaly scoring. Given the representations for every
local region j of every training image x, we can train a
model σs(y, j) which computes the likelihood of a new
representation ϕ(y, j′). Although some approaches train
parametric models for the density of the representations,
non-parametric approaches are much simpler and require
no training. Specifically, we use the k-Nearest-Neighbor
distance of representation ϕ(y, j′) to the set of all training
representations S = {ϕ(x, j) ∀x ∀j}. Despite their sim-

plicity, such approaches are very accurate, require no train-
ing, and can be significantly sped up.

3.2. 3D Representations

Although RGB images are the default modality, they
lack explicit 3D information. Other representations con-
tain direct 3D information e.g., depth maps, organized point
clouds, unorganized point clouds, and voxels. Both orga-
nized and unorganized point clouds represent the XYZ lo-
cation of points in 3D space. However, Organized point
clouds retain spatial relation and can thus be treated as im-
ages, allowing the use of RGB-based methods (e.g. CNN).
Unorganized point clouds, in contrast, do not retain spa-
tial relation and thus require specific methods and models.
Finally, voxels are derived from point clouds and can be
thought of as a 3D extension of pixels. For brevity we use
the term “pixel“ throughout the paper, however, depending
on the context, it may refer to any of the above representa-
tions.

3.3. Benchmark

Our investigation uses the recently published MVTec
3D Anomaly Detection dataset [6]. It contains over 4000
high-resolution 3D scans of industrially manufactured prod-
ucts across 10 categories. Each sample is represented by
an organized point cloud and a corresponding RGB im-
age with a one-to-one mapping between the pixels in the
point cloud and those in the RGB image. Five of the
classes in the dataset exhibit natural variations (bagel, car-
rot, cookie, peach, and potato). The classes cable gland
and dowel are of rigid bodies, while the classes foam, rope,
and tire are “man-made“ but deformable. Bergmann et al.
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Table 1. MVTec Baselines vs. 2D RGB: Average metrics across
all classes, best performing MVTec 3D-AD methods are shown

Voxel Voxel + RGB Point Cloud RGB
GAN GAN 3D − ST128 PatchCore

PRO I-ROC PRO I-ROC PRO I-ROC PRO I-ROC

0.583 0.537 0.639 0.517 0.833 - 0.876 0.785

[6] introduced three baselines for the dataset: GAN-based,
Autoencoder-based (AE), and Variation Model (VM) - a
simple baseline based on per-pixel mean and standard de-
viation. These models operate either on the depth images
or in voxel space with additional variants that operate on
3D+RGB information.

3.4. Evaluation Metrics

We use several evaluation metrics. Image-level anomaly
detection is measured using image-level ROCAUC [9] (de-
noted I-ROC). Two pixel-level metrics are used for anomaly
segmentation: i) pixel-wise ROCAUC, an extension of the
standard ROCAUC for the pixel level which simply treats
each pixel in the dataset as a sample and computes the RO-
CAUC over all pixels in the dataset (denoted P-ROC). ii)
The PRO [4] metric, defined as the average relative overlap
of the binary prediction P with each ground truth connected
component Ck where K denotes the number of ground truth
components. The final metric is computed by integrating
this curve up to some false positive rate and normalizing

PRO =
1

K

K∑
k=1

|P ∩ Ck|
|Ck|

,

Following common practice, unless otherwise stated, we
use the integration limit of 0.3.

4. An Empirical Investigation of 3D AD&S
4.1. Do current 3D methods beat 2D methods?

We begin our investigation by evaluating if current 3D
AD&S methods are actually better than the SoTA 2D meth-
ods when applied on 3D data. To represent 3D methods,
we test two approaches: i) Voxel GAN [6], a generative
method proposed as a baseline for 3D AD&S. While it has
several variants, we use the best performing ones, which
are “Voxel“ and “Voxel + RGB“. ii) 3D-ST [8], a concur-
rent method that uses a point cloud student-teacher model
to learn 3D representations. We use PatchCore [33] to
represent color-based image AD&S methods. Importantly,
PatchCore uses features that were pre-trained on the Ima-
geNet [14] dataset, which has been shown to be highly ef-
fective for image AD&S. In contrast, 3D-ST used Model-

Figure 3. 3D-Aware Preprocessing: A nuisance artifact in the
fabric

Net10 [42] for pre-training their teacher model. We present
the results in Tab. 1. Surprisingly, PatchCore, which does
not use 3D information, outperforms all previous methods.

Conclusion. Currently, state-of-the-art methods for
image AD&S that use only color information, outperform
3D AD&S methods that use 3D or 3D + color information.

4.2. Is 3D information potentially useful for AD&S?

Provided the results of Sec. 4.1, we are faced with a
second question: “Is 3D information potentially useful for
AD&S?“. Below we present two cases in which 3D infor-
mation is indeed useful for AD&S.

Ambiguous geometry. Frequently, we are unable to deter-
mine the underlying geometry of an object by only looking
at the color information of the object. In such cases, 3D in-
formation may reveal the true geometry. We present several
examples of such cases in the left half of Fig. 1-top row,
the anomaly in each object cannot be detected from color
information only. In the bottom row, using the 3D informa-
tion, we present another view of the same objects where the
anomalies are easily detected. In the case of the cookie1,
looking at the color-only image, the hole blends in with the
rest of the chocolate chips, making it hard to visually iden-
tify the image as anomalous. Using the 3D information, we
visualize the cookie from a different angle, making it easy
to spot the anomaly. Looking at the image of the potato, it
is hard to infer the geometry of the dent from shadow and
texture. However, viewing the potato from different angles
(by using the 3D information), the different texture reveals
the dent.

Background variation. Curated datasets usually con-
tain synthetic conditions such as centered objects and clean
backgrounds, but the reality is seldom so simple. Many
methods mistakenly classify cluttered image backgrounds
as anomalous. Although background segmentation is not
trivial, it is far easier when the 3D information is provided.
We found cases in the MVTec-3D datasets where back-
grounds nuisance artifacts triggered false-positive alerts.
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Table 2. Summary of Our Findings: Average metrics across all classes, “iNet“ indicates ImageNet pre-trained, PC indicates point cloud

Modality RGB Depth Depth Depth Depth Depth PC PC + RGB PC RGB + PC
Method iNet iNet NSA Raw HoG SIFT FPFH PointNeXt SpinNet BTF

PRO 0.876 0.586 0.572 0.191 0.614 0.866 0.924 0.380 0.654 0.964
I-ROC 0.785 0.637 0.696 0.528 0.560 0.714 0.753 0.587 0.524 0.865
P-ROC 0.966 0.821 0.817 0.548 0.845 0.954 0.980 0.687 0.873 0.993

We demonstrate such a case in Fig. 3, the background fabric
contains “wave“ like patterns which are hard to detect given
the dark background color.

Conclusion. 3D information is often required to identify
anomalies, even when color is available.

4.3. What are the key properties of successful 3D
AD&S representations?

Having shown that 3D information is under-utilized
by current methods, and having established the necessity
of 3D information for image AD&S, we now seek to
answer a third question: “What are the key properties of
successful 3D AD&S representations?“. We distinguish
among several categories.

Learning-based representations designed for images.
We adapt the two most popular learning-based image
AD&S paradigms to 3D data: i) ImageNet pre-trained fea-
tures ii) Self-supervised methods.
Depth-only ImageNet features. Motivated by the impres-
sive results of ImageNet pre-trained features on color im-
ages (Sec. 4.1), we apply PatchCore on depth images.
NSA. A different class of learning-based methods ap-
proaches AD&S from a generative perspective. CutPaste
and NSA [25,38] are recent works that try to mimic anoma-
lies by pasting image patches at different image locations.
Specifically, NSA uses Poisson blending [29] to make these
augmentations appear more natural.
Results. ImageNet pre-trained features significantly outper-
form NSA on depth images (Tab. 2). Both approaches un-
derperform PatchCore applied to color images.
Handcrafted Image Representations. Depth patterns are
often much simpler than color patterns. We hypothesize
that a simple, handcrafted descriptor should suffice. The
following depth representations do not require external data
or training.
Raw Depth Values. Here, we test perhaps the simplest pos-
sible representation, the raw depth values of a patch.
Histogram of Oriented Gradients (HoG). HoG [12] con-
siders image gradients and uses histograms to capture the
distribution of gradient orientations in a patch. This is po-
tentially more powerful than raw values as the descriptor
encodes the spatial structure of the data while being invari-

ant to small translations. On the other hand, HoG is not
invariant to global rotations, a much-desired property for
3D representations. Additionally, the small context of HoG
makes it invariant to local geometric changes. This is coun-
terproductive to our goal of detecting anomalies - usually
manifested as local geometric changes.
Dense Scale-Invariant Feature Transform (D-SIFT). In con-
trast to HoG, SIFT [27] is rotation, scale, and shift-invariant
as it is rotated to align the most dominant direction to the
base orientation. This reduces the rotation ambiguity al-
lowing matches between rotated images.
Results. HoG significantly boosts pixel-level accuracy,
achieving better results than raw and learning-based fea-
tures. These strong results are obtained despite HoG not be-
ing specifically designed for 3D information. Finally, the D-
SIFT descriptor is able to surpass all previous depth-based
results (including learning-based ones) on all three metrics.
3D rotation-Invariant Representations. Rotation-
invariant features were very effective on depth maps. We
now ask if rotation-invariant 3D features can do better?
Fast Point Feature Histograms (FPFH) [35]. The method
first computes the k-Nearest-Neighboring points to the re-
gion center point. It then computes a histogram-based rep-
resentation as a function of the surface normals and vector
distance to the nearest neighbors. We choose this as the
representative due to its time-tested excellent performance.
Point-cloud specific learning-based representations.
PointNeXt [30]. A U-Net [32] architecture in which the en-
coder hierarchically abstracts the point cloud features while
the decoder gradually interpolates the abstracted features.
SpinNet [1]. A rotation invariant, learning-based represen-
tation learning method. A transformation and voxelization
phase make the model rotation invariant.
Results. Compared to most methods mentioned above,
PointNeXt falls short. SpinNet performs better than Point-
NeXt (another indicator of the importance of the rotation
invariance), yet fails to surpass the proposed rotation in-
variant, handcrafted methods. See Tab. 3, Fig. 5, and the
supplementary materials (SM) for the results.
Conclusion. FPFH outperforms all methods that use color,
depth, or both (Tab. 2). The results show that strong, hand-
crafted, rotation-invariant 3D representations are extremely
effective for AD&S when 3D information is available. Fur-
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Table 3. Detailed PRO Results: Top half are current state-of-the-art, bottom half are methods investigated by us. Many of our methods
outperform all current methods by a wide margin. “iNet“ indicates ImageNet pre-trained

Method Bagel
Cable
Gland Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean

Pr
ev

io
us

M
et

ho
ds

Voxel GAN 0.440 0.453 0.825 0.755 0.782 0.378 0.392 0.639 0.775 0.389 0.583
+ RGB 0.664 0.620 0.766 0.740 0.783 0.332 0.582 0.790 0.633 0.483 0.639

Voxel AE 0.260 0.341 0.581 0.351 0.502 0.234 0.351 0.658 0.015 0.185 0.348
+ RGB 0.467 0.750 0.808 0.550 0.765 0.473 0.721 0.918 0.019 0.170 0.564

Voxel VM 0.453 0.343 0.521 0.697 0.680 0.284 0.349 0.634 0.616 0.346 0.492
+ RGB 0.510 0.331 0.413 0.715 0.680 0.279 0.300 0.507 0.611 0.366 0.471

Depth GAN 0.111 0.072 0.212 0.174 0.160 0.128 0.003 0.042 0.446 0.075 0.143
+ RGB 0.421 0.422 0.778 0.696 0.494 0.252 0.285 0.362 0.402 0.631 0.474

Depth AE 0.147 0.069 0.293 0.217 0.207 0.181 0.164 0.066 0.545 0.142 0.203
+ RGB 0.432 0.158 0.808 0.491 0.841 0.406 0.262 0.216 0.716 0.478 0.481

Depth VM 0.280 0.374 0.243 0.526 0.485 0.314 0.199 0.388 0.543 0.385 0.374
+ RGB 0.388 0.321 0.194 0.570 0.408 0.282 0.244 0.349 0.268 0.331 0.335

3D − ST128 0.950 0.483 0.986 0.921 0.905 0.632 0.945 0.988 0.976 0.542 0.833

O
ur

Fi
nd

in
gs

RGB iNet 0.898 0.948 0.927 0.872 0.927 0.555 0.902 0.931 0.903 0.899 0.876
Depth iNet 0.701 0.544 0.791 0.835 0.531 0.100 0.800 0.549 0.827 0.185 0.586
NSA 0.724 0.228 0.716 0.856 0.320 0.432 0.712 0.655 0.818 0.258 0.572
Raw 0.040 0.047 0.433 0.080 0.283 0.099 0.035 0.168 0.631 0.093 0.191
HoG 0.518 0.609 0.857 0.342 0.667 0.340 0.476 0.893 0.700 0.739 0.614
SIFT 0.894 0.722 0.963 0.871 0.926 0.613 0.870 0.973 0.958 0.873 0.866
FPFH 0.972 0.849 0.981 0.939 0.963 0.693 0.975 0.981 0.980 0.949 0.928
PointNext 0.425 0.294 0.365 0.772 0.227 0.151 0.408 0.101 0.771 0.295 0.380
SpinNet 0.635 0.316 0.922 0.780 0.870 0.380 0.585 0.699 0.955 0.400 0.654
BTF 0.976 0.967 0.979 0.974 0.971 0.884 0.976 0.981 0.959 0.971 0.964

thermore, as anomalies are usually local and “fine-grained“,
using only a small subset of points (as required by many
deep-learning-based methods) reduces performance.

4.4. Are there complimentary benefits from using
both 3D and color modalities?

While the best depth-only representation outperformed
existing color-only representations, we hypothesize that
combining them might achieve the best of both worlds. In
some cases, geometry alone does not suffice for detecting
anomalies. Two examples are fine textures and color-based
anomalies. The “cable gland“ in Fig. 1-right is slightly
scraped. While this anomalous texture is clearly observed
in the color image, it is virtually impossible to detect with
the current resolution of the 3D information. This is even
more apparent in the foam example, wherein the anomaly is
manifested as a change in color. As our exclusive focus on
3D fails to account for certain anomalies, it is necessary to
combine 3D and color information.

BTF - A Combined color + 3D Approach. We take a
combined color + 3D approach. To this end, color repre-

sentations are extracted using the ImageNet-based method
discussed in Sec. 4.1 and 3D representations are extracted
using FPFH as discussed in Sec. 4.3. We concatenate these
two representations, forming a color + 3D representation
which we dub BTF (Back to the Feature).

Results. Compared with the previous best method of com-
bining 3D and RGB (“Voxel GAN + RGB“), our BTF im-
proves the PRO (i.e. anomaly segmentation) metric by
32.5% and I-ROC (i.e. anomaly detection) by 33.6%. Com-
pared to using only 3D information, our BTF improves on
FPFH by 3.6% PRO and 12% I-ROC. Moreover, it achieves
a score of 99.3% on P-ROC, a 1.3% improvement over
FPFH (Tab. 3, Fig. 5). Other color and 3D combinations
and extended results are found in the SM.

Conclusion. By combining color and 3D information, our
BTF representation makes use of complementary attributes
from both modalities, achieving the best results to date on
the MVTec 3D-AD dataset.
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Figure 4. Most Distant Patch (I-ROC): The patch with the largest kNN distance is shown in red for each representation. Anomaly indicated
by a red square in the 2D view, “iNet“ indicates ImageNet pre-trained

Figure 5. Summary I-ROCAUC Results: Our proposed BTF (top,
dashed line) outperforms all 21 other methods (bottom, candle
chart). For the numbers, see SM

4.5. Implementation Details

Unless otherwise stated, the original point clouds and
color images are downsampled to 224 × 224. For point
clouds, we downsample the organized point cloud (i.e. im-

age downsampling) using nearest-neighbor interpolation,
the color images are downsampled using bicubic interpo-
lation. For unorganized point clouds, we reshape the orga-
nized point cloud from n×m×3 into n·m×3. We use the Z
channel of the organized point cloud as our depth map. We
extract 28 · 28 = 784 patches (features) from each sample,
the feature dimension varies based on the representations
used. When the representation is extracted at a different
resolution, we use average pooling to match 28 · 28 = 784.
For nonsquare classes (i.e. rope and tire), we pad the color
and 3D images with zeros. For PointNeXt, we use the
PointNeXt-XL architecture pre-trained on S3DIS [2] with
a segmentation objective. We report the results on area1 as
it performs best. For further details see SM.
Establishing a 3D-based preprocessing protocol. Prepro-
cessing is sometimes required for removing nuisance arti-
facts. To handle such cases we developed a simple pre-
processing method. We first remove the background plane
by applying RANSAC [16] on the point cloud data. Once
removed, we discard outliers and areas far from the plane
by applying a connected-components-based algorithm (for
implementation details see the SM). This preprocessing
phase left the results of color-only methods mostly unaf-
fected. More interestingly, it drastically improved results
for the depth-based methods, while for 3D-based methods
(i.e. FPFH) it slightly decreases results. We postulate this
is caused by the difference in how depth and 3D methods
handle missing sensor information2. For point clouds, these
missing values are all located at the origin (since their value
is 0) and are easily ignored (since they are not in the spatial

23D sensing methods are prone to sampling noise and missing informa-
tion (e.g. occlusions). In MVTec 3D-AD it is common to have very noisy
backgrounds, these areas are replaced by zeros by the dataset designers.
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Figure 6. Additional results of our method (BTF): All anomalies are correctly segmented (marked in red)

context of other points). In contrast, for depth images, these
values are in the spatial context of other points and are thus
taken into account. Removing these planes creates a sim-
ilar situation to that of the point clouds and hence benefits
depth-based methods. When using the preprocessed data,
even the simplest feature (i.e. Raw) outperforms the origi-
nal baselines [6], results are shown in Fig. 7.

4.6. Limitations.

Our proposed method BTF has several limitations:
Feature fusion. Both cable gland and foam perform poorly
for all depth-based methods (Tab. 3 and SM). While the
anomalies in these classes are easier to detect by using color
than by using 3D (see Fig. 1), we expected the fusion of
both modalities to improve performance. Unfortunately, for
these classes, the fused features underperformed the color-
only method. Future work should address this issue.
Image-level accuracy. While BTF establishes a new state-
of-the-art on all metrics, the image level detection accuracy
is far from perfect. It reaches an I-ROC of 86.5%, a large
improvement compared to past methods, but still a rela-
tively low score. Since we use PatchCore as the backbone
for most of our experiments, the I-ROC score is determined
by the image patch that is most distant from all training
patches. We expect that better metrics can be devised for
3D data; investigating them is left for future work.

5. Conclusion
Our study was motivated by the outperformance of

color-only approaches over all existing 3D methods on the

Figure 7. Preprocessing: Top: PRO vs. I-ROC. Bottom: Prepro-
cessed MVTec Baselines vs. Raw (PRO), average metrics across
all classes are reported

MVTec 3D-AD dataset. We conducted an extensive in-
vestigation of 3D representations and found that rotation-
invariant representations achieves the best performance on
3D anomaly detection. We proposed BTF, a combination of
3D and color features that set a new state-of-the-art. As our
method is simple, we expect it to serve as a strong baseline
for future work.
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and Alexander Schlaefer. Three-dimensional deep learning
with spatial erasing for unsupervised anomaly segmentation
in brain mri. International journal of computer assisted ra-
diology and surgery, 16(9):1413–1423, 2021. 2

[4] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Mvtec ad–a comprehensive real-world
dataset for unsupervised anomaly detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9592–9600, 2019. 4

[5] Paul Bergmann, Michael Fauser, David Sattlegger, and
Carsten Steger. Uninformed students: Student-teacher
anomaly detection with discriminative latent embeddings. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4183–4192, 2020. 2

[6] Paul Bergmann, Xin Jin, David Sattlegger, and Carsten Ste-
ger. The mvtec 3d-ad dataset for unsupervised 3d anomaly
detection and localization. arXiv preprint arXiv:2112.09045,
2021. 2, 3, 4, 8

[7] Paul Bergmann and David Sattlegger. Anomaly detection
in 3d point clouds using deep geometric descriptors. arXiv
preprint arXiv:2202.11660, 2022. 2

[8] Paul Bergmann and David Sattlegger. Anomaly detection
in 3d point clouds using deep geometric descriptors. arXiv
preprint arXiv:2202.11660, 2022. 4

[9] Andrew P Bradley. The use of the area under the roc curve
in the evaluation of machine learning algorithms. Pattern
recognition, 30(7):1145–1159, 1997. 4

[10] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 2

[11] Niv Cohen and Yedid Hoshen. Sub-image anomaly detec-
tion with deep pyramid correspondences. arXiv preprint
arXiv:2005.02357, 2020. 2, 3

[12] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In 2005 IEEE computer soci-
ety conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005. 5

[13] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and
Romaric Audigier. Padim: a patch distribution modeling
framework for anomaly detection and localization. In Inter-
national Conference on Pattern Recognition, pages 475–489.
Springer, 2021. 2

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 4

[15] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid
Portnoy, and Sal Stolfo. A geometric framework for unsu-
pervised anomaly detection. In Applications of data mining
in computer security, pages 77–101. Springer, 2002. 2

[16] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 7

[17] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. arXiv preprint arXiv:1803.07728, 2018. 2

[18] Michael Glodek, Martin Schels, and Friedhelm Schwenker.
Ensemble gaussian mixture models for probability density
estimation. Computational Statistics, 28(1):127–138, 2013.
2

[19] Izhak Golan and Ran El-Yaniv. Deep anomaly detection us-
ing geometric transformations. In NeurIPS, 2018. 2

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. arXiv preprint arXiv:1911.05722, 2019.
2

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020. 2

[22] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and
Dawn Song. Using self-supervised learning can improve
model robustness and uncertainty. In NeurIPS, 2019. 2

[23] Ian Jolliffe. Principal component analysis. Springer, 2011.
2

[24] Longin Jan Latecki, Aleksandar Lazarevic, and Dragoljub
Pokrajac. Outlier detection with kernel density functions.
In International Workshop on Machine Learning and Data
Mining in Pattern Recognition, pages 61–75. Springer, 2007.
2

[25] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas
Pfister. Cutpaste: Self-supervised learning for anomaly de-
tection and localization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9664–9674, 2021. 2, 5

[26] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation
forest. In 2008 Eighth IEEE International Conference on
Data Mining, pages 413–422. IEEE, 2008. 2

[27] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 5

[28] Pramuditha Perera and Vishal M Patel. Learning deep fea-
tures for one-class classification. IEEE Transactions on Im-
age Processing, 28(11):5450–5463, 2019. 2
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